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I. INTRODUCTION
ONSIDER a nonlinear system of the form
x=f(x)+g(x)u (1.1a)
x(0)=x° (1.1b)
y=h(x) (1.1¢)

where the input u, the output y, and the state x are /, m,
and n dimensional, f and h are vector-valued differentiable
functions, and g is a matrix-valued differentiable function,
all of the appropriate dimensions. We shall be more precise
later on. The input-output behavior of such a system can
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be altered by feedback to obtain some desired goal. Feed-
back means letting all or part of the input depend on the
state or output in either a static or dynamic way.

For example, in the disturbance decoupling problem the
input splits into two parts:

x=f(x)+g(x)utp(x)w

where w is the part that can be controlled and w is an
uncontrollable noise or disturbance. We may seek to mod-
ify the dynamics via static state feedback

u=alx)

to remove the effect of the disturbance w on the output y.
More generally, the output may also split into two parts

y=h(x)
2=k(x)
and we may seek to remove the effect of the disturbance w

on the output z using static feedback depending only on
the output y:

u=a(y).

In some cases, in order to achieve. this goal, it may be
desirable to allow dynamic feedback, i.e.. to let

u=a(, y)
E=o(t, y)
§(0)=¢°.

A similar problem is that of noninteracting control. Here
we have a system with the same number of input and
output channels, u, - u, and y,, - *. Vm» and we wish to
use static (or dynamic) feedback in order to obtain a
system in which each input u, affects only the correspond-
ing output y, in a nontrivial fashion.

We give necessary and sufficient conditions for the ex-
istence of solutions to the nonlinear decoupling, noninter-
acting control, and similar problems. The linear autono-
mous versions of these problems have been treated exten-
sively in the literature [4], [15], and our work is a generali-
zation of those. In particular, our results include linear but
nonautonomous systems which to our knowledge have not
been completely discussed before. Related work on nonlin-
ear systems can be found in {9]. We work in the geometric
spirit of Wonham and Morse [15]. The key tools are the
nonlinear generalizations of the notions of (A4, B) and
(C, A) invariant subspaces, introduced by Basile and Marro
[1] and Wonham and Morse [15]. These generalizations are
extremely powerful and can be used to solve numerous
variations of the above-mentioned problems which are of
practical interest. They are also related to the study of
controllability, observability, minimality, decomposability,
and invertibility for nonlinear systems which will be dis-
cussed later.

The rest of the paper is organized as follows. Section 11
sets notation and introduces the key concepts. In Section
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HI we deal with disturbance decoupling. Section IV is
concerned with construction of maximal and minimal in-
variant distributions and feedback control laws. Finally,
Section V discusses noninteracting control.

II.  INVARIANT DISTRIBUTIONS

Let us be more precise about the system (1.1) which we
are discussing. We assume the state x evolves on a C* (or
analytic) manifold M of dimension n, i.e., a Hausdorff
topological space with a countable cover U« x,) of coor-
dinate charts such that:

1) U%is an open subset of M

2) xg=col(xgy, -+, x,,): U SR is a homeomorphism
onto i1s range

3) If (U* x,) and (U”, Xg) are two such coordinate
charts, then the change of coordinates xgox 't x (UM
U?)— x4(U* NUA) is C* (analytic).

Whenever possible we work in local coordinates, identi-
fying points of M with their coordinates relative to some
fixed coordinate system. It is in this spirit that (1.1) is to be
interpreted. More precisely, f(x) and each column of g(x)
is the local coordinate representation of a C*® (analytic)
vector field on M, i.e., a mapping which assigns to each
point x EM a tangent vector in T M, the tangent space to
M at x. The output h is a C® (analytic) mapping from M
to R™.

If M, f, g, and & are C™ (analytic), the system is said to
be smooth (analytic). All systems treated in this paper are
implicitly assumed to be smooth; occasionally, as is needed,
we make an explicit assumption of analyticity. In most
cases the assumption of infinite differentiability is not
essential, but only invoked to avoid having to count the
degree of differentiability needed in a particular argument.
Moreover, most of our results can eastly be generalized to
systems nonlinear in the control

x=f(x,u).

In the linear systems theory, linear subspaces of the state
space which have particular properties are studied. Because
one distinguishes between points and tangent vectors in a
nonlinear setting, the concept of subspace generalizes to
two different ones. A k-dimensional regularly imbedded
submanifold M’ of M is a subset of M such that around
each point of M’ there exists a coordinate neighborhood U
such that M’ NU is given by {x;=c¢,:j=1.---,n—k) where
€. €,y are constants. On M’ N U, one has local coordi-
nates given by (x,_, .- --,x,). A distribution A on M is a
mapping which assigns to each xEM a subspace A(x) of
T.M in a smooth (analytic) fashion. If each of these
subspaces is of dimension k. A is said to be of rank k. The
connection between the two concepts is the following: M’
1S an integral submanifold of A if for every xEM', A(x)=
I M'CT M. In other words, A(x) is the tangent space to
M’ at x.

It is useful to identify tangent vectors with directional
differentations, ie., if 7(x)ET, M and is given in local

als
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coordinates by t(x)=col{r,(x),---,7,(x)), then 7(x) can
be identified with the directional differentiation

Under this identification, 3 /dx, is the unit vector in the x,
direction. Hence. if M’ is an integral manifold of A, then at
each xeM’

. K
A(x)span{a\_ :

e

i=n—k+1.- --,n}.

When, for clarity, 1t is important to emphasize differentia-
tion with respect to a vector field 7, we use the Lie
differentiation symbol

n a
L, = (x)5—.
= Zalogy

Frequently we confuse a distribution A with the space of
vector fields which are pointwise in A. In other words, a
vector field 7 belongs to A if 1(x)EA(x) for every x.

A distribution A is involutive if it is closed under the Lie
bracket, i.e.. if 7, 6 €A then [1,0]E A where

[7.0100)= 22 (eprt) = 37 (o).

The involutive closure A of a distribution A is the minimal
involutive distribution containing A.

Theorem (Frobenius): Let A be an involutive distribu-
tion of rank £ on M. There then exists a partition of M into
maximal integral submanifolds of A, cach of dimension k.

Theorem (Hermann—Nagano): Let A be an analytic in-
volutive distribution on an analytic manifold M. There
then exists a partition of M into maximal integral submani-
folds of A of varying dimension.

The submanifolds of these theorems may not be regu-
larly imbedded, for example, the winding line on a torus. A
regularly imbedded submanifold of dimension k is one which
is given locally as the intersection of level sets of n—k
independent functions. Even if they are regularly imbedded
the quotient may still not be a C* manifold. For that
reason we make the following definition. A distribution A
is said to be regular if it is involutive, of constant rank, and
partitions M into regularly imbedded submanifolds where
the quotient admits a C*™ structure such that the canonical
projection is a submersion.

In the linear case, a subspace of R” induces a distribu-
tion on R" by assigning to each x&R" precisely that
subspace of tangent directions. Any such distribution is
involutive and of constant rank. The maximal integral
submanifolds that the distribution generates are the trans-
lates of this subspace.

A distribution A is invariant under the dynamics (1.1) if

[/.a]lca (2.1)
[¢.a]lca. (2.2)
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By this we mean the bracket of f and any column of g with
any vector field of A is again a vector field of A. We
constantly abuse notation in this fashion, using the symbol
for a collection of objects to stand for a generic object in
the collection.

Lemma 2.1: Let A' CA” be distributions satisfying

[/ a]ca?

[5. 8] ca;
then
[/, 8]cw
[s.8]ca’
where A% is the ideal generated by A' in A2
Proof: Let ¢ and 1 be vector fields of A'; then

[f.o]ea?

[f.r]ea?;

thus,
[‘r,[f,o]]E[A', A?]
[o.[/,7]] €A, A?].

By subtracting and applying the Jacobi identity, we
obtain

[flrol]=[r.[/0l]-[o.[/.r]]€[a, &].

A similar argument holds for g. By induction the lemma
follows. o u

If we apply this lemma with A' =A?=A and A’ = A, we
see that the involutive closure of an invariant distribution
is also invariant.

