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Abstract

The assumption of causality for one-dimensional
linear systems is dropped. The basic properties of
the resulting systems are discussed.

1. Examples. Consider a stiff rod measured by a
space like parameter which, in deference to standard
control notation, we represent by the letter t. Let

y(t) be the deflection of the rod at the point t and
suppose at the ends t = 0, T of the rod the deflec-~. -
tion is fixed;

y(0) = vy , y(T) = Vae (1.1)
Let E denote the modulus of elasticity and 1 the
moment of inertia of the cross section of the rod.
These may be constant or vary with t. Finally let
u(t) denote the bending moment at point t, then we
have the standard differential equation for y(t),

-EIy=u 1.2)

subjéct to the boundary condition (1.1). We cast
these in a form more familiar to system theorist by
letting y = x,, y = x, then

2
x = Ax + Bu (1.32)
y = Cx (1.3b)
v = Wx(0) + Vix(T) (1.3¢)
where
0 1 o Y
A‘(o 0 B”\-m:I) v’\v2>
cra o P20 (R0,

Notice that if V0 is the identity matrix, VT the
zero matrix and v = x(0) then (1.3) is a standard
linear system. In general any system of the form
(1.3) where x, u, and y are n, £ and m vectors and
A, B, C, , VT are arbitrary matrices of the appro-
priate dimensions possibly time-varying is called a
boundary value linear system. As is standard, x(t)
is called the state, u(t) the control and y(t) the
observable. We reserve the term input for the pair
(v,u(-)). Notice the acausal character of such
systems, in general the state x(t) and observable
y(t) depend on values of the control u(s) for all
s €[0,T] not just for s €{0,t].

Boundary value systems can arise in linear
estimation. Suppose we have a noisy signal z(t)
generated by the model

% = Ax + Bu, (1.42)
z=0Cx +u (1.4b)

0 2
x(0) = x (1.4¢)

where ul(-) and uz(-) are white Gaussian noises and

x 1is a Gaussian initial condition, all independent,
of zero mean and with specified covariances. From
our knowledge of z(.) we seek to estimate x(t). If
we are filtering, i.e., using only part information
z(s) for s < t then the situation is causal but 1if
we are smoothing, i.e., using information z(s) for

all 0 < s < T then it is not. *
Presented at the 18th CDC, Ft. Lauderdale, 1979.

. but we shall not discuss such situvationms.

Moreover in many situations it 1s incorrect to
assume that only information about x(0) 1is available
through the distribution of x0 | Frequently informa-
tion about both x(0) and x(T) is available, so it
might be more accurate to assume the 2n vector
(x(0),x(T)) is Gausian with zero medn and covariance
P. Now suppose P 1is not invertible, then this
ifmplies that certain linear functionals of the 2n
vector x(0) and x(T) are known to be zero surely. Or
in other words (1.3¢) holds with v = 0.

As is discussed in [1], systems such as (1.3) can
occur in delay-time and distributed parameter systems.
In addition there is a growing interest in multidi-
mensional system theory to be used in the processing
of images and other multidimensional data. 1In such
systems the parameters are typically spatial and there
is no inherent ordering (or partial ordering) to
distinguish the past from the future. Hence such
systems are inherently acausal. Before extensive
gtudy of them can be undertaken, one~dimensional
acausal systems must be fully understood.

Throughout this paper we restrict the continuous
time system (1.3) but most of the results carry over
immediately to discrete time systems.

2. Input-Output Map. Throughout we assume that (1.3)
is well-posed, i.e., there exists only the trivial
solution, x(t) = 0, of

x = Ax (2.1a)
0 = ¥x(0) + vix(T) (2.1b)

This a mathematical assumption which guarantees the
existence of a unique solution to (1.3) for any input
pair (v,u(.)). It may not be justified physically
Well-posed~
ness is equivalent to the matrix (W,vT) being of rank

n and

0

F=v° +via(r,0)

being invertible.

g(t,s) is the fundamental solution
of (2.1a), .

o3
3t (t.8) = A(6)¥(x,s),
&(t,t) 3 I. Hence without loss of generality we
can assume V- and VI are n X n.
We define the Green's matrix G(t,s)
8(t,0)F w030, s)
-3(e,00r" Wl a(z, 5)

ifs<t

G(t,s) = ift<s

then the solution of (1.3) is

1 T .
x(t) = &(t,0)F v + J F(t,s)B(s)u(s)ds. (2.2)
) 0

This reduces to the standard variation of constant
f%rmula for initial value systems where =1,
vt = 0,

We can define a dual system to (1.3), we choose
n X n matrices and WT such that the matrix

(Vo %)
w0 wT
is invertible.

