PAPER No. T1-3
A Generalization of the Accessibility Problem for Control Systems

Arthur J. Krener
University of California
Davis, California

Preliminaries

Let \(M \) be an \(m \times 1 \) dimensional \(C^\infty \) manifold. Points in \(M \) will be denoted by \(p, q, p_0, p, \) etc. Let \(t: M \to \mathbb{R}^m \) be a \(C^\infty \) function such that \(\Delta \neq 0 \). We assume at each \(p \in M \) there exists a neighborhood \(V \) containing \(p \) and a chart \((t, X): V \to \mathbb{R}^{m+1} \) where \(x = x_1, \ldots, x_m \).

We denote the tangent space to \(M \) at \(p \) by \(T_M p \) and the tangent bundle by \(TM \).

Let \(V \) be a neighborhood of \(p \in M \), we define \(V^+ = \{ q \in V : \tau(q) > \tau(p) \} \) and \(V^- = \{ q \in V : \tau(q) < \tau(p) \} \).

Let \(N \) be another \(C^\infty \) manifold, a function \(f: M \to N \) is \((p_{\mathcal{W}C^\infty}, C^\infty) \) map if for every \(p \in M \) there exists a neighborhood \(V \) and \(C^\infty \) functions \(g, f: V \to N, i = 1, 2 \), such that \(g_i(q) = f(q) \) for \(q \in V \) and \(g_i(q) = f(q) \) for \(q \in V^- \). We define \(f^+ = f|_{V^+} \) (restricted to \(V^+ \)) and \(f^- = f|_{V^-} \). We consider the function, \(f \), to be double-valued at points \(q \in V \) such that \(\tau(q) \in \tau(p) \). From the context it will be clear which value we mean.

A \((p_{\mathcal{W}C^\infty}, C^\infty)\) vector field, \(X \), is \(p_{\mathcal{W}C^\infty}, C^\infty \) map satisfying

\[
\begin{align*}
(1) & \quad X_p \in T_M p \\
(2) & \quad \langle dt, X \rangle_p = 1
\end{align*}
\]

Each \((p_{\mathcal{W}C^\infty}, C^\infty)\) vector field \(X \) gives rise at least locally to a flow denoted \(\gamma(s)p \), the curve \(s \to \gamma(s)p \) is the solution to the differential equation

\[
\dot{\gamma}(s) = \frac{d}{ds} \gamma(s)p = X_{\gamma(s)p}
\]

with initial condition \(\gamma(0)p = p \).

A vector field system, \(F \), is\(p_{\mathcal{W}C^\infty \to TM} \) (is the collection of all subsets of \(TM \)) satisfying

\[
\begin{align*}
(1) & \quad F_{p} \subseteq T_M p \\
(2) & \quad \text{if } Y_p \in F_p \text{ then } \langle dt, Y \rangle_p = 1
\end{align*}
\]

The vector field system is \(C^\infty \), (alternately \((p_{\mathcal{W}C^\infty}, C^\infty)\)), if for every \(p \in M \) and for every \(\gamma \in F \) there exists \(C^\infty \) (alternately \((p_{\mathcal{W}C^\infty}, C^\infty)\)) vector field \(X \) defined on a neighborhood, \(V \), of \(p \) such that \(X_p = Y_p \) and \(X_q \in F_q \) \(\forall q \in V \). The vector field system, \(F \), is finite or convex if \(\forall p \in M \), \(F_p \) is a finite or convex (respectively) subset of \(TM \). In an abuse of notation we will also use \(F \) to denote \(\{ X : (p_{\mathcal{W}C^\infty}, C^\infty) \text{ vector field and } X_p \in F_p \} \) \(\forall p \in M \). We similarly define \(E \).

Suppose \(X_1, \ldots, X_n \) are \((p_{\mathcal{W}C^\infty}, C^\infty)\) vector fields on \(M \). Henceforth we will use \(E \) to denote the finite vector field system defined by

\[
E_p = \{ X_1p, X_2p, \ldots, X_np \}
\]

and \(F \) to denote the convex vector field system defined by

\[
F_p = \text{convex hull } E_p \subseteq TM_p
\]

If \(X \in E \) and \(A \in F \) then \(X \) will be referred to as an \(E \)-control and \(A \) as an \(F \)-control. \(X \) is also referred to as a bang-bang control.

