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CONTINUOUS LINEAR PROGRAMMING
AND PIECEWISE BILINEAR SYSTEMS

ARTHUR J. KRENER

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, DAVIS, CA. 95616, USA

1.  INTRODUCTION

Linear programming is one of the most useful applied mathematical tools de-
veloped in the last thirty years. The problem of extremizing a limear functional
over a convex subset of R defined by a set of linear inequalities arises raturally
in many diverse fields. Such problems admit both elegant mathematics (the duality
theory) and an efficient algorithm fc;r their solution (the simplex method).

Since 1956 attempts have been made to generalize linear programming to infinite
dimensional spaces. Not only is this a natural mathematical extension but, more
importantly, there are numerous potential applications. Unfortunately the situation
is much more complicated and only limited successes have been achieved. Most of the
effort has been in extending the duality theory (see [1-7] and their references);
very little effort has been devoted to extending the simplex method (8, 9). This
of course is natural, for the latter depends very heavily on the former, but from
an applications point of view a computationally feasible algorithm is more impor-
tant. However, numerous simple examples have been solved using a simplex-like
algorithm. This leads one to hope that a machine implementable algorithm miéht: some
day be available for certain broad classes of infinite dimensional linear programs.
We might add in passing that such problems have also been called continuous linear
programs, generalized linear programs and bottleneck problems.

The mathematical tools most frequently employed in studying infinite dimension-
al linear programs have been functional analysis and convex analysis. In particular
the separating hyperplane theorem (Hahn-Banach theorem) has played a crucial role.
This requires the consideration of convex sets with nonempty interior and, for
reasons that we shall discuss later, has been the major difficulty in extending the
finite dimensional duality results.

The purpose of this paper is to propose an alternate approach based on variable
structure systems and optimal control theory. A certain class of infinite dimen-
sional linear programs can be viewed as piecewise bilinear optimal control problems
and the duality theory of such programs is closely connected with the Pontryagin
Maximum Principle. Hopefully a '"cross pollination” can lead to progress in both
fields.

The rest of the paper is organized as follows. Section 2 introduces a very
simple example illustrating the class of problems under discussion. Section 3 dis-
cusses the dual program and Section 4 the literature on duality. In Section 5 a

simplex-like method is used to solve the example of Section 2 and in the last
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section we discuss the relationship with variable structure systems.

2. AN EXAMPLE

We start by considering a simple example of an infinite dimensional linear pro-
gram after R. S. Lehman [8]. It deals with a one sector economic model.

Let xl(t) be the amount of steel stockpiled at time t and xz(t) be the amount
of steelmaking capacity available at time t. We normalize so that one unit of
capacity can produce one unit of steel in one unit of time.

Let zl(t) be the rate of steel production and zz(:) be the rate of production
of steelmaking capacity. If we assume that o wunits of steel can instantaneously
be converted to one unit of steelmaking capacity then the dynamics is

%, = z) - oz,
Xy = 2,
subject to initial conditions
xl(O) =< xz(O) =,
and the constraints
xi(:) >0 s zi(t) >0
xy () > z,(t). .
Our goal is to maximize the steel stockpile at some terminal time T > 0.
It is interesting to note that this problem is very close to that considered

by Geofge Oster elsewhere in this volume. The wasp queens correspond to stockpiled

steel and the wasp workers to steelmaking capacity.

One can rewrite the steelmaking problem in a different fashion, namely,
T
(2.1) max [ z,(£) - az,(c) de
0
subject to

t
I oz, (8) -~ z,(s) ds < ¢
0 2 1 1
r >
zl(t) - Jozz(s) ds- < <,
zi(t) >0 i=1,2.
By the addition of slack variables it can also be written as
T
max fozl(:) - oz, () 4t

subject to

t
(2.2) z3(t) + Ioazz(s) - zl(s) ds = <
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t
(2.3) 2, () + 2, () - Jrozz(s) ds = ¢,

z,(c) 2 0 1=1,2,3,4.

Formulated in this fashion the steel problem appears as an infinite dimensional
version of the finite dimensional linear programming problem. In the next section

we formulate a general class of problems to which this example belongs.