The importance of invariant distributions is that the
system (1.1) projects onto a lower dimensional system. In
local coordinates it is easy to see. Let A be an invariant
regular distribution of rank k. Choose local coordinates
X=(x,, x,) where x, and x, are n—k and k-dimensional,
respectively, and A is spanned by

9 .

09X, dx, | 0, 4

In these coordinates, (1.1) splits

(2.3)

Xy :fl(xl’x2)+gl(x|sxz)u

Xz:fz(xl’xz)‘*'gz(xl’xz)“; (2.4)
but since
4 |_ af, 9 0, a 0
[ﬁg}:}— (axz dx, * dx, dx, Cspan ax,

we see that
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d

_f_l :0’

dx,
1., f; does not depend on x,. Similarly, neither does g
thus (2.3) becomes

XI:fl(xl)+gl(Xl)u'

The global version of (2.5) requires regularity.

Lemma 2.2: Let A be an invariant regular distribution.
Then A induces a regular equivalence relation on M such
that the dynamics passes to the quotient denoted by M’ =
M/A.

M’ is not Hausdorff in general, but it is if we assume
some sort of controllability of the system (see [6] for
details). Similar cascade decompositions have been exten-
sively treated by Krener [14].

Consider the linear system

X=Ax+ Bu

(2.5)

(2.6)

y=Cx. (2.7)

The concept corresponding to an invariant distribution
18 that of an invariant subspace, i.e., a subspace V satisfying

AVCV. (2.8)

This is a specialization of (2.1); the bracket of the linear
vector field Ax with a constant vector field of V. The
second condition (2.2) is trivially satisfied, as the bracket of
any of the constant vector fields making up the columns of
B with a constant vector field of V is 0 and V is spanned by
constant vector fields. Lemma 2.1 is trivial in this case for
any subspace describes an involutive distribution. Lemma
2.2 corresponds to the existence of a linear change of
coordinates in which the dynamics (2.6) becomes

X, =A;,x,+Bu
Xy =d,yx, +Ayx, +Byu.

(2.9)
(2.10)

Basile and Marro [1] and independently Wonham and
Morse [15] have introduced the concept of (4, B) invariant
subspace, that is. a subspace V which is invariant after
sultable modification of the dynamics (2.6) by linear feed-
back u= Fx +v¢:

x=(A+BF)x+Bv. (2.11)

More precisely, a subspace V is ( 4, B) invariant if there
exists a /X n matrix F such that

(A+BFWCV. (2.12a)

An equivalent formulation of this concept is that V is
(A, B) invanant if

AVCV+B (2.12b)

where B is the subspace spanned by the columns of B.

The dual concept was introduced by Basile and Marro
(1]: a subspace V is (C, A) invariant if there exists an n X m
matrix F such that
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(A+FC)VCV (2.13a)

or equivalently

A(VNkerC)cV. (2.13b)

In (A4, B) invariance, one is limited in changing the dy-
namics via feedback through B but with complete informa-
tion about the state. In the dual concept, (C, A) invariance,
one is not limited in the way the feedback enters the
equation for X but that it uses only the information availa-
ble from the output. The new dynamics is

x=(A+FC)x+Bu. (2.14)

We would like to point out the obvious generalization of
both. A subspace V is (C, A, B) invariant if there exists a
{X'm matrix F such that

(A+BFC)VCV. (2.15)
This corresponds to output feedback, u= Fy+ v,
x=(A+BFC)x+Bv. (2.16)

It is obvious that a (C, 4, B) invariant subspace is both
(C, A) and (A4, B) invariant. With a little work one can
prove the converse, namely, if V is both (C, 4) and (A4, B)
invariant, then for suitable F it is (C, A, B) invariant.
Hence. (2.15) is equivalent to (2.12b) and (2.13b).
~ Notice that, in the above concepts, we were only con-
cerned with modifying the drift term via feedback; we did
not consider linear change of coordinates in the input
space nor the deletion of inputs. This is because it does not
affect the invariance of V. As we noted before, only the
linear version of (2.1) is important; the linear version of
(2.2) is triviatly satisfied. In the nonlinear generalization of
these concepts one must also study nonlinear change of
coordinates in the input space and the possibility of mod-
ifying the dynamics by the deletion of inputs.

A distribution A is ( f, g) invariant if there exist a and S
which are /X1 and /X r valued functions of x such that

[f.a]ca (2.17a)
[g.4]cA (2.17b)

where
fx)=1(x)+g(x)a(x) (2.18a)
g(x)=g(x)B(x). (2.18b)

This corresponds to A being invariant under the new
dynamics

)i':f(x)w;g(x)v.

For smooth (analytic) systems we require @ and 8 to be
smooth (analytic).

Of course this is a local description, in global terms we
require the new dynamics be given by (2.18) where the
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vector fields f(x)- f(x) and the columns of g(x) are
pointwise in the span of g(x).

The new control v is of dimension r</, if /=r and if
B(x) is nonsingular or equivalently if g(x) spans the same
subspace of the tangent space as g(x) for every x, then we
say A 1s ( f, g) invariant with full control, otherwise A is
( f. g} invariant with partial control. By Lemma 2.1, if A is
(/. g) invariant, then the involutive closure A is (f, g)
invariant also.

There is a local version of ( f, g) invariance analogous to
(2.12b). A 1s locally ( f, g) invariant on an open subset
UCM if for every xeU

[/.8)(x)CA(x) +span g(x)
(. 81(x) CA(x)+span g(x).

(2.19a)
(2.19b)

Using Lemma 2.1, one can easily show that if A is locally
(f.g) invariant, then the involutive closure A is (f, g)
invariant also.

The following lemma is a generalization of Hirschorn
[16].

Lemma 2.3: Suppose A is locally ( f, g) invariant on a
simply connected open subset UC M, and on U the dimen-
ston of A(x)Mspan g(x) i1s constant. Then there exists
a(x). B(x) such that (2.17) is satisfied on U.

Since it 1s closer to (f, g) invariance, we define an
(h. f.g) invariance next. Consider A’ the distribution of
all vector fields on M which annihilate the output y =h(x)
under directional differentiation

A(v)=kerdh(x)= () kerdh,(x)
i=1
where dh, 1s the differential of the ith component 4, of A,
e dh, = row (dh, dx,.--- 0k, /3x,).
A distribution A is (A, f, g) invariant if there exist func-
tions «, f such that (2.17) holds, and in addition

A% x)Ckerda(x)
A% x)CkerdB(x).

(2.20a)
(2.20b)

Intuitively this means that locally « and 8 only depend
on ). Again, one makes a distinction between full and
partial control depending on the invertibility of 8. Unfor-
tunately, there seems to be no simple local formulation of
(h. [. g) invariance analogous to (2.19) not explicitly in-
volving a and B. Once again from Lemma 2.1, if 4 is
(h, f. g) invariant, its involutive closure Ais (k. f.g) in-
variant.

Finally, we define (4, /) invariance, the nonlinear gener-
alization of (C, 4) invariance. A distribution A is (4, f)
invariant if

[r.ana]ca
[¢.ana’]ca.

(2.21a)
(2.21b)

Notice we implicitly assume full control in (2.21b). It is
straightforward to verify that a distribution which is
(h. f.g) invariant with full control is both (f.g) and
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(h, f) invariant with full control, but the converse does not
seem to be true. The following example shows that if A is
(A, f) invariant, the involutive closure of A need not be.

Example: Let A(x) be spanned by two vector fields .
o(x)=col(1,0,0,0), 7(x)=col(0,1,x,,0), and y:(i;)
Then ANA® =0; hence A is trivially (A, f) invariant. How-
ever, [0,7]=c0l(0,0,1,0)€A° and if we define f(x)=
c0l(0,0,0, x), then [ f,[o, 7]]=¢01(0,0,0, — 1) €A so that A
is not (k, f) invariant.

To see how an (h, f) invariant A is useful, suppose we
choose local coordinates x=(x,, x,, x3) such that

0
0 _
ANA span{8 3}

0 d
A—span{gx—z,gg}.

