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Abstract: The estimators which minimize the error covariance for the filtering,
prediction and smoothing of linear plants with Gaussian initial conditjions and
noises are well-known. We show that these same estimators arise when one seeks to
minimize the maximum error assuming that initial conditions and noises are bounded
in norm in an appropriate Hilbert space (minimax estimator). They also arise when
one seeks the trajectory of least energy necessary to produce the given observa-

tions (minimum energy estimate).

1. Introduction. Consider a linear plant with Gaussian initial condition, driven

by Gaussian white noise and observed with additive Gaussian white noise. The
problem of optimally estimating the state at time t, given observations up to time
T, is called filtering if t = T, prediction if t > T énd smoothing if t < T. A
complete treatment of these problems can be found in [1]. .

In this paper, which is an extension of [2], we give two alternate characteriza-
tions of the minimum covariance filter, smoother and predictor for the linear
Gaussian model. These characterizations employ the same linear model but they are
nonstochastic, i.e., they do not assume that the unknown initial condition, driving
noise and observation noise are stochastic. Instead they assume that these uncer-
tainties lie in a Hilbert space, the norm of which measures the energy of the uncer-
tainties. The norm is related to the covariances of the Gaussian model.

In minimax estimation we assume that the uncertainties are bounded in norm‘and
we seek the estimate of the state which minimizes the maximum possible error given
the observations.

The minimum energy estimate assumes that the state of the system is that which
is achieved by the uncertainties of least energy necessary to produce the observa-
tions.

Both of the above estimators are identical with the minimum covariance estimate.
This indicates the robustness of such estimators, and provides an alternative way
of looking at the covariances. The latter is particularly desirable because fre-
quently these covariances must be guesstimated when designing an estimator. Final-
ly it is hoped that these the alternative characterizations of linear estimators

might lead to computationally feasible nonlinear estimators.



2. The Minimum Covariance, Minimax, and Minimum Energy Estimators. Throughout we

consider the time-varying linear system

x(t) = A(t)x(t) + B(t)u(t)
(2.1) x(0) = e
z(t) = g(t)x(t) + v(t)

where the state x(t) is n X1, the driving noisevﬁ(t) is £X1, the observation z(t)
and observation noise v(t) are mX1l. The matrices A(t), B(t) and C(t) are n Xn,

nX £ and m Xn respectively. We assume that (2.1) is a completely controllable

system.

A. In minimum covariance estimation we assume that the initial condition xo is a

Gaussian random vector of mean 0O and covariance

’
E(xoxo) = PO

The driving and observation noises are independent of each other and Xg. They are

white Gaussian with zero mean and covariances

E (u(t)u’(s))
E (v (t)v/(s))

Q(t)d(t-s)
R(£)6(t-s)

Il

R(t) is assumed to be positive definite but Q(t) and P, need only be nonnegative

0
definite. The estimation problem is to find for t, T€[0,T] the estimate §(t|T)
based on the observations z(s), 0 < s < T which minimizes the conditional covariance

of the error'g(tlT) = x(t) - §(t|T), i.e., §(t|T) minimizes
EGxE|DT ] |2¢s), 0 <s <M

for any 1 Xn vector b. Standard statistical results imply that the minimum co-

variance estimate is the conditional mean
2el™ = Ex@)]z(s), 0 <s <

but one is interested in an efficient method of computing this from the observations.

B. In the minimax model we put a nonstochastic interpretation on the uncertainties
X u(-) and v(-). -We assume (xo,u(-), v(-)) is an element of a Hilbert space ¥#
and is bounded in norm. For convenience we take the bound to be 1; any bound re-

sults in the same estimate although not the same error. The norm is given by
2
@.2)  lxgu) v =

T
X6P0_1X0 + J;u'(s)Q—l(s)u(s) + v?s)Rnl(s)v(s) ds.



Since PO and Q(t) are not necessarily invertible we adopt the following

convention. If X, is the range of PO’ Xy = Poy then x.P 1x and if x

4
0’0 o~ Yo 0
is not in the range of PO then xOPO1 Xy = @, This definition is independent of

the choice of y since the null space of P is orthogonal to the range of PO.

We adopt a similar convention for u?s)Q-l(s)S(s). We define H as the space of
triples (xo,u(-),v(')) satisfying on,u(-),v(-)u < @,

The minimax estimation problem is to find for t, 7 € [0,T] the estimate X(t,T)
based on the observations z(s), 0 < s < T which minimizes the maximum of any linear
functional of the error as (xo,u(-),v(-)) ranges over those triples of norm less
than or equal to 1 which give rise to the observations, z(s), 0 < s < T. In other

words the minimax estimator §(t|T) minimizes the

max {b;Z(tIT) :”xo,u( ),v( )” < 1 and produce z(s), 0 < s < T}

for any 1 Xn vector b.

If we fix the observations z(s), 0 < s < T, and require that (xo,u(-),v(-))
produce these observations and be of norm < 1 then the set of all possible x(t) is
convex because of the linear structure of the model. The minimax estimate is the
centroid of this convex set.

The minimax estimator employs a worst case design philosophy and has a game-
theoretic flavor. We assume that our opponent, Nature, chooses the uncertainties
(xo,u( ),v(-)) in order to hide the true state x(t). Nature is restricted in the
total amount of energy (as measured by uxo,u( Y,v(- )” ) that she can use. We seek
the estimate which minimizes our maximum loss as measured by any linear functional

of the error.

