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Introduction

This paper generalizes the concept cf a zero from a
1inear to nonlinear system. We start by briefly
reviewing the concept of zero for a linear systed.
Thie is guite a conplicated idza and many differcent
definitions have been propesed.  Of nacessity we
cannot discuss them all and we refer the reader

to the exceollent sarvey paper ¢¥ MacFarlane and
xarcanias 1] for a full treotment. The particular
definition that we shall adopt is frem Desoer and
schulman {273,

1 N
L

Consider the linear system

(1.1) x4+ Pu
{(1.2) y = Cx
(1.3) x©@ = x°

where %, u, and y 4 pxl respectively

l‘rgly The transfer

and A, B anl C are
functicn

(L.4}) “(u) = ClsT - A) B

proper functiens. Ve
of full rank, j.e.,
the complex plo
nin {p,q} and also we
{1.3) are a minimal

is an ratrix of suyictly

assuace

a

Definitia

Functicn 7
\

min {p,qJ.

roint z is a zero of the transfer
the rarnk of T(z) is ess the
Lin~ar Zeroes

In this serction we review the implicatinns of the
above definition. of wh:t is here and a whole

Jot more can be found in [17 and [2]. We distinguish

the two cases, I =P and m z p.

If m € p then 2z is & zero of T(s) if there ecxists a
nonzero vector f such that

(z.1)y w(z) £ = 0.

(Of course £

if xeal. The o'nor case is
by conlining real and
O = (21 - AYTIBE thes
initial state x¥ and input u{ =

zexo output.,

Moreover

On the orpee band i the ipitia
input wit) = =9 re ults in

Procenst

e | XT‘! a'

3 ‘\.\.' ._\x

DISTIBYTIONS B % 17
forward calculaticn shows that (2.2) holds and that

there exists £ such that {2.3) bolds so z is cerd
af T(s} as before (2.1). The vectors f and x~ are

called the input and state zero vectors res pactively

By linearity if 2%, Yi and £i sarisfv (2.2) and (2.3}
for i = 1,...,k and %0 is a linear combination

1 X1
of {h PRIy S |

k X
i
Z“; X
f=1"
then there exists an input
i
uit) 2“ fi z' t
i= 1

resulting in zero output. Therefcre it is natural

to consider the space of all @tafp zeT0 2 IPCthnS,
i.c. all injtial condivions *0 for which there esizts
an input which zeroces the output. This ig preciseiy
¥, the maxinal (A, B) invariant subspacs contalned

in the kernsl of C in the sense of Wonham and Mcrse.
Recail a subspace Y is (A,B) inmvariant if

(2.4) AV c V + 38

where B is the column space of B.

Equivalcntly there exists mxn ratrix F such that
(2.5) (& +BR)V cV

Each real zero z corresponds to Yeal state zero
directicn ¥x© generating a one dimentional (A,B)
invariant subspace. Rach complex zero corresponds
o a complex coujugate pair cf state zero directione
x© cnd x2. The zeal and imaginacy parts span 2 2 gdi
(A,B) invarient svbspace. Furthernore a zero (53
multinlicity greater than one mey correspond to a
higher dimonsicnal (A,B) invariant subspace because
of the possibility of generaljzed eigenvectors of

A modulo B[i, p521.

A generalized eigenpair of A modulo B is a =z and x

satisfying for soume i
Axi = zxb + XY - prt

A )
where z and x' - is an eigenpair or generalized
eigenpair of A modulo B.

For any %0 ¢ V* the inpuat whicn zeroez the ouatput is
given by

u({t) = F exp ((A + BF)t)xO,

wnore

(A + BRIV < V

er. m £ p, zeroes correspord £o ous intuitive notion
of initial statas and inputs wnich result in zers
N s ;

t 1
ouwput. Rlternativaly we can think o£ F a i
a state feedback law u = Fx which makes the system
as unobservatle s pessibl Fron this point 2£
a zoro can ba thought of as tne pctentlal fcr the
loss of ooservability via state feedeack.

If m > p then for any z *aere always exists an input
u(e) = £2%% wiich zeroes the output when the system
iz initialized ~t z” = O, that is, thare aln:xg exicts
m-p linearly s £ satizfying (2.1}
foxr each z.
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nose values of = for which there

~~p linearly indeperdent f£'s satisz-
cculd continue as before and relate
the -zeros A,B) inveriant subspaces in ker C, but
in this 2 dirmension of V  exceeds the number
of zeroes by the dimension of R*, the naximal (A,B)
ccntrollable subspace in kernel C. We refer the
reader to Ansaxlis [3] for details.

Instead when m 2 p we switch to a dual approach.
the definiticn it is immediate that z is a zero if
there exists a nonzero 1 x p vector g such that

From
(2.5) gT(z) =0

We define £° = gC(zI - a1 ang cal: g and 50 zero
observation and state covectors repectively

Clearly
(2.7 9B =0
and z, EQ is a left eigenpair of A modulo C.