In these coordinates the system becomes

X, =fi{x,, x,) T gx, x;)u (2.22a)
X Zfz(xl,xz,x3)+g2(x‘,x2,x3)u (2.22v)
X3 :f3(x1,xz,x3)+g3(x|,x2,x3)u (2.22¢)
y=h(x,,x;) (2.224)

since (2.21) implies that df, /dx; =0 and dg, /dx; =0. Lo-
cally, the map (x,, x,)—(x,, y) is one-to-one and hence
has a left inverse: therefore, x, =x,(x,, ). Hence, if x (0),
u(t), and y(ry are known, then x,(¢) can be computed via
the differential equation

X =fi(xp, x,5(x, y))+gl(xl’x2(xl’y))u

regardless of any noise affecting the differential equations
for x, and x;. As will be demonstrated in the next section,
this property is essential for decoupling via dynamic output
feedback. ,

Notice that in defining ( f, g) invariance, one uses the
generalization of definition (2.12a) which is more restric-
tive than the generalization of (2.12b). In defining (4, f)
invariance, one generalizes (2.13b) which is less restrictive
than the generalization of (2.13a).

I1I. DISTURBANCE DECOUPLING

Suppose we have the following system where both input
and output have been split into two channels:

x=f(x)+g(x)ut+p(x)w (3.1a)
y=h(x) (3.1b)
z=k(x). (3.1¢)

The input w represents a noise or disturbance over which
we have no control and the output z represents the quanti-
ties which we wish to insulate from the effects of the noise.
We intend to do this via feedback: in the least general
situation, we allow static feedback depending on the state.
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That is, we seek smooth (analytic) feedback functions a(x)
and S(x) which make the output z independent of noise w.
In contrast to the linear case, this does not mean that the
output z is zero or even constant, but rather that it is the
same for all possible noise inputs. If this is possible, we say
that the static. state feedback, noise decoupling problem is
solvable. If B(x) is invertible, then the modified system has
lost none of its controllability and we say the problem is
solvable with full control. We assume that the controls u(t)
and o(1) are piecewise smooth (piecewise analytic) but that
the noise w(r) need only be bounded and measurable.

Suppose there exists a(x) and B(x) such that in suitable
local coordinates (3.1) becomes

X|:f~1(«"|)+g1(xl)v (3'23)
X, :f.z(xw Xz)*g'z(xh "‘2)0+P2(X|’ Xy )w (3~2b)

2=k(x,) (3.2¢)
where
Sx)=f(x)+g(x)a(x) (3.3a)
g(x)=g(x)B(x) (3.3b)

then clearly the static, state feedback noise decoupling
problem is solvable at least locally. The global version of
this is that there exists a projection 7 M — M’ a manifold
of lower dimension, given in the local coordinates of (3.2)
by

(X, x,)=x,. (3.4)
The feedback modified system projects to a system on M’
given by (3.2a) and (3.2¢) with the same input (v, w)/out-
put z behavior as (3.2). In the projected system, the vector
fields multiplied by the noise w are identically zero; hence
the system is unaffected by the noise. If there exist feed-
back functions a, 8 and such a projection 7, then we say
that the static, siate feedback, noise decoupling problem is
solvable in a regular fashion.

Theorem 3.1: The static, state feedback, noise decou-
pling problem is solvable in a regular fashion (with full
control) iff there exists a regular distribution A such that

1) Ais (/. g) invariant (with full control)
2y pCAC Ker dk.

Theorem 3.2: For analytic systems the static, state
feedback. noise decoupling problem is solvable (with full
control) iff there exists a distribution A satisfying 1) and 2)
of Theorem 3.1.

We defer the proof of these results to consider the
mathematically more general situation of requiring the
feedback a and B only to depend on the other output y [see
(3.1b)]. To be more precise, « and B are functions of x as
before but their directional derivatives are zero whenever
the directional derivative of & is zero:

kerdh Ckerdankerdp. (3.5)

This is equivalent to (2.20).
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We refer to this case as the staric, output feedback, noise
decoupling problem. Although we have restricted the availa-
ble feedback functions, this latter problem is more general
because if we take the output to be the state y =x, then we
have the static, state feedback, noise decoupling problem.
Hence, Theorems 3.1 and 3.2 are corollaries of the next
results.

Theorem 3.3: The static, output feedback, noise de-
coupling problem is solvable in a regular fashion (with full
control) if and only if there exists a regular distribution A
such that

1) Ais (A, £, g) invariant (with full control)

2) pCACkerdk.

Proof: Suppose a regular distribution A exists satisfy-
ing 1), then there exist a, f satisfying (3.5). If we define f
and g by (3.3), then A is invariant. Invoking Lemma 2.2, we
obtain the local decomposition

X!:fl(xx)+g|(x1)0+.pl(x|»xz)W (3.6a)

X, :f;(xh x2)+g2(x|, x2)0+p2(x,, x;)w (3.6b)
z=k(x,, x,). (3.6¢)

But from 2) we see that p, =0 and 3k /9x, =0 so that (3.6)
reduces to (3.2) and we have solved the static, output
feedback, noise decoupling problem in a regular fashion.

On the other hand, if the problem is solvable in a regular
fashion then there exists feedback functions a, 8 satisfying
(3.5) and a projection 7 given locally by (3.4) such that the
modified dynamics is given locally by (3.2). Clearly, kerd
is a regular distribution on M satisfying 1) and 2). u

Theorem 3.4: For analytic systems the static, output
feedback, noise decoupling problem is solvable (with full
control) iff there exists a distribution A satisfying 1) and 2)
of Theorem 3.3.

Proof: Suppose A exists satisfying 1) and 2), then
there exist «, B satisfying (3.5) such that A is left invariant
[see (2.17)] by the modified dynamics (2.18). Since A is
analytic, by the Hermann— Nagano theorem it partitions M
into maximal integral submanifolds and since A Ckerdk,
the value of k is constant on each of these submanifolds.

Let v(¢) be a piecewise analytic control and w(t) be
bounded and measurable noise defined for t€][0, r]. For
any 0<<¢, s<7, define

w(t;s)_{(v;(t)

and let x(¢; s) be the family of solutions of the modified
dynamics with inputs v(¢) and w(¢; s)

=

1>5

ax = -
a([; s)= (e s)) +8(x(e:5)) o)+ p(x(e; s))wle: s)
x(0: 5)=x°,
Let M’ be the maximal integral submanifold of A con-
taining x(7:0). Using the Campbell- Baker- Hausdorff for-

mula [17. p. 47]. one can expand 0x(7;5)/9s in a series.
whose coefficients are constructed from Lie brackets of f
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and ¢ with p evaluated at x(7; 5). From this we see that
dx ‘
T)?(T; sEA(x(7:5))

and hence the curve sx(7; 5) lies in M’. This implies that

K(x(m0))=Ahtx(r: 7). In other words, the output z(T)

with noise w(/) is exactly the same as the output z(7) with

zero noise and hence the problem is solved.

On the other hand. suppose this problem is solvable, i.e..
the output z is independent of the noise w when feedback
functions . f8 satisfying (2.20) are implemented. Define f
and g by (2.18) and let A be smallest distribution which is
invariant under / and g and which contains p. Clearly A is
(h. [.g) mvarant; thus we need only show that A is

contained in the kernel of dk. Consider the dynamics of the
modified system

x=f(x)+
7k(x).

g(x)o+p(x)n (3.7a)

(3.7b)

Fix an initial state. x(0)=x°, a time >0 and an input
v(-). Let A(xY 11 e(-)) be the set of points accessible at
time 7 from x" using input v(-) and any bounded measura-
ble noise input w(-). We have the following lemma, a
generalization of Sussmann-Jurdjevic [14].

Lemma 3.5: A(x",1; v(-)) is contained in an integral
submanifold of A. For any x&M there exist x°, ¢, and
piecewise analytic v(-) such that x is contained in the
interior of A(x° ¢; v(+)) in the topology of that submani-
fold.