Accessibility and Controllability.

The set of points \(F \)-accessible from \(p_0 \) is denoted by \(a(F, p_0) \) is defined as \(a(F, p_0) = \{ p \in M : \exists \gamma \in F \text{ with } \gamma \circ \phi \circ a = 0 \text{ and } \gamma(0) = p \} \).

The set of points \(F \)-controllable to \(p_0 \) \(a(-F, p_0) \) is defined as

\[
a(-F, p_0) = \{ p \in M : a(-F, p_0) = \{ p \in M : a(-F, p_0) \subseteq \{ p \in M : \exists A \in F \text{ with } a \circ \phi \circ a = 0 \text{ and } a(0) = p \} \}.
\]

The set of points \(E \)-accessible from \(p_0 \) is denoted by \(a(E, p_0) \) and the set of points \(E \)-controllable to \(p_0 \) \(a(-E, p_0) \) are defined similarly. These sets are sometimes referred to as the set of points bang-bang accessible from \(p_0 \) and bang-bang controllable to \(p_0 \) respectively.

Clearly since \(E \subseteq F \),

\[
a(E, p_0) \subseteq a(F, p_0)
\]

and

\[
a(-E, p_0) \subseteq a(-F, p_0).
\]

Let \(V \) be a neighborhood of \(p_0 \) in \(M \), \(a(F, p_0), \),

\[
\{ p \in V : \exists A \in F \text{ with } a \circ \phi \circ a = 0 \text{ and } a(0) = p \} \in \mathcal{D}(p_0)
\]

The sets \(a(-F, p_0), V \), \(a(E, p_0), V \) and \(a(-E, p_0), V \) are defined accordingly.

Note

\[
a(E, p_0), V \subseteq a(F, p_0), V \subseteq V^+ \subseteq V
\]

and

\[
a(-E, p_0), V \subseteq a(-F, p_0), V \subseteq V^- \subseteq V.
\]

Integrability and Local Semi-integrability

Let \(H: M \to T_M p \)

\[
(1) \quad \text{is a linear subspace of } T_M p, v \in M
\]

\[
(2) \quad v \in M \text{ and } X \in H
\]

there exists a neighborhood, \(V \), of \(p \) and \(C^\infty \) vector field \(X \) defined on \(V \]<= X = Y_p, X \in F_p \), and \(X \notin C^\infty \) V \(q \in V \). \(H \) is called a \(C^\infty \) distribution on \(M \), and we will confuse notation by allowing \(H = \{ X, aC^\infty \text{ vector field} \}

186
field: \(X \subseteq H, \forall p \in M \). \(H \) is non-singular if
\[
p \in H, \forall p \in M \text{ neighborhood of } p \text{ and } C^0 \text{ vector fields } X_1, \ldots, X_n, \text{ such that}
\]
\[
H = \text{span}_\mathbb{R} [X_1, \ldots, X_n] \forall q \in V.
\]

Let \(X, Y \) be \(C^0 \) (alternately \((\mathfrak{p}w_c^0, C^{\infty}) \)) vector fields on \(M \). The Lie bracket \([X, Y]\) is a \(C^0 \)
(alternately \((\mathfrak{p}w_c^0, C^{\infty}) \)) vector field on \(M \) defined by
\[
[X, Y] = XY - YX.
\]

Let \(D'H = H + [H, H] \). \(D'H \) is the \(C^0 \) distribution of all linear combinations of vector fields in \(H \) and Lie brackets of vector fields in \(H \) with coefficients from the space of \(C^0 \) real-valued functions on \(M \). We define
\[
D'H = \bigcup_{i=1}^n D'H_i \quad \text{and} \quad DH = \bigcup_{i=1}^n D'H_i.
\]

called the derived system of \(H \).

Theorem 2.1. (Frobenius-Hermann [2]).