3. DUAL PROGRAMS
Consider the problem of finding z(t) = (zl(t),...,zn(t))t vhich maximizes the
integral

RS

T
(3.1) foa(c)z(:) de

subject to the constraints

(3.2) 2(t) > 0
t

(3.3) B(£)z(e) < e(&) + | K(t,9)z(s) da.
0

Such problems are called continuous linear programs [8], they are not the most
general infinite dimensional linear program but they do include many interesting
cases. )

We shall refer to this as the primal problem. If z(t) satisfies (3.2) and
(3.3) it is called feagible, Lf in addition (3.3) is strictly satisfied then z(t) ia
strictly feasible. The supremum of (3.1) over all feasible z(t) 1s denoted by P,

if this is achieved by a feasible z(t) then such a solution is called optimal. The
program is autonomous if a(t), c(t), B(t) and K(t,s) are constant functions of t
and 8.

From the applications which motivate the formulatiom of problems of the above
type, we are accustomed to think of z(t), a(t), c(t), B(t) and K(t,s) as vector or
matrix valued functions satisfying some sort of regularity conditiom, i.e., plece~
wise continuous or integrable. In particular, since z(t) plays the role of a con-
trol or decision variable, we would certainly wish to allow it to be piecewise con-
tinuous. On the other hand, one is faced with the problem of existence of feasible
and optimal solutions. To ensure this in some problems one might wish to consider
zi(t) as living in a larger spac.e of (generalized) functions., For our purposes, ve
shall assume that zi(t) €z, a locally convex space which includes the plecewise
continuous functions, Possible choices which have been considered in the literature
include LPIO,T], 1 < P <=, the space of Borel measures on [0,T] and various spaces

of generalized functions (distributions). Let z“xl denote the space of nxl vectors
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of elements of Z then z(t) € znxl.

We deliberately leave Z unspecified. Instead we take as part of the problem
the task of finding a dual pair (Z,W) of locally convex spaces in which (3.1), (3.2)
and (3.3) make sense, such that an optimal solution exists and strong duality holds.
We elaborate on this.

The inequalities (3.2) and (3.3) are defined via the cone Z + of nonnegative
elements of 2. For function spaces this is the cone of functions which are non-
negative almost everywhere. For generalized function spaces, this is the dual cone
to the space of nonnegative test functions. ‘

Let Z and W be a dual pair, i.e., W is a locally convex space of continue~
ous linear functionals on 2Z which is big enough to separate points of 2Z. Usually
ﬁ ig taken as the topological dual of 2 and frequently Z is assumed to be re-
flexive, i.e., the topological dual of W. However, one does not need to assume
this, for if Z and W are given the weak topologies, then they are the duals of
each other, hence re‘lexive. Let wlxn denote the space of lxau vectors of elements
of W.

One consideration in the choice of Z and W is that (3.1) defines a continu-
ous linear functional on 2, a(t) € wlxn. The integral denotes the nitural pairing

between wlxn and z“’d. Other considerations are that the map

t
(3.4) L: z(t) = B(t)z(t) - j' K(t,s)z(s) ds
0

be continuous from ZnXI to de relative to the weak topologies induced by wlxn and
wlxm' and that e(t) € mel.

As in finite dimensional linear programming, an inequality constraint can be
converted to an equality constraint by the introduction of a nonnegative slack
variable. Also an equality constraint can be replaced by a pair of inequalities.

Another similarity is the existence of a dual problem to (3.1), (3.2), (3.3),

namely that of finding w(t) € Wlm to minimize -

T
(3.5) .f w(t)e(t) dt
0
subject to
(3.6) w(t) >0
and
rT
3.7) w(t)B(t) > a(t) +J w(s)K(s,t) ds.
t

The inequalities are defined relative to the dual cone w+ of Z+ and (3.7) is defined
by the dual of 1L,
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*
*. wlxm . wl)u:x

(3.8) " T
L : w(t) rmw(t)B(c) - I w(s)K(s,t) ds.
t

L* exists and is weakly continuous if L 1is continuous with respect to the weak
topologies on Z and W.

The notation of (3.7) amd (3. 8) is suggesi:ed by the construction of the adjoint
when all the objects are functioms and the integrals make sense.