We defer the proof of the lemma for the moment.
Suppose that at some x, A(x) ¢kerdl\ x). Then k varies on
the mtegral \uhmdmlold of A through x. By proper choice
of A" roand o). we can have Ax ey living on that
mtegral submanifold with nonempty interior containing x.
As we vary w(-). the output = changes. contradicting our
decoupling assumption. Hence, A(x)Ckerdk(x) for all
ve M. |

Proof of Lemma 3.5: From Sussmann and Jurdjevic
we know that A(x",1; 0(+)) is contained in an integral
submanifold of A. We would like to show that for any x°
there exists a 1>0 and a piecewise analytic control v(-)
such that A(x" r; v(+)) has a nonempty interior in that
submanifold. Choose any constant v' and 1, >0. Let x'=
X(t,) be the cndpomt of the trajectory of (3 Ta) starting at

v " w(1)=0. At x', choose w! such that

xousing v(r):
plxwl=£0

and consider the family of trajectories indexed by s, gen-
crated by the family of controls

(3.8)

o) = ¢! 0=<r<y,
w(r})=0 O<r<<t; -5,
w(e)=—w! 1ol Sy

Let x(r;15)) denote the locus of endpoints of these trajecto-
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ries. From (3.8), as s, varies over small positive values,
x(t; 5;) describes a one-dimensional submanifold M' con-
tained in A(xY, 1, v(-)). Choose for some value of 5, >0,
such that the point x? =x(¢;;5,)EM" and suppose there
exists w? such that p(x?)w? is not tangent to M'. Define a
family of controls indexed by 0<s, <<s, <1,

o(t)="0'
w(r)=0

O=sr<y
O=<r<tt|—s
w(r)=w! -

w(t):w2 4

and let x(1,; s, 5,) be the locus of endpoints of the corre-
sponding trajectories. As we vary s, and s,, we sweep out a
two-dimensional submanifold M? of A(x% 1;v(-)). We
continue in this fashion for as long as we can find a new w/
such that p(x/)w’ is not tangent to M/, In this way we
generate a k-dimensional submanifold M* of A(x%,z,; v(-))
such that at every x € M* the columns of p(x) are tangent
to M.

Next choose any analytic input v*(¢) defined on [¢,, 1,]
for some ¢, >1. Let x(¢,; sy, 55, - -,5, ) be the endpoint of
the trajectory generated by (3.7a) with v(r) and w(r) as
before on [0, 7,) and v(r)=v*(¢), w(1)=0 on [¢,,1,]. Let
M/ be the k-dimensional manifold swept out by
X(ty; 81, * +,5,) as we vary s|,- - -,5,. Either p(x) is tangent
to M[ for every v*(-), 1,, and at every xEM} or it is not.

Suppose the former. From the Campbell— Baker -
Hausdorff formula, it follows that for any column pi(x)
and column g(x), i, €{0, - } {where for conven-
lence of notation go(x) = f(x )] we have that
(8,18, 18, p] - 1(x)is tangent to M* at every x € M*.
Moreover, the bracket of vector fields tangent to M* is also
tangent to M*. Using the Jacobi identity it is easy to see
that 4 is generated by vector fields of the above form, and
thus A(x) is precisely the tangent space of M* at every
x&M*. Since M* is contained in an integral manifold of A
it must have nonempty interior in the topology of that
manifold and the lemma is proved.

If there exists a v(-) and ¢, such that for some x& M/,
some column of p(x) is not tangent to M*, we repeat at t
the construction done at 1, obtaining a larger dimensional
manifold. The proof continues as above until the former
holds.

We have shown for any x© there exists a ¢ and v(-) such
that A(x". 1; v(-)) has nonempty interior in the integral
mainfold of A. We wish to show that given any x' there
exists x°, ¢, and o(-) such that x' is an element of the
interior of A(x°, r; v(-)). The latter follows from the former
by taking x' as the initial condition of the time reversed
system and choosing x° in the interior of the set of
accessible points of that system at time /. |

Remark: For linear systems (2.6) and (2.7). one restricts
attention to linear feedback functions u= Fx + v and distri-
butions which are the translates of linear subspaces. Since
such systems are analytic and such distributions are always

§)=I1<I)—5,

—8 U=
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regular, the distinction between Theorems 3.3 and 3.4 [(or
3.1 and 3.2)] vanishes. To our knowledge the linear version
of Theorem 3.3 (or 3.4) has never been explicitly stated,
i.e., the state, output feedback, noise decoupling problem is
solvable for a linear system by linear feedback iff there
exists a (C, 4, B) invariant subspace satisfying the linear
analog of 2). We leave the proof of this result to the
interested reader.

Finally we consider the dynamic, output feedback, noise
decoupling problem. The goal is the same as before, to
insulate the output z from the input w, but now we allow
the feedback functions a and B to depend dynamically on
the output. In other words, we are allowed to add to our
system (3.1) the additional system whose dynamics is

E=g(t 1)

and whose output is equal to the state and then decouple
by feedback from the outputs ( y, £) to the inputs (u, p). In
essence one uses this additional dynamics to track some of
the state variables of the original system which are not
available through y using other state variables which are
available through y. For this reason we must assume that
the initial state of the system is known .

(3.9)

x(0)=x"°. (3.10)

We say that the dynamic, outpur feedback, noise decou-
pling problem is solvable in a regular fashion if there exists a
system (3.9), feedback functions a( y, £) and B(y, £), and a
projection 7: M — M’ such that in local coordinates 3.2)
and (3.4) hold. The next two results are generalizations of
theorems of Laschi and Marro [18], Basile and Marro [19],
and Schumacker [12] for linear systems.

Theorem 3.6. Consider the system (3.1) and (3.10) and
suppose the following:

1) there exists A', a regular ( /, g) invariant distribution
(with full control)

2) there exists A*, a regular (4, /) invariant distribution

3) the distribution A =A? N A is regular

4) pCA* CA* Ckerdk. 3.11)
Then the dynamic, output feedback, noise decoupling
problem is solvable in a regular fashion (with full control).

The following theorem is almost the converse of the last
result.

Theorem 3.7: Suppose the dynamic, output feedback,
noise decoupling problem is solvable in a regular fashion
with full control; there then exists a regular distribution A
such that

1) Ais locally (£, g) invariant on M

2) Ais (A, f ) invariant

3) pCACkerdk.

Proof of Theorem 3.6: Given any x' €M, choose a
coordinate cube (U' x) centered at x' such that x=
(xp. Xy x50 xy) and

(3.12a)

(3.12b)
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d J d
| —en °cZ 2
A —spdn{axl ) ax_,}' (3.12¢)

Let U™ be the slice of U' given by x, =x!.

Define an equivalence relation D on M, x'Dx’ if there
exists a piecewise smooth curve y(¢) joining x’ to x/ such
that y(1)E€A4%y(¢)). For VCM, let D(V) be the set of
points D-related to a point of V. Then D(U')=D(U') and
since the distribution A? is regular, each x€DU") is D-
related to a unique point of U'. Call this mapping =':

7' D(UY) > U

it is a smooth projection. In this way x,, x,, and X, extend
to functions on all of D(U"), x, =x,07!.

Let & and § be the feedback functions making A'(/, g)
invariant, define feedback «', 8! on D(U') by

a' =Gow
B =fon
trivially
N(x)Ckerda'(x)NkerdB'(x) (3.13)
on D(U").

We would like to show «' and B! leave A! invariant on
DY), ie., for x€D(U")

[ f+ga', A'(x)cA(x) (3.14a)
(28", A'(x) cA(x). (3.14b)
Since A% is (h, f) invariant

[7. 8] ca? (3.15a)
[g. 8] ca. (3.15b)

From (3.13) and (3.15) we have
[/+ga', %) (x) cA?(x) cAY(x) (3.16a)
[88'. ](x)ca¥(x)cal(x)  (3.16b)

for all x€D(U'). Moreover, since a' =& on U, for x€U!
and i=1 or 2

(x)ca'(x). (3.17)

a
!
ft+ga', ox,

For arbitrary x in D(U'), consider a piecewise smooth
curve y(7) tangent to A’ joining x to #'(x)€U"; by (3.16)
and the Jacobi identity

% f+gal,a—iT](Y(t))§ -%,[ﬁrgal, “ai_l”(Y(t))
= T%[f%—ga', 52—3”(}’(1))
{5?7,’ A‘](y(t))QA'(Y(f))§

(3.18)

N
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therefore. (3.14a) follows from (3.17) and (3.18). In a
similar way (3.14b) is shown.

