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Abstract

We solve a certain integro-differential equation by reduction to a Riemann-Hilbert
(RH) problem. In the process we illustrate the little-known maxim “research problems
are hard”. To reduce dryness we have removed all the silicon packets from this document
and included an excessive number of footnotes1.

The Baśılica de la Sagrada Famı́lia in Barcelona
was designed by the architect Antoni Gaud́ı.
The basilica is chaotic; yet it accomplishes its
goal. One feels that there is always more
to see, more crevices demanding attention.
The present problem may evoke similar emo-
tions, but throughout this work, remember
the Basilica; there is beauty in the chaos; the
microscopic may be appalling, the macroscopic
remains undeniably effective. Photo Credit:
Traveldigg.com.

1 Introduction

Consider the following autonomous or non-autonomous2 ODE

d

dt
u = F (u, t)

u(0) = u0 ∈ Rd
(1.1)

where u : R→ Rd is some unknown function and F : X×[0,∞)→ X maps some appropriatly
chosen Banach space X into itself3; parameterized by the independent variable in the case
that (1.1) is non-autonomous.

In standard ODE theory the operator F : Rd → Rd satisfies the relation that F (u)(t∗) =
F (u(t∗)) at every point t∗ ∈ R on our domain; i.e. F commutes with pointwise evaluation.

1All good papers have their most important content contained in the footnotes.
2 A useful mnemonic, due to J. Nichols, is to think of the independent variable t as the “driver” of your

ODE. If you cannot see the driver, then she is likely asleep (running a numerical integrator is tough work) and
one hopes that the ODE is autonomous, so as to avoid any mathematical accidents (like dividing by zero).

3 The author would like to take a moment to show off to his classmates and professor that he knows about
fancy things like Banach spaces. And don’t worry, I managed to smuggle Sobolev spaces into this project as
well. This footnote is written with some very specific people in mind. You know who you are.
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When solving an ODE of this type we can solve the ODE independently at any t∗ ∈ R,
without needing the value of u at any other point. In fact, when undergraduates solve ODEs,
they are fundamentally disentangling some rule at a single point and then extending their
subsequent result to the entire domain.

However, the relation F (u)(t∗) = F (u(t∗)) is artificial; there is no a priori reason to
expect such a relationship to hold when deriving differential equations from physical principles.
Indeed, operators which do not satisfy the relation appear quite frequently in physics.

The Hilbert transform on R is an example of an operator which does not commute
with pointwise evaluation. The Hilbert transform is the operator associated with the Fourier
multiplier −i sgn ξ, which has the singular integral representation in physical space

H[u](x) =
1

π

∫
R

u(y)

x− y
dy (1.2)

taken in the principle value sense. The choice of normalization and sign are somewhat arbi-
trary4; we have chosen 1

π so that H is an isometry on L2 (See for example [5]).
The Hilbert transform is an example of a nonlocal operator. Definitions vary, but for

the sake of this project we can safely take a nonlocal operator to be an operator which does not
commute with pointwise evaluation, that is F (u)(t∗) 6= F (u(t∗)) for some t∗ ∈ R. This is true
for the Hilbert transform, since H sinx = cosx implies that 1 = (H sin)(0) 6= H(sin(0)) = 0
(and we must be careful even taking the Hilbert transform of constants). In fact, the Hilbert
transform illustrates an important heuristic for nonlocal operators; knowledge of u at a
point t∗ is insufficient to evaluate F (u) at t∗.

Before continuing, we emphasize the following point

standard ODE techniques rely fundamentally on the fact that the ODE is local,
i.e. F (u)(t∗) = F (u(t∗)).

which means that our standard toolbox for solving ODEs does not apply to nonlocal ODEs.
How do these operators arise in practice? To the uninitiated they can seem like perversions

of the Harmonic analyst, however they do actually arise frequently in physical applications.
For example the Hilbert transform proves indispensable in signal processing, and has been
important for understanding certain phenomena in fluid mechanics [2]5. In hydrodynamics
the Euler equations govern the evolution in time of an incompressible, inviscid fluid. They
are best understood as equations of vorticity, which is defined by ω := ∇ · u. In this case the
velocity is recovered from the vorticity by the highly nonlocal perpendicular Riesz transform
u = ∇⊥(−∆)−1ω.