Feasible and optimal solutions to the dual problem are defined as before. We
denote by D the iafimum of (3.5) over all feasible w(t). The dual is specifically
constructed so that weak duality holds, P < D. The proof is immediate, if z(t) and
w(t) are feasible then »

T
3.9 J a(c)z(:) de < Jr (w(t)B(t) - I w(s)K(s,t) ds)z(t) dt
0

- _fTV(t)(B(t)z(t) - Jf K(t,s)z(s) ds) dt
0 0

T .
< _[ w(t)e(e) dt.
0

1f one chooses to work abstractly using (+,*) to denote dual pairings then (3.9)

becomes

(3.10) (a,2) < L"),z -
= (“sL(z))
< {w,e).

The final considerations in the choice of Z and W are that strong duality
hold, P = D, and there exist optimal solutions to both problems. It is still an
open question whether there always exists such a choice of 2 and W even for
autonomous problems.

A pair of feasible solutions, z(t) and w(t), have complementary slackness if
(3.11) {w, ¢-L(z)) = 0
(L*(w)-a, z) = O,
It follows from (3.10) that if z(t) and w(t) are optimal with P = D then they have
complementary slackness. On the other hand, complementary slackmess for feasible
solutions implies strong duality and the optimality of both.

1f z(t) and w(t) are integrable functions which are optimal, then there is a
stronger form of complementary slackness [5] for almost all t such that zj(t:) > 0.

(3.12) w(t)B ,(t) - ‘Jv(s)l( (s,t) ds = a_(t)
-] e -3 J
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where B-j and K 3 denote the jth columns of B and K. Also for almost all t

such that wi(t) >0
t

(3.13) B, (0)z(0) = [ K (s,0)2(s) ds = €;(t)
o

and K, denote the ith rows of B and K.

where B 1.

ie
4. STRONG DUALITY

In finite dimensions if both the primal and dual programs are feasible then
both arc optimal with P = D. For 2 and W fixed a priori this need not be true,
for a counterexample see Grinold [2].

Surprisingly enough this difficulty does not arise per se from the jump to in=-
finite dimensions. If the inequalities of a finite dimensional linear program are
replaced by inclusions into convex cones then such a problem is called a general-
ized linear program and similar difficulties can occur [31.

The root of the problem is that some of the convex sets associated to the
program lack interior. A frequent approach taken by several authors is to restrict
to a class of problems where the sets have interior, then the Hahn-Banach theorem
can be used to prove strong f:h.ull:l.t:).v and the existence of optimal solutions to both
the pri.mal and dual programs. The technique is well known, we formulate a particu-
lar application of it in the following theorem.

Theorem , Suppose that the primal is strictly feasible, the dual is feasible,
and Z+ has nonempty interior, then the dual program has an optimal solution and
P=D.

(Note: The assumption of strict feasibility is frequently called a Slater condi-
tiom.)

Proof. From feasibility and weak duality

w<PLD<™,

Define a pair of convex sets in R X zmxl by

-{(aa) Tz>03 ex (a,2) - P,
B<ec - L)} ;

= {(ass) > 0}'

Since Z has nonempty interior so do El and Ez. The interiors must be disjoint
else there exlsts a strictly feasible z such that (a,z) > P. By the Hahn-Banach
theorem there exists a nontrivial (v,w) € R X Wlm

every (ai,pi) € Ei.

separating l-:l and Ez, i.e., for

(4.1) vay + (w,al) < vay + (w,sz). ' '

The range of cone Ez with vertex O under the linear functional (v,w) is a cone

with vertex 0 in R. Since it is bounded below by (4.1) it must either be O or the
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cone of nonnegative reals. This shows that
(v,w) > 0.
Since (0,0) € E2, for every z > 0
v {a,z) = vP + {w,c) - (w,Lz) < 0.
This implies that

(6.2) (va-L" (), 2) < 0
and
4.3 {w,c) < vE.

Suppose v = 0, then (4.2) and (4.3) imply that

(4.4) ') >0
(4.5) {w,e) < 0.

If (4.5) is strict and y 1s any feasible solution for the dual problem, then from
(4.4) y + ew is also feasible for all ¢ > 0. As ¢ =, (ytew, c) =~ - 30D = «», a
contradiction. 1If (4.5) is an equality then choose a strictly feasible z. The set
of all g such that
0<g<c ~L(2)

is a2 nonempty open set since z+ has interior. From (4.1) it follows that

{w,8) < O
for all such B. On the other hand, since w > 0 and g8 > 0, it is true that

{w,g) >0,
Therefore w annihilates a nonempty open set implying w = 0. This contradicts the
nontriviality of (v,w).