We define the output of the system as the palr
(w,y(*)) where w is defined by

w = wWx(0) + Wx(T) 2.3)
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Define the input-output map T of (1.3) and (2.3) as

£: R et X 0,my =m0 ¥ x 13 X Yo, 1]

L (v,u(-)) P (w,y(-))

where y(.) is defined by (1.3) and w by (2.3).
From (2.2) we have T

y(&) = e 3t,0F v + [ cercie,s)B(s)ule)ds (2.4)
0

Of course I has a dual map L'
X
£ RN Xy L21 "o, ~ R' *" x 1] X410.1)

T (CeCN B GG
characterized by the relation

T T
Ev + j v(t)u(t)dt = Cw + f p(t)y(t)dt.
0 < 0

It can be shown [1] that I' is the input-output map
of the dua} system defined by

A= -M-pC 2.5a)
v=18 : (2.5b)
¢ = a0 + M’ (2.5¢)
£ = 2O + A(TN (2.54)

for appropriate choices of Mo, ﬁr, No and NT. The
variables %, # and v are the state,control and
observable of the dual system, { is the specified
boundary conditions (part of the input) analogous
to v and { is the unspecified boundary conditions
(part of the output) analogous to w.

1f V0 =1, VT = 0 and we choose Wo = 0, ﬁT =1

then ﬁo = NT = 0, ﬁT = No =1 so (2.5) reduces to

the familiar dual of an initial value system.

3. Realizability. The observable y(-) is a sum of
two terms one depending on the control u(*) and the
other on the boundary condition v. We concentrate
our attention on the homogeneous boundary situation
(v=0) since we can always obtain the nonhomogeneous
observable by adding the first term of (2.4). In
abuse of notation we also denote by L the map

T .
T:u(t) »y(t) = I C(t)G(t,s)B(s)u(s)ds (3.1)
0
and define Z(t,s) as the kernmel of the map
T(t,s) = C(t)G(t,s)B(s). (3.2)

We refer to (3.2) as the weighing pattern or impulse
response of the system and say that the system (1.3)
i{s a realization of Z(t,s).

0f course many different systems (1.3) give rise
to the same weighing pattern (3.2). One seeks a
system of minimal state dimension realizing a given
weighing pattern and this is connected with the
concepts of controllability and observability.

The system (1.3) and (2.3) is said to be con-
trollable if for any v, w there exists a control
u(-) and a solution x(.) of (1.3a) satisfying (1.3¢)
and (2.3). After a moments reflection one concludes
that a well-posed boundary value linear system is
controllable iff the corresponding initial value
system is, but it is not so clear how to reduce an
uncontrollable system to one that is. The details
can be found in [11].

The system (1.3) and (2.3) is said to be
observable if knowledge of the control u(.) and
observable y(.) allows one to determine the boundary
conditions v and w. As beforg a well-posed

boundary value system is observable iff the correspond-
ing inftial value system {s. The details for reducing
an unobservable system to one that is are found In

[1]). .
A boundary value system realizing Z(t,s) which
is both controllable and observable is said to be a
minimal realization, and as is to be expected, such
systems are unique up to diffeomorphism of the state
space and equivalence of the homogeneous boundary
conditions (2.1b), i.e., left-multiplication of.V
and VI by an n X n invertible matrix,

4, Boundary Value Regulators. Returning to our first
example of a stiff rod, suppose we wish the deflection
y(t) to be small while meeting the boundary condition
(1.1) without using excessive bending. We might seek
u(t) which minimizes T

¥2 + o2 at. T (6.1)
0

If in addition the rod might be rigidly attached
at 0 and T as to keep the stress small we might
add to (4.1) a term of the form

502 + y(m)? .2)

This 1s a particular example of a boundary value
linear quadratic regulator. In general, we have the
system (1.3) and (2.3) and for given v we seek
u(+) which minimizes

T
I x'Qx + u'Rudt + w'Pw (4.3)
0

where Q(t), R(t) and P are n X n nonnegative definite
matrices,

In our smoothing problem we seek an n X m kernel
K(t,s) which defines the optimal estimate %(t) by

T
x(t) = f K(t,s)z(s) ds
0

so as to minimize the mean square of the error

*(t) = x(t) - X(t). It can be shown using standard
techniques that this reduces to a problem generalizing
the boundary value linear regulator. If we define an
n X n matrix function H(t,s) by

g%ﬁ(t,s) = ZHA + KC (4.4a)
. R(t,t7) - H(t,t7) = I (6.4b)
H(t,0) = LW, B(t,T) = LW (4.4c)
then for any 1 X n vector b,
r:(b?:‘(c))2 =bLPL'b’ +.‘r:i>HBQB'Hb' + bKRK'b' ds  (4.5)

where Q(s) and R(s) are the covariances of ul(s) and

uz(s) and now P denotes the covariance of w given

by (2.3). We assume the covariance of v is zero.
Except for the jump condition (4.4b), the problem
of winimizing (4.5) subject to (4.4) is a boundary
value linear quadratic regular where the state is
H'b', the control is K'b' and the boundary condition
is given in dual form by (4.4c).
How does one solve such a problem? One makes
the standard assumptions that R(t) is positive def-
inite for each t €[0,T] and the system (1.3) and 2.3)
is controllable and observable for C(t) satisfying
Q(t) = C'(t)C(t). 1t can be shown that for each v,
a unique optimal control u(t) exists and is a linear
function of v. The optimal cost is gquadratic 1in V.
To find the optimal controls, one can use the
Maximal Principle and solve the resulting two point



boundary value problem for n 1linear independent
boundary conditions. Let V be a nonsinular n X n
matrix, each column of which is to be interpreted as

a boundary condition for (1.3¢). Let X(t) and A(t)

be n X n matrices, each column of X(t) and correspond-
ing row of A(t) are an optimal state and costate pair.
By the maximal principle they satisfy the Hamiltonian
gystem

X = AX - BR™}B' A"
A= -M - X'Q

subject to the boundary and transversalltyconditions

(4.6a)

vox(0) + VIR(T) =V, (4.72)
wOX(0) + W'X(T) = W, %.7b)
A©) = -wrEw’ + = v, %.7¢)
AT) = WPRW - EV %.73).

for some matrix E.