C. The minimum energy estimate is characterized in the following fashion. Among

all disturbance triples which give rise to the observations z(s), 0 < s< T, find
the triple of minimum energy. This triple gives rise to a trajectory and the min-
imum energy estimate §(tlT) is defined to be the state of that trajectory at time
t.

This approach is reminiscent of the variational characterization of certain
physical laws, Nature generates the given observations in the most economical way
possible and hence the estimate of the state at time t 1is the state of the min-

imum energy trajectory at time ¢t.

3. The Equivalence of the Estimators. We begin by showing the minimum energy

estimate is equivalent to the minimum covariance estimate. Let P(t) be the

solution of the matrix Riccati differential equation

AP + X + BQB’ - PC'RIcP

a~!
i

(3.1)
P(0)

1l
2~



The interpretation of P(t) it is well known; it is the conditional error covariance

of the minimum covariance filter of Kalman and Bucy,
E(x (c]e)x’ (e]e)p’ |z(s), 0 < s < t) = bP(t)Dd’
The minimum covariance filter X(t|t) satisfies

L gt

P A(D)R(t|t) + F(r) (z(£)-C(0)R(t]|E))

il

(3.3)
£(0]o)

il
o

where the feedback gain is given by
(3.3) F(t) = P()C(OR™ (L)

The minimum covariance predictor §(t|1), t > T, of Kalman and Bucy is simply
the forward extrapolation of ﬁ(TlT) assuming no driving noise
(3.4) d

= *elm = Al

Rauch, Tung and Striebel have shown that the minimum covariance smoother ﬁ(t‘T),

t < T, can be found by integrating backwards from t = T the differential equation

(3.5) ?%; 2| = A@)x(e] D + BeYow)B ) L) (Rl - &ele)).

Given the observations z(s), 0 < s < T, let (§b,§(-IT) V(-[T)) be the triple
of minimum energy giving rise to these observations. Let §(-[T) be the correspond-
ing state trajectory then the minimum energy estimate at time t 1is §(t‘7).

If t > T neither u(t) nor v(t) affect the observations z(s), 0 < s < T so

clearly G(tIT) = 0 and V(tlT) = 0. Hence we seek to minimize
-1 T -1 -1
(3.6) - x6P0 X, + j uls)Q “(s)u(s) + vi(s)R “(s)v(s) ds
0

subject to (2.1).

Under the controllability assumption, P(t) is in invertible for all t > 0, and

(3.7 7%; pleey = a2 - p7la 4+ ¢r7Yc - plegr' R L.
Let €(t) by a 1 Xn vector satisfying
€= -8A - R -‘EBQB’P_l

(3.8)
£(0)

Il
=]

and let @(t) be a scalar satisfying



¢ = zIR_lz - §BQB’ g
3.9)

i
o

9(0)

If we add the zero quantity

T
e hxr2gx + )T - [l Pk 428k 4 9) ds = 0
0 0

to (3.6) we obtain
K (NP L(DxR(T) + 25(NR(T) + ()

T ’ ’
+ [ 102 ucs) - M) )r  e)x(e) - o2 )R s)Es) | as
0

4
1/2 01/2

where I" is the standard Eculidean norm and Q = Q . Clearly ®(T|7) is the

argument which minimizes

K PL(Mx + 28(Dx + o(7)
i.e.

(3.10) x(1)7) = -p(DE (7).
Furthermore for t < T,

(3.11) a(t]m = o)) (2 LyEe] ) + £e))

and for t > 7 |

(3.12) wlm = o.

If we differentiate the minimum energy filter (3.10) using (3.7) and (3.8)
we see that it satisfies the same differential equation and initial conditions
(3.3) as the Kalman-Bucy filter hence they are the same,.

Using (2.1), (3.10), (3.11) and (3.12) we see that for t > T

<= (e ]m = A)x(e]

and for t < T

L el = A@FCe| +

B(£)o()B(0)P o) Gee | - xe]o)).

These agree with (3.4) and (3.5) therefore the miniman energy estimate E(tIT) equals
the Gaussian estimate §(t|T) for all t, 7 € [0,T].
Next we show that minimax and minimum energy estimates are equivalent. Let

x.,u(),v(-)) be any triple giving rise to the observations z(s), 0 < s < T and
0 y trip <s<



let (?O,G('), ¥(*)) be the minimum energy triple for the same observations.

b u(-),v(-)) is orthogonal to any

Decause it is the minimum energy triple (io,
triple (xo—ﬁg,u(-)-ﬁ(—),v(-)—V(-)) giving rise to zero observations on [0,T] with

respect to the inner product corresponding to (2.2), i.e.
%P l(x -%) +
00 070

T
f )0 () (u(s)-T(s)) + TR T (s)(v(s)-F(s)) ds = 0.
0

If not for some small € # 0 the triple
(3.13) @y TC-),TC)) + €0y Fy,u(-)-T(-),v(-)F(-))

gives rise to the same observations but is of less energy.
Therefore the norm of (3.13) depends only on lel and not on the sign of €.
Henceforth we assume |€| is sufficiently small so that the norm of (3.13) is less

than or equal to 1.
Let Xe(t) be the solution of (2.1) for the triple (3.13), then for € = 0 we

have the minimum energy estimate i(tlT). The linearity of (2.1) implies that
xo(£) - X(e] M = ~(x_ (&) - x(e| ),

i.e., the errors are symmetrically distributed around E(tlT). This shows that
E(tlT) is the centroid of the set of all possible states reachable at time t by
a triple of norm less than or equal to 1 which generates the observations z(s),

0<s<T, i.e., x(t|7) is the minimax estimate.
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