From the preceding paragraph we conclude that v ¥ 0, hence it can be normalized
to 1. Inequality (4.4) implies that w is feasible for the dual problem and in-
equality (4.5) and weak duality imply that it is optimal, D = {w,c) = P. QED

For those problems where z+ has empty interior or the Slater condition fails,
Duffin [1] has introduced an asymptotic approach. A sequence [(zk,yk)}gz“"lxzm’d
is feasible 1f

(4.6) z >0 » y >0

and

4.7 lim(coL(zk)-yk) = 0,
k

The value of the program for such a sequence is

k

%.8) lim sup{a,z")
k

Duffin defines the subvalue SP of linear program (3.1), (3.2) and (3.3) to be
the supremum of (4.6) over all feasible sequences and has shown that if both the
primal and dual are feasible then SP = D.
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The introduction of feasible sequences in effect thickens the positive cone in

the constraint space (the rauge of L) and ensures that the Slater condition is
satisfied for a sequence of perturbed problems. This allows the employment of the
Hahn~Banach theorem to obtain a sequence of feasible solutions to the dual problem
whose value (3.5) converges to D.

Another approach to strong duality is found in the work of Tyndall [2,4],
Levinson [3], and Grinold [5]. These authors impose inequality restrictions on the
matrices B(t), K(t,s) and the vectors a(t), c(t) vhich must be satisfied for each
t and s. These restrictions are considerably stronger than requiring primal and
dual feasibility. They then discretize the time variable to approximate the infin-
ite dimensional programs by finite dimensional programs. The latter are feasible
from the inequality assumptions and, under some additional regularity assumptions,
they show that the optimal solutions of the finite dimensional programs cooverge to
optimal solutions of the infinite dimensional programs as the time step goes to O.

5. THE SIMPLEX METHOD
what makes finite dimensional linear programming important is the existence of
an efficient algorithm, the simplex method, for computing solutious. The rudiments
of a similar algorithm exist in infinite dimensions but one could hardly call it
well defined at present. Following Lehman [8] we illustrate the ;l'gorithm using the
steelmaking example of Section 2 using for convenience the operationmal calculus no-
tation. Drews, Hartberger and Segers [9] contains similar examples.

We introduce the matrix P whose entries are distributions

-1 ol 6 0
P = + +
8 -1, 0 5

where & is the Dirac delta function and 1 + is the Heavyside functiom,

0 t<o0
1,(t) =
* 1 t>0

We use « to denote the comvolution product 62 (generalized) functions with support
in [0,=) ‘

£z (t) = J.of(t-s)zi(n) ds.

In particular

6%z (t) = Iob(tes)zi(s) ds = 2, (v)




1, * 2 () = “r01+(:-s)zi(s) ds

J.t:
= | z.(s) ds
oi

Convolution with f is a linear transformation from Z into itself. The adjoint

maps W into W and is given by

w o E(t) = Iowi(s)f(s-t) ds.

Notice that =% is commutative while o is not.

We express (2.2) and (2.3) in this notation as
G.1) P x z(t) = ¢(t).
Subject to this comstraint and
(5.2) z(t) >0
we wish to maximize

T
Jr a(t)z(t) de.
0

Here
z, (8)
zz(t) €y

z(t) = ' , c(t) = ,» a(t) = (31:32533’34) = (1,-2,0,0)
23(t) °2
2z, (€)
The dual problem is to find w(t) = (wl(:),wz(:)) such that
(5.3) wo P(t) > a(t)

which minimizes
T

(5.4) [w(eree ae.
0

Mimicking the simplex method, we choose an initial basis consisting of z3(t)
and 24(t). Let Z(t) denote basic variables of z(t) and ﬁ(t) the corresponding col-

umns of P(t), then (5.1) determines a solution
- a-l
(5.5) z(t) = P *x c.

We can invert square matrices whose entries are distributions as long as the
AY

determinant computed using convolution multiplication {s invertible. In this case

it is particularly simple since ﬁ(t) is the identity matrix, hence its own inverse.

il iie it it
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The resulting solutic
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The resulting solution is
(3]
0
(5.6) z(t) =
“1
€2

which is feasible since ¢, > 0.