Understanding the Euler equations, and especially the conditions under which singular-
ities may form, is a major unsolved problem, significantly complicated by the presence of
nonlocal operators. More generally, evolution equations governed by nonlocality are poorly
understood6 and exactly solving any nonlocal ODE or PDE can help us gain insight into the
behavior of solutions to such problems. In this project we will solve a nonlocal ODE exactly.

4The sign doesn’t matter. The reader can check that the Hilbert transform is it’s own skew inverse, that
is HH = −I. If we have defined the Hilbert transform with some sign convention, say H, then we have that
(−H)(−H) = I.

5 Both of the authors of the cited paper are UC Davis Professors and incidentally they have also both been
authors of letters of recommendation for this author. The author is therefore obligated to reference their work
whenever possible. And thus the academic wheel keeps itself rolling. Authors author author’s offer.

6For example, in hyperbolic PDE, nonlocality serves to destroy the finite speed of propagation characteristic
of such problems (the preceding intended pun is intended for a specific person with whom I am currently study-
ing a nonlocal, previously hyperbolic, PDE). In this case we must consider analagous but weaker conditions
than compact support when analyzing these equations.
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1.1 The Model Studied

We will focus on the following nonlocal, variable coefficient, linear ODE

xf ′ = H[f ′′′]

f(0) = 0

lim
x→∞

f(x) = 1

(1.3)

which was derived by Antipov and Gao as a (simplified) model of diffusion along a grain
boundary [1] (We refer the reader to Section 2 of their paper for a derivation of this model).
The symmetries of this problem imply that f ′′′ is odd, and hence we may re-write the Hilbert
transform term as

H[f ′′′](x) = 2

∫ ∞
0

f ′′′(t)

t− x
dt

which is the first step in our analysis. Note that H[f ′′′] is now expressed as something which
resembles a Mellin transform; we will abuse this fact in the coming sections.

1.2 Some Notes

Lest the reader be led to believe that the present exposition is hollistic, it should be known
that what follows is not rigorous. We try to indicate where our arguments are not fully
fleshed out, but there are large swaths of the coming analysis which we blatantly ignore. In
particular there is a great deal of care with which the function spaces we will be working with
must be examined, our solution for the present work is to pretend that we live in a beautiful
green meadow with a babbling brook; which is to say that we ignore the functional analytic
framework all together. The paper by Antipov and Gao [1] carries out the analysis in full
with all the gory details, and we refer the reader to them whenever we decide that “today is
not the day for tracking asymptotic Hölder bounds”7.

We also note that reducing ODEs and PDEs to Riemann Hilbert problems is a well
established practice, since changing to a Riemann Hilbert problem has the effect of linearizing
the original system. This is closely related to the idea of Lax-Pairs, where a nonlinear problem
is converted to an overdetermined system of linear problems. The expository article by Its [4]
is a good introduction to this style of reductionist thinking8.

2 Everyone’s Favorite Tra Everyone’s Second Favorite
Transf The Mellin Transform

You may remember the Mellin transform as the part of complex analysis which makes you long
for a hot Summer day, chowing down on a juicy fruit-like object while in the park. However
the transformation is useful for more than just puns. Recall that the Mellin transform of a
function (in an appropriate function space) is given by

M[ϕ](s) :=

∫ ∞
0

xs−1ϕ(x) dx (2.1)

7Few days are.
8As we know, all of science is reducible to math, all math reducible to linear algebra, and all linear algebra

reduced to solving eigenvalue problems. Humble eigenvalue, may you show us the way through this nonlinear
world. Humble eigenvalue, may you give me the strength to invert this 6× 6 matrix by hand.
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and, in analogy to the Fourier transform, possesses the following inversion formula

ϕ(x) =M−1[M[ϕ]](x) =
1

2π

∫ c+i∞

c−i∞
x−sM[ϕ](s) ds (2.2)

where c is an arbitrary real number in the range where M[ϕ] is analytic.