2.8) 2 n=£%2-qgc

If we define a linear subspace V

V= {x;iox = 0}
then V is a (C,A) invariant subspace containing B
because of (2.7). %ecall a (C,A) invariant subspace
V is one satisfying
(2.9) A(V r ker C} < V
or ~quivalently there ~vists a mxp matrix G‘such that

(2.10) (A +ca)V cV

Given zi, Ei and g%, satisfying (2.7) and '(2.8) for

i =1,...,k and {£'} linearly independent we can
define

Veix: €% =0, 1=1,...,k}

then V is a (C,A) invariant subspace in ker C and the
codirenticn of V is k, the number of zeroes.

It is ratural at this point to consider V_, the minimal
(C,A) invariant subspace containing B. The codimention
of V, is equal to the number of zeroes of the system,
If G is a nxp matrix such that

(2.11) (A + o)V, < Vs

we can view the matrix A + GC as the result of modi-
fying the dynamics (1.1) by output injection.

(2.12) %X = Ax + Gy + Bu = (A + GC)x + Bu

Equation (2.11) guarantees that if <2 e V, then x(1)
the solution of (2.12) remains in V,_ for all u(t). 1In
othar words output injection has resulted in a loss of
controllability and the number of uncontrollable

modes equals the nucber of zeroes.

In summary we would like to stress the following point
of view. £ m < p it is convenienc to think of the
zeroes of T{s) in terms of the right eigenpairs (or
generalized eigenpairs) of A mod B, which are con-
taired in the kernel of C. They represent a potential
for loss of Observability under state feedback. The
zero state vectors are the rignht eigenvectors of A mod B
in kernel C and they along with the generalized
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eigenvectors of A mod B in kernol C generate V , the
maximal {h,B) invariant subspice in kernel G.

1f m > p ther V" contairs additional directions,
namealy Rk, the maximal (A,B) controllable subspace in
kernel C so it is convenient to think of the zeroes
of T(s) in terms of the left eigenpairs (or
generalized eigenpairs) of A mod C which annihilate
B. They represent a potential for loss controll-
ability under output injection. The zero state
covectors are the left eigenvector of A mod C
annihilating 8 and they and the generalized ones
span the annihilator of V,, the minimal (,A)
invariant subspace containing B.

Pre and Post Processing =

The intuitive idea of a zero as initial state and
input which zeroes the output is quite natural.
Therefore the characterization of zeroes for m < p

in terms of loss of observability via state feedback
is consistant with this intuition. However the
characterization of zeroces for m 2 p in terms of loss
of controllability via output injection is not so
natural and demands further study. Moreover there
is no reason to restrict these characterizations.io
the case m < p and m = p, they are both valid for =
all values of m and p provided one exercises a little
care. This would take us too Zar afield from the
purposes of this note so we shall not do so here. In
[2] the authors give loss of observability character-~
ization of zeroes for all m and p.

Suppose we apply state feedback u = Fx + v the system
(1.1) (L.2) (1.2} so that the result is

(3.1} x

]

(A + BF)x + Bv

(3.2) ¥y Cx

"

(3.3) x0) = x°

The new transfer funtior is

Te{s) = &(sI - A - BF) 1B

which can be factored as

Tp(s) = C(sI - A7 BT - FsT - P

The second factor (I - F{sI - A)“lB)~l can be thought

of as a preprocessor and is equal to

I+ F(sI~A -~ ar) is

which 35 realised by

(3.4) (A + BF)z + Bv

Ne
i

(3.5} u = Fz +v

(3.6) z(0) = 2°

From this we see that if (3.4) (3.5) (3.6} is used

to preprocess v before (1.1) (1.2) (1.3) the resulting
output is the same as that for the feedback systenm
{3.1) (3.2) (3.3) providea x° = z0. Moreover a
straightforward calculation shows that when original
system is preprocessed

X -2 =A(x - z)
so x{t} = z(t) for all t and v{t).
x> *
Now suppose V and F are as before and x0 = zo eV

then z(t) € . V* for all t so the output of the
pPreprocessed system is Cx(t) = Cz(t} = O and of

TIPS - codo sgat Gt g X s " E !
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c8urse the,same is true for the feedback system. 1f
x = 20 / V  then the output nead not be zero but it
will bg the same over all initial conditions in
O+ V.
Suppouse instcad we use output injection resulting in
(3.7) x = (A + GC)x + Bu
(3.8) w o= Cx

o
(3.9) =x0) = x

The realer might object at this point that output

injection is not physically realizable. But it is
certainly no less rcalizable than state feedback.

course we have just seen how state feedback can be
" theoretically realized via preprocessing if the initial
state is known. It turns out that output injection

can be theoretically realized via postprocessirg under

the same assumption.

of

The transfer function of (3.9) (3.10)

c(st - A - 6&) '

(3.11) is
GT(s) =

which can be factored as

1

T(s) = (I - C{sY - A Yoy eist - A) B

G

The fir-t factor can be thought of as a postprocessor
and is equal to

I+ C(sI ~ A - o) Lo

which is realized by

(A + GC)z - Cy

(3.1u)y 2 =
(3.11) w= ~Cz + Y
(3.12) z(0) = 2°

Therefore (1.1) (1.2) (1.3) followed by postproéessor
(3.10; (3.11) (3.12) is equivalent to the output
injected system (3.7) (3.8) (3.9) provided 0 = 20,

For the original system postprocessed we have

% -2 = (A + GC)(x - 2z} + Bu.