To test the optimality of (5.6) we determine a w(t) using complementary slack~
ness, i.e.,

h i(t) -wo B(t) = O.
If this is feasible thern (5 .5) is optimal,

6.7 w(t) = 40 371(E)
w(z) = (0,0).

Define n(t) by

m(t) = a(t) - we P(t)
(5.8)
n(t) = (1,-«,0,0).

If m(t) < 0 then w 1is dual feasible. If one component of n(t) is positive at
some time (as is L (t)) we wish to introduce the corresponding component of z(t)
into the basis. To gee which variable leaves we look at the equation

P*z(t)-c-zl*Pl(t) a1
where P .1 is the first column of P. Multiplying by P = yields the inequality

(5.9) sy = Bl uc(e) ~z % B P (0) 20

EGENOS

If z, > 0 the first inequality is always satisfied so it is z, which is dropped from

the Ilnsis. Our new basis is
z (c
z(t) =
(he)
As before we solve (5.5) to obtain the new solution

€2
0
(5.10) z(t) =
Cl + 02:
0
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We check optimality by computing w(t) and m(t) from (5.7) and (5.8)
w(t) = (0,1)
n(c) = (0,(T-t)~-a,0,-1).
If T < a then m(t) < 0 on {0,T] so w(t) is dual feasible and (5.10) is the optimal
solution. :
1f T > @ then we wish to introduce zz(t) into the basis on the interval {0,T-¢]
wvhere n'z(:) > 0. The new basis changes with time, it is z, and either z; 3 from
[0,T-a} and is z, and z, from [T-a,T]. We decide which of z) or z4 to drop on the
first interval by the analog of (5.9)

z (C) c A
1 = 2 -zz*Pl*P.ZZO
23(t) c]. <+ Czt .
c ~1
= 2 > - 22 * + > 2 0.
€ + ¢yt or1+ - :1+

The first inequality is satisfied for all zz(c) > 0 so we drop 23(:). This turns
out to be the optimal solution and involves a delta function.

or z

We have chosen a very simple example to illustrate the method, we refer the
reader to [8] and [9] for much more difficult ones.

One unpleasant thing that can happen is that the basis solution could involve
delta functiomns or derivatives of delta functions, Of course the latter are not
nonnegative, hence not feasible, but the former are, Another difficulty of this
method is knowing over which interval to introduce a new basis variable, One choice
is the intexval where ﬂi(t) is positive, but this is not always the right one. Also
we should mention that it 1s possible for a variable to drop out of the basis at one
time only to be replaced by another at a different time [9].

These difficulties notwithstanding, this loosely-defined algorithm judiciously
employed, does seem to work., It would be immensely useful if it could be rigorously
defined and if some kind of convergence established.

6. PIECEWISE BILINEAR CONTROL
In this section we discuss the relationship between autonomous Continuous

Linear Programs and Variable Structure Systems. Coansider the program of maximizing

T
(6.1) J az(t) dt
0
subject to the constraints
(6.2) z(t) > 0

and

H
3]

phinpinr e

by 4 i lad ¥ xe ule

(6.3)

Such a problem is si
singular. Hencefor!
From the above
state variable x =
maximize xo(']:) wher

(6.5)
and
(6.5)

Differentiating we
(6.6)
and
6.7
Let B = {j,..

is the ji':.n column

matrix whose _]:i_t"h b
fer to 8§ as a bas
n of {1,...,0}s F

Let bl""’bl.
It can be shown thi
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Combining (6.
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t
(6.3) Bz(t) = ¢ + Jr Kz(s) ds.
0

Such a problem is said to be nonsingular if every mxm submatrix of B is non-
singular. Henceforth we shall assume nonsingularity.

From the above we define an optimal control problem of the Mayer type with
state variable x = (xo,xl) where x4 is a scalar and %) is an mXl vector. We wish to

maximize xo(T) where

t

. f
(6.4) xqo(t) = Joaz(r.) dt
and ’
e
(6.5) x,(t) = ¢ + | Ka(s) ds.
0
Differentiating we obtain
(6.6) ' g = az
and
N
6.7) il = Kz,

Let B = {jl,...,jm} < {1,...,n} and let l!.B be an mxm matrix whose 1™ column
is the jith columm of B. It is nonsingular by assumption. Let B'; be the nxm
matrix whose jith row is the ith row of B;I and whose other rows are zero. We re-
fer to p as a basis and use it as an index ranging over all subsets of cardinality
a of {1,...,0}. From (6.3) and (6.5) a basis § is feasible at x if

+
z= Bpxl > 0.