In what follows, we will find it valuable to compute the following Mellin transform

M
[

1

1− t2

]
(s) =

∫ ∞
0

ts−1

1− t2
dt =

π

2
cot
(π

2
s
)

which is done by first looking up the following Mellin transform in [3]9

M
[

1

1− t

]
(s) = π cot (πs)

analytic in the strip 0 < <(s) < 1, then noting that

M
[

1

1− t2

]
(s) =

∫ ∞
0

ts−1

1− t2
dt =

1

2

∫ ∞
0

w
s
2−1

1− w
dt =

1

2
M
[

1

1− t

](s
2
− 1
)

=
π

2
cot
(π

2
s
) (2.3)

which is analytic in the strip 0 < <(s) < 2.

Recall that the operation of convolution

(ϕ ∗ ψ)(s) :=

∫
R

ϕ(t)ψ(s− t) dt

is dual under the Fourier transform to multiplication in the frequency space, that is

F(ϕ ∗ ψ) = Fϕ · Fψ

We ask if there is an operation ∗M which is dual under the Mellin transform to multipli-
cation. Indeed! Such an operation does exist, and is defined by

(ϕ ∗M ψ)(s) :=

∫ ∞
0

ϕ(t)ψ (s/t)

t
dt

We call this operation Mellin convolution, and we can now prove (and by “we” I mean
Titchmarsh in [6]) an analogous convolution theorem, namely

Theorem 2.1. (Mellin Convolution Theorem). Let M denote the Mellin transform.
Given two functions ϕ,ψ for which the Mellin transforms Mϕ,Mψ are well-defined, we have
the following relationship

M [(ϕ ∗M ψ)] =Mϕ · Mψ (2.4)

9Sorry Andrew, I found some errors in our method, which (a) explained the discrepancy we saw, (b) made
the method not work, (c) didn’t allow me enough time to fix.
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3 Method of Reduction and Solution

We can apply our newfound knowledge of the Mellin transform to start converting our problem
(1.3) into a more suitable form. We take the Mellin transform of f ′′′ and then integrate by
parts repeatedly (assuming that we can ignore boundary terms)

F (s) :=M[f ′′′](s) =

∫ ∞
0

f ′′′(t)ts−1 dt = −(s− 1)

∫ ∞
0

f ′′(t)ts−2 dt

= (s− 1)(s− 2)

∫ ∞
0

f ′(t)ts−3 dt

= (s− 1)(s− 2)

∫ ∞
0

(tf ′(t))ts−4 dt =M[tf ′](s− 3)

We now apply the inverse Mellin transform to the r.h.s. and find

M−1[M[tf ′](s− 3)](t) =
1

2π

∫ c+i∞

c−i∞
t−sM[tf ′](s− 3) ds

=
1

2π

∫ c−3+i∞

c−3−i∞
t−s−3M[tf ′](s) ds = t−3(tf ′(t))

from which it follows that

tf ′(t) =

∫ c+i∞

c−i∞

F (s)

(s− 1)(s− 2)
t3−s ds (3.1)

Note that we now require analyiticity on the strip c−3 < <(s) < c so that the Mellin inversion
above remains valid.

Applying the Mellin convolution theorem (2.4) along with the computations (2.3) and
(3.1) to our nonlocal ODE (1.3) gives

H[f ′′′](x) = 2

∫ ∞
0

1

t

f ′′′(t)

1− (x/t)2
dt =

1

2πi

∫ c+i∞

c−i∞
F (s)

π

2
cot
(π

2
s
)
u−s ds (3.2)

It proves valuable to work at the level of the new function

Φ(s) := πF (s) cot
(π

2
s
)

(3.3)

rather than directly at the level of f or F . We demand the following conditions be satisfied
by the solution which we are seeking

1. The function Φ can be analytically continued in the strip

S := {−3 + c < <(s) < c}

2. There is a constant M so that for any x ∈ [−3 + c, c] we have

‖Φ‖L∞
x L2(x+iR) = sup

c−36x6c

∫
R

|Φ(x+ it)|2 dt 6M (3.4)
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We will operate under the assumption that these are a priori true, but to be rigorous
we must make some sort of bootstrapping or a posteriori argument. This is, of course, done
carefully in [1].

The first condition is imposed so that we are allowed to apply the Mellin inversion formula
to recover f ′′′ from F (see note above). The second condition says that Φ is uniformly L2 on
the strip of analyiticity 10, and is imposed as a technical consequence of the asymptotic Hölder
bounds required of the solution to (1.3); again, see [1]. We introduce these two conditions
mainly to illustrate to the reader that we are presenting a merely cursory analysis of the
problem.