From definition (3.12) of x, and x;, we see that the
Jacobian 0y /0x, must be of full rank equal to the dimen-
sion of x,. Therefore, the map (xg,x;, Xy)=(Xg, Xy, ¥)
locally is injective and has a left inverse

Xy = x,(Xgs Xp0 ).

Suppose this map is well defined on U'; since 9y /dx; =0,
it is well defined on D(U'). This allows us to eliminate the
dependence of &' and B' on x,:

=a'(x. x, )’):“l(XOsxhxz(x(hXh ).
X, V):Bl(xo’xh }/‘):B'(xo,x,,xz(xo,xl, »))-

In the above fashion we choose neighborhoods U’ such
that D(U') cover M. On each D(U') we construct local
feedback functions o and B’ which depend on y, leave A'
invariant, and are annihilated by A%,

Let m: M — M /D be the canonical projection and choose
a partition of unity {y,} on the M /D subordinate to the
neighborhood system {m(U)}. Define global feedback
functions a(x. y), B(x, y): '

alx, y)= EYi(xO’xl’x?_(xO’x’ )’))al(xuv)

i

B(x.y)= Ey,(xo,xl,xz(xo,x, )’)):Bi(xs »).

i

Notice that a' does not depend on x; or x, (but rather y);
hence a and B are annihilated by A%, To see that a and f8
leave Al invariant, we compute. Since Z,(y,o7)=1

[ftga x]=[r 8]+ E(Y,OW)[ga’» A= T A (y,0m)ga
—2 Ay,

[f+ga -

From (3.14) the first summation is in A'; as for the
second, for simplicity of notation assume there are only
two nonzero terms in the partition of unity y, and v,
corresponding to neighborhoods U' and U? of M. Let
U=U'NUZ since y, +v, =1, for each vector field T€A',
7(y,o7)= ~7(y,° 7). Thus, we need to show that on D(U)
)EA(x)

glx) (o' —a?)(x (3.19)

where a'( x, v)=a&(xy. ¥, x5, x5) and x, =x,(xg, X, ¥)-
By assumption, A' is invariant under feedback & so that

e ]
f+gad. ax}]"[f‘ ax}]ﬁL[g. i,

but from (3.15) this implies

]&g——~ cA

a_chl

s (3.20)

For x=(x,. v,. X5, x3) and x, =x,(x4. X, V), consider.
as a function of &;. the quantity

gl v v (@ (g xyoxg ) —a(xg, X xg. 65))
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At ¢, =x,, this is zero, hence trivially in 4A', and hence
(3.20) implies, for all x& D(U) and £&; =x},

g(x)(a(x)—a'(x)) EA(x).

The difference of these expressions for i= 1,2 yields (3.19).
In a similar fashion one can show that

[g8. 4] cA.

Summing up, we have constructed feedback functions «
and B which are annihilated by A and which leave A
invariant. Let

f=r+ga
£=gB.
Then
[/, a]caA (3.21a)
[g.a]ca (3.21b)
and in particular, from (3.15),
[/, &) ca? (3.22a)
[2,8%] cal. (3.22b)

From (3.11), (3.21), and (3.22), the system in local coor-
dinates (3.12) becomes

X :fo(xo)+go(xo)0 (3.23a)
xl:fl(XO’x11x2)+gl(x()sx1axz)v (3.23b)

X2 :fz(XO»xlv X2 x3)+&y(xg. x4 X5, X3)v
+p(Xgs Xqs Xo, X3)W (3.23¢)

X3 :f3(x0,x,,x2, x3)+g3(x0, Xl,xz,xa)v
+py(Xg0 X1, Xg, X3 )W (3.23d)
y=h(x,,x,,x;) (3.23¢)
z=k(xy)- (3.230)

Clearly the new feedback functions a and B isolate the
noise w from the output z as did the original & and B. The
advantage of the new ones is that they do not depend on x,
or xj:

a(x, y)=alxq, x1, ») (3.24a)

B(x. y)=B(xq. X1, ¥)-

In (3.23a)—(3.23d). the dependence on y has been eliminated
via (3.23e).

The next step is to construct a copy of the dynamics
(3.23) on a copy of M. Let §:M—M' be a diffeomor-
phism. On M, define local coordinates £€=(§,, £,. £, §3)
corresponding to (3.12) by

(3.24b)

5,:)(,00"'

Let ¢ and ¢ be the vector fields on M ! corresponding to f
and ¢
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q):g*( fo o l)
y=0,(g08").
On M' in local coordinates we have the dynamics

&0 =qo(€9) ()0

(3.25a)
gl:Tq‘l(gi)*gl’£2)+‘1{’l(€0*$h£2)v (3~25b)

52 :9”2(&1)' £|» §2s €3)+‘P2(§0* gl* 62’ ‘£3)U (325C)

51 = q'3($<)~ gl‘ gz* 53)+¢3(€0’ gl’ §2’ §3)U. (325d)

Notice we have not included the noise term of (3.23)
because w is unknown to us. If (3.23) is initialized at
Y x(0)=x" and (3.25) at £°=0(x?), then £y (1)=x(1)
for all 1 because &y =x). However, the other coordinates
will not be equal because of the noise term. We can modify
(3.25) by replacing &, by x,, given as a function of x,, x,
and .

€0 =0l &) Hdo(&o )0 (3.26a)
§=o(&o b1 xolx0, x5 y))

(&g, €15 xo( X0, Xy, )0 (3.26b)
& = ool &00 61 xo( X0 X1, 1), &)

(€. &1 xo(xg, Xps ¥), &) 0 (3.26¢)
£y =gy(£0, &1 x5(x0. X1, »), &3)

+¢;(§0,£1,x2(x0,x1,y),§3)v. (3~26d)

Notice that at any x and £ satisfying x, =¢, and x, =¢,,
now £, = &, so that x (r)=¢,(1) for all ¢.

This allows us to eliminate the feedback dependence on
X, and xy

alé v)=aléy. €. ) (3.27a)
B(Ey)=B(&.&1. ) (3.27b)

and the dependence of . £, on x, and x,:
& = ol £0) T0(&o)v (3.28a)

él :‘Pl(‘fm £, .V)+‘P1(§0a £ y)v
:‘Pl(§0~ £, *"2(‘50» £ )’))“L‘Pl(go’ £ xz(gm £, )’))U
(3.28b)

and we have achieved our goal of noise decoupling via
dynamic output feedback. The projection « is given in the
local coordinates (3.12) by

X XL X, X5) = (. xy).

Notice that dynamic compensator (3.28) evolves on a
copy of the quotient manifold M /A% It is not necessarily
linear in v. In other words, in order to solve the dis-
turbance decoupling problem for a system (3.1) which is
lincar in the control, it may be necessary to resort to a
dynamic compensator (3.9) where the control enters non-
linearly. B
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Proof of Theorem 3.7: By assumption there exists an
auxiliary system (3.9), feedback functions a(§, y), B(&, y),
and a projection = given locally by (3.4) such that the
feedback modified dynamics are given locally by (3.2).
Define a distribution A=kerdw, in the local coordinates of

3.2)
A=span {%} .
2

From (3.2) we see immediately that

[7.a]ca (3.29a)
[g.A]ca (3.29b)
[f,A)+[g. Alat+gA(a)CA (3.30a)
[g.A]18+gA(B)CA. (3.30b)

Since B is assumed to be invertible this implies that (2.19)
holds.
Since A% a)=0, A°(B8)=0, from (3.30) we have

[£.an4a]+[g.AnA]acA
[g.anA]BcaA

(3.31a)
(3.31b)

and the invertibility of 8 implies 2). The last conclusion 3)
follows immediately from (3.2). [ |

IV. CONSTRUCTION OF INVARIANT DISTRIBUTIONS

In this section we discuss the problem of finding ( £, g)
and (A, f) invariant distributions and also the relationship
between invariant distributions and nonlinear controllabil-
ity and observability. Before we do this we must develop
some more mathematical background.