L:t U+ and G be as before then ¥0 - 22 =0 € V* ana so
xit) - z(t) € V¥ for all inputs u(t) therefore we can
track x(t) med Vs via postprocessing. In fact we

can do better than that for from w we can recover
those componants of x(t) - z(t) which are not in
kernel C since w = C(x -z) and sg we can track

x(t) mod(V+ r ker C). Even if x~ - z~ # O then

x(t) - z(t) nodulo V¢ is independent of u{t}. From
this discussion we see the importance of system zeroes
for tracking and filtering.

-
Nonlinear Zero Distributions

Frequency domain methods breakdown when
nonlincar s oms 50 it does nobt appear
to directly generalize the concept of a
However many gaometric notions of linear
do carry over.

dealing with

to be possible
zero frequency.
systems theory

For exarnnle basic tools for geometric multivariable
oxry such as (A,3) and (C,A) invariant

I ve boen goneraiized and used to solve
prob 1rcoupiing [43. We use these same tools
to extend the notions of state zero vector and
covector. This is closely related to [5] in which
the loss of controllability and observability

i

of cascaded nonlinear systems is discussed. Such
loss of controllakility and observability can be

thought of as the matcning of a zero of the first
(second) system with a oode of the first (second)

" The nonlinear systecans which we are considering are

(4.1) % = £(x) + g(x)u
(4.2) y = hix}
"(4.3) xto) = x°
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where » denotes local coordinates on an m dimensional
¢» manifold M and as before u € , vy € RP_ The
function h: M -+ R® and the vector fields f and the

m columns of g are assured to be C®. )

Let A be a distribution on M, that is, for each

x € M, A(x) is a linear subspace of TyM the tangent
space to M at x. We confuse A w~ith space of vector
fields which are pointwise in it. Following [4]

we say that A is (f,g) invariant if there exists
a(x) and-B{x} such that

4.4y [¥, 81caA

(a.5) [g, 81 cd

LYy
vhere f = £ + gt and g = gB.

Such distributions correspond to (A,B) invariant
subspaces. OF course every subspace V of R®

induces an eqguivalence relation mod V and the quotient
is the vector space R™/V. Not every distribution

A induces an equivalence relation on M in such a way
that the quotient M/& is a nice C® manifold. Those
that do are called regular [4, p6) and henceforth
we shall assume all distributions discussed in this
paper regular. Neacessary conditions. for regularity
are that A be of constant dimension and involutive
but they are not sufficient.

A distribution A is a null observable distribution
if it is (f,g)invariant and contained in kernel

dh. It is not always true that a maximal such
distribution exists, if it does we denote is by A*.
Given =uch a A, corresponding te each initial

condition x© there is an input u(t; x~) defineg as
follows. Let x(t; x ) be the solution of x = £(x),
%(0; x°) = x© and u(t; x0) = a{x(t; x%)). The system

£4.1) 64.2) (4.3) is initialled at x© and driven by
u{t; x) the output yv{t; %x@) will be same over the
A equivalence class of x . More generally we can
allow an open loop control v(-+) by defining
x(t; x2, v(*)) as the solution of A= £(x) + gix)v,
%05 %0, v()) =x° and u(t; x°, v()) = alx(e; x%
v(-3) + Blx(ts ¥, v())}Iv(E). For eached fixed
v(-), the output from x , u{t; x-, v{-)) is constant
over the A eguivalent class of x . That the output
is constant over equivalence classes is the nonlinear
generalization of the output pbeing zero. The above
construction is the nonlinear version of loss of
observability via state feedback.

We turn now +to the second way of characterizing
zeroes, via loss of controllability. A distribution
A is (h,f) invariant if

(4.6) [f, & n ker anl < A.

(4.7) (g, A nker @ahlch

such a distribution is a null controllabdble distribution
if it is regular and the columns of g(x) are in Afx)
for each x. It is not always true that a mininal sucn
distribution exists but if it does we d-note it

L Pt W R




by be . 1t is the nonlinear analog of Vs

Given & controllability zero distribution A we can
construct a postprocessor which accepts the output

y and initial state xQ and calculates the equivalence
class of x(t) modulo (& o Xer éh) without knowledge
of the input u{t). This is the nonlinear analog of
i1oss of controllability via output injection. The
details are in fal.

In conclusion, while the frequency domain concept cf
a zero does not seew to generalize to nonlinear
system, We have discussed how the geometric version
of a zero does. The usefullness of this concept has
already been demonstrated in nonlinear decoupling
and tracking [4] and is the study of controllability”’
and observability cf cascaded nonlinear systems [5]
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