Substituting (3.1) and (3.2) into (1.3), and using Φ in lieu of F , we obtain

1

2πi

∫ c+i∞

c−i∞

[
Φ(s− 3)− Φ(s)

π(s− 1)(s− 2) cot
(
π
2 s
)] t3−s ds = 0, 0 < t <∞

which allows us to reformulate our original ODE (1.3) as the following boundary value prob-
lem: find a function Φ which is analytic in the strip S, satisfying the constraint (3.4) along
with the condition

Φ(s) = G(s)Φ(s− 3), <(s) = c (3.5)

where

G(s) = π(s− 1)(s− 2) cot
(π

2
s
)

and Φ as defined above in (3.3).

Final Steps Towards the RH Problem The astute reader is perhaps starting to see
the analogy with a RH problem. We are not there yet, but will be shortly. We begin by
considering where we are and where we are going. A Riemann-Hilbert problem asks us to
find an analytic function which satisfies a jump condition over some specified line. What we
have is a relationship of a function on two different lines. Imagine, however, that we take
the strip S and glue the two lines <(s) = c− 3 and <(s) = c together. Then we now have a
Riemann-Hilbert problem on the surface of an infinite cylinder. This is (in greatly simplified
essence) what we are about to do. We will map the strip S into the entire complex plane C
, mapping the lines <(s) = c− 3 and <(s) = c into the same (open) cut through the complex
plane.

We begin by considering the “gluing” function

w(s) = i tan

(
π

(
1

4
+

1

3
(s− c)

))
(3.6)

10 This condition warrants investigation (indeed, it justified a full remark in the Antipov paper. This
footnote takes more of a harmonic analyists’ viewpoint than theirs). The original equation (1.3) obviously
cannot have solutions in a nice space, say L2. However, both H and M are formally zero-order on L2 (and
both isommetries with the correct normalization). Thus we expect that the L2 regularity of f ′′′ to be the
same as F , assuming that f ′′′ ∈ L2 at all. The requirement that Φ ∈ L2 amounts to F ∈ L2

Φ where L2
Φ is

the appropriately weighted L2 space. By the isommetry we then expect that f ∈ Ḣ3
W , i.e. the homogeneous,

order three, weighted Sobolev space. Ḣ3 is already a bit of a “pathological” space, but it is far more amenable
to harmonic analysis than the problem posed in the original variables (since the solution is obviously not L2,
for example). It would be interesting to explore this further using techniques from harmonic analysis to see if
one could obtain a solution in a more direct manner than the method outlined here.
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which maps our strip S into the complex plane with a cut along the upper half-circle. Where
w(c− i∞) = 1 and w(c+ i∞) = −1. This transformation is not-straightforward to visualize
(at least it wasn’t for me), and Figure 3 should help the reader to “see” this mapping. We
will use w ∈ C to refer to the complex numbers in the image, and s to refer to the complex
numbers in the pre-image.
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Figure 2: Graphical representation of the image of c − 3 < <(s) < c under the transformation
(3.6). Note that the point at the purple ’x’ gets mapped to both +∞ and −∞ (think Riemann
sphere, i.e. RP 2).

Next we introduce the function

ϕ(w) =
i−1/2Φ(L(w))

(1 + w)1/2(1− w)1/2
(3.7)

where

s = L(w) = c+
3i

2π
log

(
i
1− w
1 + w

)
(3.8)

is the inverse of w. The cut is given by Γ :=
{
|w| = 1

∣∣=w > 0
}

.
We are now solving the following problem: Find a function ϕ, analytic on C \Γ, such that

ϕ+(γ) = G(L(γ))ϕ−(γ) for all γ ∈ Γ and G is given by (3.9).