A codistribution 8 (or Pfaffian system) on M is a map-
ping which assigns to each x €M a subspace 0(x) of the
cotangent space T}M in a smooth (analytic) fashion. Re-
call T¥M is the space of linear functionals on T M. If one
considers a tangent vector r=col(r,---,7,) as a column
vector, then a contangent vector w=(w,, - -,w,) IS a TOW
vector and the pairing {w, ) Is given by

o(7)=(w,7) =wr= D w,T.
Tangent vectors are viewed as directional differentiation

d
™ ET’OX,

cotangent vectors are viewed as gradients (evaluated at a
point)

w= Ew,dx,.

Corresponding to a vector field 7(x) is a one form w(x). If f
and 7 are vector fields on M, the Lie derivative L (7) of 7
by f1s another vector field given by the Lie bracket
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N W= T vy
L0 = () = S ()0~ 5= (0)7().
(4.1)
In a similar fashion we define the Lie derivative wa of a
one form w by f as the one form given by

dw'

L= 2 o) re Ee @2

where superscript ¢ denotes transpose. We have already
discussed the Lie derivative of functions, if ¢ is a function
on M then

L (9)= S (x)f(x). (4.3)

The pairing (@, 7)(x) of a one form w(x) and vector field
7(x) is a function and it is straightforward to verify that
Li{w. my(x)=(w. L7)(x)+{Lw, H(x). (4.4)

Finally we note that if ¢ is a function then the gradient d¢
is a one form and

L/(d(P):d(L/CP)'

Given any distribution A on M one can define a codistri-
bution AL as the annihilator of A:

(4.5)

AL(x)={wET*M: (w,A(x)) =0}. (4.6)

In a similar fashion we define the annihilator 8+ of a
codistribution 6:

g4 (x)= (€T, M: (8(x).7)=0}. (4.7)

Of course AL+ =A 911+ =0 and A' CA?iff AL DAL,
As before we confuse a codistribution § with the space of
all one forms which are pointwise in it. A codistribution 6
is regular if 84 is regular. Alternately, 8 is regular iff for
every x there exists a neighborhood U and functions
@,. ¢, whose gradients d¢,.---,dg, are linearly inde-
pendent on U and span 6. The integral manifolds of 6 L are
the intersection of the level sets of @, - -,¢,.
A codistribution @ is invariant under the dynamics (1.1)
if
L(6)Co
L(8)C8.

(4.8a)
(4.8b)

Using (4.4) it is easy to verify that @ is invariant under the
dynamics (1.1) iff A=~ is invariant. The following lemma
is straightforward and gives an alternate characterization
of local ( f. g) and (A, f) invariance.

Lemma 4.1 A CA and [ [, A]CA?, [g, A')CA? iff A7
At and Lf(;\“)gau, LA t)yCcA

Corollary 4.2: A is locally (f. g) invariant on U iff on U

L,(A*+ N(span g(x))i)gAl

L (A% N{span g(x))")cat.
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Corollary 4.3: A is (h, f) invariant iff
L,(A+)CA* +spandh
L(A*+)CA* +spandh.

Let us take a look at the connection between invariant
distributions /codistributions and nonlinear controllability
and observability. Recall the following definitions from [6].
A state x° is indistinguishable from x' (denoted x°Ix') if
for any admissible input the outputs starting at the two
initial conditions x° and x' are identical. A state x° is
strongly indistinguishable from x' (denoted x9SIx"y if there
exists a piecewise smooth curve x(f) joining x% to x! such
that x°Ix(¢). A state x' is accessible from x° (denoted by
x'4x%) if there exists a trajectory of the system going from
x% to x' in the positive time direction. A state x' is weakly
accessible from x° (denoted by x'WAx°) if x' can be
reached from x° by following a union of trajectories of the
system traversed in either time direction. We then have the
following theorems [6].

Theorem 4.4: Let 8° be the codistribution spanned by
dh and let @' be the minimal codistribution invariant under
the dynamics (1.1) which contains 6°. Assume 6' is of
constant rank and let A=6'1. A is then a regular distribu-
tion on M and if M’ is the maximal integral manifold of A
through x° then

M’ ={x: xSIx°}.

Theorem 4.5 (Frobenius and Chow): Let A’ =span{ f, g}
and let A be the minimal distribution invariant under the
dynamics (1.1) which contains A°. Assume A is of constant
rank (or the system is analytic). Let M’ be the maximal
integral submanifold of A through x°; then

M'={x: xWAx")}.

Next we turn to the question of maximal (/. g) and
minimal (A, f) invariant distributions. From the definition
(2.21) it is clear that the intersection of (4, f) invariant
distributions is again (h, f) invariant and therefore there
always exists a minimal (k, f) invariant distribution con-
taining a given distribution.

Motivated by Theorem 3.6, we consider the problem of
finding the minimal (4, /) invariant involutive distribution
containing the distribution A'(x)=span p(x). We define a
nondecreasing sequence of distributions

N (x) =B (x) +[ £, A OB () + [, 47 NA](x)
(4.9)
whose involutive limit s

A*(x)= U A/(x).

]2‘

(4.10)

Suppose A is an involutive distribution containing A' which
is (A, f) invariant, then A contains A'. From the definition
(2.21), A contains the right side of (4.9) for j= 1; hence A
contains A2, and so on. Hence, A*CA and is the desired
distribution.
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By construction, A* is involutive but it need not be
regular or even of constant rank.

[f the system is analytic, A* is of constant rank on an
open dense subset U of M and is given by

A*(x)

To see this, let v/ be the maximal dimension of A(x) as x
varies over M. Since A’ CA/*'CTM, the r/’s are mono-
tone nondecreasing and bounded above by n=dimension
M. For analytic systems there exists an open dense subset
U’ of M on which the dimension of A/(x)=r/. If r/ =p/i*",
A/=A"" on an open dense subset U=U’. But then A/ =
A7 on U and r/ =r/* for all i=0. Therefore, r/ must
reach its maximal value for some j<n.

From the definition (2.17) of ( f, g) invariant distribu-
tions, it does not follow that the sum of two (f,g) in-
variant distributions is again ( f, g) invariant, and thus it is
not clear whether maximal elements exist. However, the
sum of two locally (f, g) invariant distributions is again
locally ( f, g) invariant, thus we can look for maximal

=A"(x).

elements there. Taking our cue from Theorem 3.6, we seek _

a maximal locally ( f, g) invariant distribution contained in
the distribution A' =kerdk. It is more convenient to work
with the dual characterization of local ( f, g) invariance as
provided by Corollary 4.2. We define the codistribution
6' =A't =span dk and inductively

8" (x)=6/(x)+L,(8’ N(spang)*)(x)
+L,(8/N(spang)™t)(x).

This yields a nondecreasing sequence of codistribution, the
himit of which

(4.11)

0*(x)= U 6/(x

=1

(4.12)

is easily seen to be the minimal codistribution containing
span dk which satisfies

L/(ﬂﬂ(span g)i)gﬂ
Lg(ﬂﬂ(span g)i)gﬂ

Hence, by Corollary 4.2, A*=(8*) is the maximal locally
(/. g) invariant distribution contained in kerdk. By con-
struction, A* must be involutive or else its involutive
closure would be a larger locally ( £, g) invariant distribu-
tion contained in ker dk.

For analytic systems, an argument similar to the above
shows that on an open dense subset of M

6*(x)=6"(x).

Someumes the maximal (f, g) invariant distribution
contained in ker ¢k and the appropriate feedback functions
a and f3 can be explicitly computed. For each component
k, of the output k. let p, denote the largest integer such that
for all r<tp, and all xeM

L Lk, =0.
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If no such integer exists, then p, = 0. Assuming p, <00, let
A(x) denote the matrix whose i, j entry, a,(x)is

alj(x):Lg/L;?lkl('x)

and b(x), the column whose ith entry b(x)is
b,(x):L;"“k,.(x)A
Theorem 4.6: Suppose p, <<co for every i and the rank
of A(x) is equal to the dimension of z=k(x) for every

X&€M, the maximal locally (f, g) invariant distribution
contained in ker dk is

=1 N kerdL;k(x)

i r<p,

A*(x (4.13)

and the feedback functions a(x) and B(x) which leave this
distribution invariant are any solutions of

A(x)a(x)=—-b(x)
A(x)B(x)=C (constant matrix).