Suppose \(H \) is a \(C^0 \) distribution on \(M \) such that
on some open neighborhood \(V \) of \(p \), \(H \) satisfies one of the following

(a) \(DH \) is non-singular

(b) \(\dim DH \) of \(\gamma(s) \) is constant along every \(C^0 \) curve \(\gamma(s) \subseteq V \) satisfying \(\gamma(0) = p \), \(\dot{\gamma}(s) \subseteq DH \gamma(t) \)

(c) \(DH \) is locally-finitely generated on \(V \)

(d) \(M \) and \(H \) are real analytic

Then there exists a unique maximal submanifold \(L \), of \(M \) in \(V \) satisfying
\[
p \in L \quad \text{and} \quad \forall q \in L. \quad q \in L.
\]

L is called the integral submanifold of \(H \) (or \(DH \)) in \(V \), through \(p \).

Corollary 2.2. Suppose \(E, F \) are \(C^0 \) vector field systems as above and we define a \(C^0 \) distribution \(H \) as
\[
H = \text{span}_\mathbb{R} E \subseteq TM.
\]

\(H \) satisfies the hypothesis of Theorem 2.1 on an open neighborhood \(V \) of \(p_0 \) then
\[
\text{a}(E|p_0, V) \subseteq \text{a}(F|p_0, V) \subseteq L
\]

and
\[
\text{a}(-E|p_0, V) \subseteq \text{a}(-F|p_0, V) \subseteq L.
\]

We would generalize the above result to systems which are only \((\mathfrak{p}w_c, C^0) \). \((\mathfrak{p}w_c, C^0) \) distribution, \(H \), on \(M \) is a map
\[
H: M \to TM
\]
satisfying

(i) \(\forall p \in M, \exists \text{ an open neighborhood } V \) of \(p \) such that
\(H \) restricted to \(V^+ \) is a \(C^0 \) distribution on \(V^+ \) and \(H \) restricted to \(V^- \) is a \(C^0 \) distribution on \(V^- \) (we denote the restriction by \(H^+ \) and \(H^- \) respectively).

(ii) \(\exists \varepsilon > 0 \) and \(C^0 \) curves \(\gamma^+: [0, \varepsilon] \to V^+ \)

\(\gamma^-: [0, \varepsilon] \to V^- \) such that
\[
\gamma^+(0) = 0 \quad \text{and} \quad \gamma^-(0) = 0
\]

\(\gamma^+(s) \subseteq H^+ \gamma(s) \)
\(\gamma^-(s) \subseteq H^- \gamma(s) \)
\(\varepsilon > 0 \)

A \((\mathfrak{p}w_c, C^0) \) distribution \(H \) is locally semi-integrable if for every \(p \in M \), there exists a neighborhood \(V \) of \(M \) and \(C^0 \) restriction \(H^+ \) and \(H^- \), of \(H \) to \(V^+ \) and \(V^- \) such that \(H^+ \) satisfies the hypothesis of Theorem 2.1 on \(V^+ \) and \(H^- \) satisfies the hypothesis on \(V^- \). They need not satisfy the same condition of (a), (b), (c) or (d).

Theorem 2.3. Let \(H \) be a locally semi-integrable \((\mathfrak{p}w_c, C^0)\) distribution on \(M \), then at \(p \in M \) there exists a neighborhood \(V \) and unique maximal submanifolds \(L^+ \) and \(L^- \) in \(V^+ \) and \(V^- \) respectively such that
\[
\gamma^+|_{\gamma^+(0)} = DH^+ \gamma(s) \quad \forall q \in V^+
\]
\[
\gamma^-|_{\gamma^-(0)} = DH^- \gamma(s) \quad \forall q \in V^-.
\]

Furthermore, \(p \in L^+ \) and \(p \in L^- \). We call \(L^+ \), \(L^- \) the unique maximal semi-integrable submanifolds of \(H \) (or \(DH \)) through \(p \).

Corollary 2.4. Suppose \(E, F \) are \((\mathfrak{p}w_c, C^0)\) vector field systems as above and we define a \((\mathfrak{p}w_c, C^0)\) distribution \(H \) as
\[
H = \text{span}_\mathbb{R} E \subseteq TM
\]

Then if \(H \) is locally semi-integrable there exists a neighborhood \(V \) of \(p_0 \) and semi-integrable submanifolds \(L^+ \) and \(L^- \) of \(H \) such that
\[
\text{a}(E|p_0, V) \subseteq \text{a}(F|p_0, V) \subseteq L^+
\]

and
\[
\text{a}(-E|p_0, V) \subseteq \text{a}(-F|p_0, V) \subseteq L^-.
\]

REFERENCES

187