G(γ) = −π(L(γ)− 1)(L(γ)− 2)cot
(π

2
L(γ)

)
(3.9a)

L(γ) = c+
3i

2π
log

(
i
1− γ
1 + γ

)
(3.9b)

which satisfies the further conditions on Φ given above.
We fix the branches of the logarathmic functions log(η − 1) and log(η + 1) by restricting

the arguments

0 < arg(η + 1), arg(η − 1) < π, η ∈ Γ
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We mention several technicalities which must be dealt with but which we gloss over; all of
these difficulties are addressed in full in the paper [1]. First, the cut Γ is not closed, since the
endpoints are not included. This creates an issue near the points w = 1,−1, and one must
make delicate arguments in some neighborhoods of these points. Second, throughout this
argument we have neglected to concern ourselves with the Hölder continuity of the functional
objects with which we are dealing. However one must make sure that certain Hölder conditions
are satisfied at each step. In fact the Hölder condition required will fail at the endpoints of
Γ, but using some advanced theory one can dispense with such issues.
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Figure 3: The geometry of the Riemann-Hilbert problem with the indicated cut along the upper
half-circle.

3.1 Solving the Riemann-Hilbert Problem

We apply the Sokhotski-Plemelj formula (and in the true sprit of Feynman, ignore a lot of
important justifications allowing us to do this) by introducing the Cauchy integral

Ω(s) =
1

2πi

∫
Γ

logG(ω)

ω − s
dω (3.10)

in which case the function eΩ(s) satisfies the jump condition (3.9). The reader may wonder if
we are done, but we are not. Note that any function of the form

Xp,q(s) =
(s− 1)p

(s+ 1)q
eΩ(s)

also satisfies the jump condition (3.9), and is analytic on C \ Γ. The reason for introducing
this function is that to justify the series of transformations to get back to our original problem
(the reader will be forgiven for forgetting that we are solving an ODE after all). We need to
restrict the growth condition of our solution to the Riemann-Hilbert problem as |w| → ∞ to
hope to recover a solution.

Therefore we are now faced with the following problem: choose a branch of the logarithm
in (3.10) and parameters p and q so that ϕ(w) = O(1/w) as |w| → ∞ and ‖ϕ±‖L2(Γ) . 1.

Following a lengthy technical argument, one finds that the correct choice of p and q are 0
and 1 respectively, which gives us

X(s) := X0,1(s) =
1

s+ 1
eΩ(s)
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so that finally, our solution is given by

ϕ(s) = C0X(s)

where C0 is an arbitrary constant (that there is an arbitrary constant should not be surprising
due to the aforementioned solving of an ODE).

We can now start transforming back into the original-original (two transformations ago)
variables. Inverting the gluing function (3.6) and the transformation (3.7) yields

Φ(s) = C0Q(s)e
1
3πi(c−s)

where

Q(s) = exp

[
− i+ e

2
3 iπ(c−s)

3

∫ c+i∞

c−i∞

logG(τ)

(1− e 2
3 iπ(τ−c))(i+ e

2
3 iπ(c−s))

dτ

]

This allows us to write down an integral (exact) form of our solution, namely

f(t) = − 1

2πi

∫ c+i∞

c−i∞

F (s)

(s− 1)(s− 2)(s− 3)
t3−s ds =

1

2πi

∫ c+i∞

c−i∞

Φ(s)

(s− 3)G(s)
t3−s ds (3.11)

where c is in the analytic strip S.

4 Some Further Results from the Antipov Paper

In my work I am usually concerned more with the transformation of the original problem
than actually being able to do computations with the resulting solution. Antipov and Gao
[1] spend the latter half of their paper computing series representations and asymptotics of
their solution. We will not go through the derivations of these results, but will simply give a
survey of the analysis and what it means.

The authors derive the following absolutely convergent series representation for all x ∈ R
(i.e. infinite radius of convergence)

f(x) =

∞∑
j=0

(−1)jx6j+2

π2j+2

[
2

µ6j+2
(Φ(1)(ν6j+2 − log x) + Φ′(1))− 2x2

µ6j+4
Φ(−1) +

x3

µ6j+5
Φ(1)

]
(4.1)

where µk and νk are appropriately chosen constants. This series behaves like

f(x) ∼ − 1

π2
Φ(1)x2 log x

as x → 0 and hence satisfies the first boundary condition (1.3). The series representation is
not amenable to determining if the far-field boundary is satisfied, and for this reason we make
the following asymptotic expansion of (3.11), valid as x→∞

f(x) ∼ 1 +
Ψ(1)

2x4

∞∑
j=0

(−1)jµ6j+4

(3j + 2)2
x−6j

This series does not converge (µ is more or less going like a factorial), but with some hand-
waving, this is actually fine for representing the behavior as x → ∞. To be more precise
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about where exactly my hands are waving (and in what language), the more terms of this
series you take, the more values of x the series will blow up for. However if you take a finite
number of terms, then the resulting function will be valid for large x.