(4.14a)
(4.14b)

Remark: One seeks an invertible solution to (4.14b) so
that one has full control. If the dimension of A* is con-
stant, then A* is regular since its integral manifolds are the
intersection of the level sets of the functions Lik,(x) for
r<p,. If the rank condition holds on an open subset U of
M, then the conclusion holds on U.

Proof: If the rank condition holds, then 4A(x) has no
rows which are all zeros, or in other words, for every x and
i there exists j such that L, Lk (x)7=0. This allows us to
explicitly compute the sequence of codistributions 6§/ de-
fined by (4.11)

'(x)=span{dk,(x)}.

Now, using (4.5),

Lf(ﬂ‘ N (span g)l)(x): Sp;lrll {dL k,(x)}
Lg(O' N (span g)L)(x): spinll {dLk(x)}=0

6%(x)=6'(x)+ spilr: {dLk(x)}.

In general,

87 1(x)=8/(x) +span{dL k,(x)}.

P =/

Therefore, A*(x) [see (4.13)] is the annihilator of 8*(x) [see
(4.12)] and hence is the maximal locally ( f, g) invariant
distribution contained in dk. i

Let « and B be as above [see (4.14)] and define f and g
by (2.18). For any r and k,,

L(dLyk,)=d(L;* 'k, +(L,Ljk,)a)
Ly(dLik,)=d((L,Lik,)B).

(4.15a)
(4.15b)
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If r<Cp,, (4.15b) is zero and (4.15a) reduces to
r+1
a’Lf* k,

which is in 8”2, If r=p,, (4.14) implies (4.15) is zero; thus
we have

Ly(87)c6/™!
L(67)co/ "

(4.16a)
(4.16b)

This implies that * as defined by (4.12) is invariant (4.8)
under f and g, hence A* =(6*)* is (f, g) invariant. More-
over, A* must be the maximal ( f, g) invariant distribution
contained in ker dk. L]

The above discussion indicates that maximal (locally)
( f. g) invariant and minimal (4, f) invariant distributions
are not terribly difficult to find, whereas the problem of
finding arbitrary (f, g) or (h, f) invariant distributions
might be quite difficult. This is also true in the case of
linear systems as has been emphasized by Morse and
Wonham [10]. Finding maximal (4, B) or minimal (C, 4)
invariant subspaces is essentially a linear problem, ie., it
can be solved using linear algebra, whereas finding arbi-
trary (A, B) or (C, A) invariant subspaces involves solving
nonlinear equations.

The above remark emphasizes the importance of the
theorems of Basile, Laschi, Marro, and Schumacker. In-
stead of having to overcome the nonlinear problem of
finding a (C, 4, B) invariant subspace in order to solve the
linear, static, output feedback, noise decoupling problem,
one can solve two linear problems; finding maximal (A4, B)
and minimal (C, A) invariant subspaces and apply Schu-
macker’s result to decouple by linear dynamic, output
feedback. Similar considerations hold in the nonlinear case,
i.c.. Theorem 3.6 is much easier to verify than Theorem 3.3.

V. NONINTERACTING CONTROL

We now consider the problem of using feedback to
transform a system of the form (1.1) into a new system in
which each input controls a single output without influenc-
ing the others. The solution of this problem has been
widely investigated for linear systems, e.g., [10], and some
interesting results have also been obtained for nonlinear
systems {11, [5], [13). We consider only the static, state
feedback noninteracting control problem. We seek a control
law of the form ‘

u=alx)+B(x)v
such that in suitable local coordinates, (1.1) becomes

Xl:fl(xl)+g~l(xl>vl

xm :f;n( .Xm ) + gm( Xm)vm

me‘I:fm+l(x)+gm+l(x)v (Sla)
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yi=hy(x))
ym:hm(xm) (Slb)
where x = (x,. " Xn41), 0=(0v;,"",0,), and y=
(¥~ » V). with each x,, v,, and y; being possibly a vector.
In global terms we seek projections 7, -« *, 7., 7 MM

given in local coordinates by 7,(x)=x; such that =, carries
(5.1) onto a system on M’ with the same input v; /output y;
behavior. The system on M’ is given in local coordinates
corresponding to (5.1) by

xl :j;(xi)+g~i(xl)vi (523)
3 =h(x,): (5.26)
If such a, 8, and =,---,7, exist, we say that the static,

state feedback noninteracting control problem is solvable in a
regular fashion. Of course it is desirable to have as much
control over (5.1) as over the original system. The problem
is solvable with full control if B(x) is invertible.

A family of ( f, g) invariant distributions A,---,4,, are
compatible if there exists feedback functions « and B which
leave each one invariant

[f+ga, Ai]gAi

[g,B, Ai]QAr

Theorem 5.1: The static, state feedback, noninteracting
control problem is solvable in a regular fashion (with full
control) iff there exists a family A,,---,A,, of compatible
( f, g) invariant distributions (with full control) such that

1) each A, is regular

2) §,C4, Ckerdh,, Viz5)

3) if I and J are any disjoint nonempty subsets of
(1,---,m}, then

[+

el

(5.3a)

(5.3b)

M Aj):TM.’

jer

Proof: Suppose the static, state feedback, noninteract-
ing control problem is solvable in a regular fashion (with
full control), then there exists a, 8, and m,,- - -,m,, such that
in suitable local coordinates, (5.1) is valid. Let A, =kerdw,.
It is straightforward to verify that A,- - -,A,, are compati-
ble ( f, g) invariant distributions (with full control) satisfy-
ing 1)-3). ' :

As for the converse, suppose A,,- - -, A, are compatible
(f. g) invariant distributions (with full control) satisfying
1)-3), then a and B are given and we define 7, as the
canonical projection m: M — M /A,. Define codistributions
0, =A’; since 4, is regular, there exists a vector of func-
tions £,(x) such that locally the vector of gradients d§;(x)
is a basis for 6.(x):

6,(x)=spand{(x)
A(x)=kerd¢(x).
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By 3), if I and J are disjoint nonempty subsets of
{1.---.m}.

( > 0,.)0( > ()j):o.

el jedJ
This umplies that gradients
dgl(x)’. e ’dgm(x)

are linearly independent and hence we can choose a vector
of functions £, (x) such that the gradients

dé(x). - dE,(x), dE,, . \(x)

are locally a linearly independent set of dimension n=
dimension M. Therefore, the map x — £(x) defines a local
change of coordinates. Using 2) and the fact that each 8, is
invariant [see (4.8)] under f, § dynamics, it is easy to see
that in the ¢-coordinates the system is of the form (5.1). W

Next let us consider the case when the dimension of u
and y is exactly m so that each of the noninteracting
components (5.2) of (5.1) is a scalar input/scalar output
system. In this case, we have an alternate formulation. Let
p, be defined as before; the largest integer such that for all
r<<p,and all xéM '

L, Lih(x)=0.

Theorem 5.2: Let the dimensions of u and y be the
same. The static, state feedback, noninteracting scalar in-
put /scalar output control problem is solvable in a regular
fashion if

a) the m > m matrix A(x) defined by

a,](x):Lg/Lf’”h,-(x)

15 nonsingular for every x
b) for each i the dimension of the codistribution ,(x)
defined by

0.(x)=span {dh(x),dLh(x). --.dL{h(x)}

is constant for all x
¢) for any disjoint nonempty subsets [ and J of
(Lo -m)

(2o Z0)=+

Proof: We wish to show that a)—c) imply the existence
of compatible ( f, g) invariant distribution A,,- -+, A with
full control satisfying 1)-3). Define

A, =01
By applying Theorem 4.6 with k=h,, we have that A, is the
maximal ( f, g) invariant distribution contained in ker dh,

and is invariant under any feedback functions a,(x), B,(x)
satisfying

L LPh(x)e(x)=Lp*  h (x)

L L¢h (x)B,(x)=constant matrix.
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Therefore, since A(x) is invertible, there exists an m vector
a( x) and an invertible m X m matrix 8(x) such that

A(x)a(x)=col (L hy(x). - Lpn+ (X))

(5.4a)

A(x)B(x)=I{m>Xm identity matrix). (5.4b)

Using these feedback functions, A,-- -, A, are compatible
( f. g) invariant distributions with full control.