Let bl”“’bl be the generators of the extreme rays of set {z > 0: Bz = o}.
It can be shown that if z > 0 and Bz = x, then there exists u, v such that

i I3 -
(6.8) ' z= £ uBx + Lvb
p feasible P P 1 ju1 1
where
(6.9) f wuww=1l, u>0 and v, 20
g feasible B B i

Combining (6.6), (6.7), (6.8) and (6.9) we obtain

. +
(6.10) xg = Tu_aB Xy + Zvjab

g8 5|
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. L +
(6.11) X, = ZuﬁKBBxl + Zvjl(bj

This is a piecewise bilinear system in the following sense. Let (:B be the convex
cone defined by
. .

CB - [xl. BBx1 > 0].
Consider the class of sets with nonempty interior formed by intersections and com~
plements of the cB’s, call the minimal elements of this class 91,...,£n. They are
atoms of the algebra generated by the CB's. In general sj is not a cone but it is
closed under multiplication by positive scalars. When %, is restricted to a parti-
cular sj the collection of feasible bases does not change, so on ﬂj the dymamics
(6.10) and (6.11) is bilinear in the usual sense.

This representation of a linear program as an optimal control problem is quite

natural. Suppose z(t), an integrable functiom, is primal optimal and x(t) and u(t),

v(t) are defined by (6.4), (6.5) and (6.8). By the Pontryagin Maximum Principle
there exists a dual variable A(t) = (ko(t:),kl(c)) which 1s closely related to the

dual of the linear program. If w(t) is an integrable function which is dual optimal

and x(t) €U A
j 3

for almost all t € [0,T] then
T
(6.12) A () = [wes) da.
t
To see this, we define the Hamiltonian
H(\,x,u;v) = koio + )‘1{‘1
(6.13) = (koa+11K)z(x,u,v)
+
= ().oa+11K) (EuBBaxl + ?’jbj)’

The Maximum Principle states that if u(t), v(t) and x(t) are optimal, there exists
a A(t) = (lo(t),kl(t)) satisfying the adjoint differential equations

> oH

(6.14) ko= -‘5-’%= 0

S +
(6.15) 11 = - bxl (loa-i-le) I;;BBB
the transversality conditionms,
(6.16) XO(T.) >0 » XI(T) =0

and for any admissible controls u, v

170

RO AR RSN

ppiuipegs amaswine iy

purtanibit i 44 dhia

H
:
1
&

(6.17) H
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(6-17) H{A (L) »x(t),u,v) < H(k(:),x(t),u(t),v(c)).

On the other hand, if w(t) is dual optimal then complementary slackness re-

14

quires that for almost all t such that zj(t) >0,

T
w(E)B, = 8y + Itw(s)K'j ds.

If x(t) € aﬁi and uB(t) > 0, then zj(t) >0Y j €g, 80

or equivalently

[.T
w(t)Bﬂ = ap + J,:w(S) ds K‘3

T
o+
w(t) = (a + jtv(a) ds K_)BB.

We multiply by ua(t) and sum over B to obtain

(6.18)

T
Define ko(t) =1 and kl(:) - J. w(s) ds, then A(T) satisfies the transversality
conditions and (6.18) implies that Eor almost every t, A(t) satisfies the adjoint

differential equatiom.

(6.19)

. ‘
w(t) = (a +J' w(s) ds K) ZuBB;
t B

Finally w(t) is dual feasible so

o
w(t)B > a +J w(s) ds K.
t

Given any admissible u, v, we define

then

80

€ = Iu Bx

551+sz

33

BE=x, and £20

S

T
HO(E),x(2),u,v) = (a +j' w(s) ds K)E
t
< w(t)BE

= w(t)x'.

On the other hand, by complementary slackness

17%



T
w(t)x' = w(t)Bz(t) = (a + I w(s) ds K)z(t)
t

so (6.17) is satisfied.
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