The preceding argument also allows us to fix the arbitrary constant that has been lurking
in the shadows for the last few pages. We obtain that

C =
e−iπc/3

Q(0)

Finally we have the following plots (from the Antipov paper) which show that the function
f will satisfy the two boundary conditions. Figure 4 shows the function f and it’s derivatives,
computed using the series representation (4.1).

Figure 4: On the left is the function f(x) computed using the series (4.1). The right plots f ′, f ′′,
and f ′′′. Taken from Antipov and Gao [1] and modified by the author.

5 Conclusions

Perhaps the reader deserves a fine chocolate or a delicious refreshment11 after finishing the
preceding material. We wish to emphasize a few key points from the exposition above. First,
nonlocality is important in physics and is worth studying. Therefore results like the present
one play an important role in our understanding of these types of differential equations, even
if the method of solution is inelegant. There is hope that preliminary analysis such as the one
carried out above will lead to more generalizable solution techniques in the future.

Second is that the techniques arising out of complex analysis are powerful because they
give freedom in the ability to transform between domains in a sophisticated way. Because
poles and branches are so well studied, singular transformations like (3.6) are dealt with
elegantly. The incredible diversity of tools and results which have flourished out of complex
analysis highlight it’s indispensability in analysis.

The present result also illustrates the fact that sometimes obtaining an explicit solution
is only half the battle, since we still cannot do much with the explicit solution itself. We are
forced to use asymptotic methods to determine properties of the solution, and even then we
may not be able to obtain precise analytic control in a straightforward manner. I have not
tried this, but it is conceivably that the series solution (4.1) could be obtained directly by
looking at the image of polynomials under the Hilbert transform. If this were the case then
the convoluted analysis we have done would be superfluous.

11Ideally alcoholic.
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5.1 Generalizations to Other Models

Its [4] discusses how converting to Riemann-Hilbert problems is more an art than a science,
and that most problems in this vein are attended to by their own bespoke analysis. In
the present case we relied fundamentally on the asymptotic properties of our solution, the
symmetry of our original equation, the fact that we could write our operator as a Mellin
transform, etc., etc. From this perspective, one may think it unlikely that such a method
could be generalized.

On the other hand, the Mellin transform is ubiquitous, and the process of converting
between the strip S and the complex plane with a cut along the semicircle (or some other
curve) is readily generalizable. It is conceivable that a tenacious student could produce a
“black box” into which we could place most boundary value problems and obtain solutions.

I originally set out to read this paper to determine if the results were applicable to my
research, and after grinding through the pages of computation, I have come to the melancholy
conclusion that this method is not what I was looking for. Perhaps in a future project I shall
have need for solving an ODE in such a manner, but until then I will content myself with
working a level removed from an exact solution.

So long, and thanks for all the fish12.

A Solution of Grain Boundary Problem via Fourier Meth-
ods

We solve (1.3) (without boundary conditions) by the Fourier transform. We take the conven-
tion here that

f̂(ξ) :=

∫
R

f(x)e−2πixξ dx

Indeed, taking the Fourier transform of (1.3) gives us the following ODE in the frequency
space

−ξf̂ξ − f̂ = ξ3f̂

where we have effectively localized the ODE (1.3) (i.e. the nonlocal equation (1.3) corre-
sponds to a local equation in the frequency space).

The ODE is easily solved using undergraduate ODE techniques and we obtain

f̂(ξ) = cξe−
1
3 |ξ|

3

Fourier inversion then yields

f(x) = c

∫
R

ξe−
1
3 |ξ|

3+2πixξ dξ

Note that this function does not satisfy the boundary conditions set forth by the original
problem (1.3), and hence the authors did not use this (manifestly easier) approach when
solving the problem outlined above.

It is possible that this problem can be solved in a more straightforward manner by taking
the Fourier transform at the level of the first derivative and integrating the result in space.
I have some notes on this process which I have not typed up if anyone is curious. One can
do asymptotics on the resulting objects and should get similar results to the ones obtained
above by Antipov and Gao.

12And by fish we of course mean jokes and complex analysis :)
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