Since 6, is spanned by the gradients of functions and is
of constant dimension, its annihilator A, is regular, thus 1)
1s satisfied.

As for 2), we have already noted that A, Cker dh; to see
that g, €A, for i) we show that ¢, annihilates 6,. From
the definition of p;, for every r<<p,

LoLzh, =0
thus,
(dL;h,, g5 =0.
For p,,

CdLph,. 8)(x)= S (Ly Lph ()8, (%)

which is zero for i~ by (5.4b).

Finally 3) follows immediately from c). u

A few remarks about the scalar input/scalar output
noninteracting control problem are in order. Notice that
Theorems 5.1 and 5.2 are not equivalent for this problem
because Theorem 5.2 deals with the maximal (f, g) in-
variant distributions contained in ker dh,, whereas theorem
5.1 deals with any ( f, g) invariant distributions.

It is also interesting to note that if Theorem 5.2 is
satisfied, then for each input v, /output y, channel the
condition

LglLf‘"h,(x): 1#£0
is satisfied and hence each channel is strongly invertible in

the sense of Hirschorn [7].
Suppose for each ¢ and some x

dh(x), - .dLfh (x)

form a basis for 8,(x), then in a neighborhood this is true.
Following the construction of Theorem 5.1, we define

£(x)=(h(x).- - Lph(x)).

In the local coordinates £(x)=(&,(x). - -. &, (x) &, (X))
the system becomes almost linear, i.e., each input/output
channel (5.2) is of the form

é':A‘£’+Bll7’
¥ =G,
where 4, is (p, + DX (p, + 1), B, is (p,+ DX, and C, is

i



ISIDORI ¢f ul 0 NONLINFAR DECOUPLING VIA FEEDBACK

I X(p, t 1) .
0 1 0 0|
A = .=
1 0
0 0 L1
o=(1 0 - 0).

The rest of the system, which is unobservable, is nonlinear:

ém+l :fm+l(£)+gm+-l($)v‘

This 1s related to work of Brockett [3]. on when a nonlinear
system may be modified by feedback so as to be locally
diffeomorphic to a linear system.

Finally we note that the algebraic condition a) gener-
alizes the well-known Falb and Wolovich [4] condition for
the decoupling of linear systems and has already been used
by Freund [5} and Sinha [13] in nonlinear decoupling
problem.

ACKNOWLEDGMENT

The authors would like to thank M. Hautus for his
heipful discussions during the development to this work.

REFERENCES

{1l G. Basile and G. Marro, “Controlled and conditioned invariant
subspaces in linear system theory,” J. Optimiz. Theory Appl., vol. 3,
no. 5. pp. 306-315, 1969.

[2] W. M. Boothby, An Introduction to Differentiable Manifolds and
Riemannian Geometry. New York: Academic, 1975.

31 R W. Brockett, “Féedback invariants for nonlinear systems,” Pre-
prints of 7th 1FAC World Congress, Helsinki, June 1978,

[4] P. L. Falb and W. A. Wolovich, “Decoupling in the design and
synthesis of multivariable control systems,” TEEE Trans. Automat.
Contr., vol. AC-12, pp. 651-659, Dec. 1967.

[S] E. Freund, “The structure of decoupled non-linear systems,” Inz. J.
Contr., vol. 21, no. 3, pp. 443-450, 1975,

(6] R. Hermann and A. J. Krener, “Nonlinear controllability and
observability” IEEE Trans. Automat. Contr., vol. AC-22, pp. 728-
740, Oct. 1977

[7] R M. Hirschorn, “Invertibility of nonlinear control systems,” SIAM
J. Contr. Opum., vol. 17, no. 2, pp. 289-297, 1979.

(8] A J. Krener, “A decomposition theory for differentiable systems,”
SIAM J. Contr. Optim., vol. 15, no. 5, pp. 813-829, Aug. 1977.

{91 S. H. Mikhail and W. H. Wonham, “Local decomposabi%ity and the
disturbance decoupling problem in nonlinear autonomous systems,”
in Proc. 16th Allerton Conf. Commun. Contr. Comput., Oct. 1978, pp.
664-669.

(10] A.S Morsc and W. H. Wonham, “Status of noninteracting control,”
IEEE Trans. Automat. Conir., vol, AC-16, no. 6, pp. 568-581, Dec.
1971.

(1] W. A Porter, “Decoupling of and inverses for time-varying linear
systems.” TEEE Trans. Automat. Contr., vol. AC-14, pp- 378-380,
Aug. 1969,

(12} J. M. Schumacker, *(C,A) invariant subspaces by some fact and
uses.” Vrije Universiteit Amsterdam, Rep. 110.

{13} P. K. Sinha, “State feedback decoupling of nonlinear systems,”
[EEE Trans. Automat. Contr., vol. AC-22, pp. 487-489, June 1977.

(t4] H. J. Sussmann and V. J. Jurdjevic, “Controllability of nonlinear
svstems.” /. Differ. Equat., vol. 12, pp. 95- 116, 1972

[15])

(16]
(17]

(18]

[19]

345

W. M. Wonham and A. S. Morse, “Decoupling and pole assignment
in lincar multivariable systems: A geometric approach,” STAM J.
Contr. vol. 8, pp. 1-18, Feb. 1970.

R. M. Hirschorn, “(A, B)-invariant distributions and the disturbance
decoupling of nonlinear systems,” to be published.

A. J. Krener, “A generalization of Chow’s theorem and the bang-
bang theorem to nonlinear control problems,” STAM J. Contr., vol.
12, 1974,

R. Laschi and G. Marro, “Alcune considerazioni sull’osservabilita
dei sistemi dinamici con ingressi inaccessibill,” in Proc. 70th Ann.
Meeting Elec. Eng. Assoc. Italy, 1969, Paper 1.1.06.

G. Basile and G. Marro, “L’invarianza rispetto ai disturbi studiata
nello spazio degli stati,” in Proc. 70th Ann. Meeting Elec. Eng.
Assoc. Italy, 1969, Paper 1.4.01.

Alberto Isidori (M'80) was born in Rapallo,
Genoa, on January 24, 1942. He received the
doctor degree in electrical engineering from the
University of Rome, Rome, Italy, in 1965.

Since 1970 he has been at the Istituto di Auto-
matica, University of Rome, where since 1975 he
has been a Professor of Control Theory. He has
held visiting positions at the University of
Florida, Gainesville, and Washington University,
St. Louis, MO. His current research interests
include nonlinear systems and control theory and
realization theory.

Dr. Isidori is an Associate Editor of the Journals Systems and Control

Letters and Ricerche di Automatica.

pi

Arthur J. Krener (M’77) was born in Brooklyn,
NY, on October 8, 1942. He received the B.S.
degree from Holy Cross College, Worcester, MA,
in 1964, and the M.A. and Ph.D. degrees from
the University of California, Berkeley, in 1967
and 1971, all in mathematics.

Since 1971 he has been at the University of
California, Davis, where he is currently Professor
of Mathematics. He has held visiting positions at
Harvard University, Cambridge, MA, the Uni-
versity of Rome, Rome, Italy, and Imperial Col-

lege, London, England. His current interests are nonlinear systems theory,
stochastic processes, and acausal linear systems.

Claudio Gori-Giorgi reccived the doctorate de-
gree in nuclear engineering in 1969 and the post-
graduate Diploma in automatic control in 1971,
both from the University of Rome, Rome, Italy.

In 1970 he joined the Istituto di Automatica of
the University of Rome. Since 1972 he has been a
Research Consultant of the National Research
Council of Italy. In 1973 he was appointed a
part-time Professor of Automatic Control Theory
at the University of Firenze, Italy. His major
research interest lies in mathematical system the-
ory and its applications.

Salvatore Monaco was born in Udine, Italy, on
January 17, 1951. He received the B.S. degree in
electrical engineering from the University of
Rome, Rome, [taly, in 1974. '

Since 1977 he has been an Assistant Professor
of System Theory at the University of Rome.
Since 1978 he has been a part-time Professor of
Control Theory at the University of L’Aquila.
His present research interests are in the areas of
nonlinear systems, modeling, and infinite dimen-
sional systems.