The optimal controls corresponding to the columns of

X(t) are the columns of U(t) given by
U= -R"IB'A (4.8)

For arbitrary initial condition v ‘the corresponding
optimal u(t), x(t) and A(t) are given by

u(t) = (e v, (4.92)
x(t) = X(e)W v, (4.9b)
Ae) = v'v A, 4.9¢)

Motivated by the initial value linear quadratic’
regulator one might seek to solve this problem via a
Riccati differential equation. For simplicity let's
assume that the boundary condition (1.3c) separates.
If we make an appropriate change of coordinates
x = (xl,xz) and v = (vl,vz), (vectors of dimensions

k and n-k respectively), and (1.3c) becomes

xl(Q)_= vy xl(T) =v,. (4.10)

We further assume that the boundary cost of (4.3)
gseparates, that is, for some n X n matrices P0 and

PT’ (4.3) becomes

T s
f x'Qx + u'Rudt+ x'(O)Pox(O) + x'(t)PTxCT) (4.11)
0 .

We seek a solution of the n X n matrix Riccati
equation

K = -KA -A'K-Q + KBR™IB'K %.12)
satisfying the boundary condition
K(T) = PT (4.13)

I1f we add the identically zero quantity
T

J. Ed— (x'Kx) dt - x‘l(x]T
0 t 0

to (4.11) we obtain
AT '
f HR'”Z B'Kx + Rllzuuzdt + x'(0) K (0) + Py)x(0)
0 .
(4.14)

Clearly the control which minimize (4.14) is
given by

u = R B'Rx 4.15) .

(4.6b)

For any v, we solve the problem of minimizing

1
x' (K(0) + Po)x

subjéct to the constraint that the first k coordi-
nates of x equal wvj. This gives us x(0), we com-
pute x(t) using (4.15) and (1.3a) and finally we
compute x(T) and v, from (4.10).

Using K(t) we have found a solution of our orig-
inal problem satisfying the boundary condition (4.10),
and by varying v, through k 1linearly independent
values we can find k solutions from the same K(t).
To find additional solutions, n 1linearly independent
ones exist, we must compute a new solution of the
Riccati equation (4.12) satisfying the new boundary
condition

KT = PT + I

where II is any nonnegative definite matrix of the form

(2 %)

Adding 1 only changes the optimal cost, it does not
affect the optimal controls because the last n-k
components of x(T) are fixed by (4.10). In this way,
hopefully we obtain k more linearly independent
solutions to the original problem. We continue the
process until we have n linearly independent over.

5. Feedback Controls. It is well-known that the
optimal solution of the initial value linearly
quadratic regulator can be expressed in feedback

form (4.15), is a similar development possible for
boundary value regulators? The answer is no as we
shall show in a moment by counterexample. In section
4 we solved such a proble. by multiple solutions of
the matrix Riccati equatica. We found n  linearly
independent optimal solutions xi(t), and ui(t) related
by (4.15) but for different solutions Ki(t) of the
Riccati equation.

i

u = -R.-]'B'Kixi

a general solution x(t) and u(t) is a linear combina-
tion of the above

x(t) = Euixi(t)
u(t) = Epiui(t) ‘

but this does not mean that u(t) can be computed from
x(t),

u=Tpul=zp rR™IBrkixt.
_ 1 1
-1 If X(t), A(t) and U(t) are as im section & and
X "(t) for each t €[0,T] then it is not hard to see
that K = A'X~1 is a solution of the Riccati equation
(4.12) and the optimal controls are given by

v = -R"lBkx

In other words the problem is solvable in feedback
form. It is worth noting that K = A'X"l need not be
positive definite or even symmetric.

In the language of the calculus of variations,
the condition that X’l(t) exists for t €[0,T] is
just that there exists no focal points for the problem.
But focal points do exist for even the simplest of
these problems.

Consider the stiff rod discussed in sections 1
and 4 with the optimal cost determined 4.1 and the
boundary condition (1.1). If T = kr/a where o = 272
then the Hamiltonian system (4.6) and (4.7) is easy
to solve. For V equal to



1 1
V= ( (_en)k(_e-n)k )

t
ea cosat eat cosat
X = ( t -at
(t) e’ (cosat-sinat) ae @ (sinagt-cosat)

which is singular at t = (£+1/2)1/a for £0,...,k-1.
Notice there can be an arbitrary large number of focal
points. Each focal point corresponds to the zero of
a nontrivial optimal solution. Using controllability
it can be shown that no nontrivial solution has more
than one zero.

’
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