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A GENERALIZATION OF CHOW’S THEOREM AND THE
BANG-BANG THEOREM TO NONLINEAR CONTROL PROBLEMS*

ARTHUR J. KRENERt

Abstract. The main results of this paper are two-fold. The first, Theorem 1, is a generalization ofthe
work of Chow and others concerning the set of locally accessible points of a nonlinear control system. It
is shown that under quite general conditions, this set lies on a surface in state space and has a nonempty
interior in the relative topology of that surface.

The second result, Theorem 3, generalizes the bang-bang theorem to nonlinear control systems
using higher order control variations as developed by Kelley and others. As a corollary we obtain
Halkin’s bang-bang theorem for a linear piecewise analytic control system.

1. Introduction. Consider the control system

(1) 2 f(x(t), u(t)), x(O) x, u(t) f,

where x (x, ..., x,) are coordinates of the state space, M is a paracompact
0n-dimensional manifold, u (u, ., u) is the control, x= (x, x,) is

the initial state, f
_
[ is the set of admissible controls, and f is an n-vector-valued

function. We assume that x so that the first coordinate of f is identically 1;
also we assume that f is C with respect to x2, -.’, x,, Ul, ..., u and piecewise
C with respect to X l. We require that u(t) be a piecewise C-function of x.
The requirement of C differentiability is not essential, it is only to avoid counting
the degree of differentiability required in any argument. The tangent space to M
at x is denoted by M,. A control u(t) defines a vector field, f.(x) f(x, u(x)) on M
and given two controls u(t), v(t), we can define a new vector field by means of the
Lie bracket,

(2) [.f,,f](x) (x)f(x) x(X)f(x),
where (cf/x)(x) is an n x n matrix of partial derivatives at x.

A slight problem arises since f,,f are only piecewise C-functions of x,
but at those values of x we can consider (2) as either undefined or as double-
valued by taking left and right limits. Since the difficulties that arise because of this
can be dealt with by simple but lengthy arguments, we shall ignore them.

2. Integrability and semi-integrability. The set, V(M), of all C-vector
fields on M is a module over the ring, C(M), of all C-real-valued functions with
domain M, with addition and multiplication defined pointwise. With the definition
of the bracket (2), V(M) becomes a Lie algebra of infinite dimension over the field,
JR. Suppose H is a submodule of V(M). We define H {f(x):f H}. Let U be
an open subset of M and L a submanifold of U. L is an integral manifold of H in
U if L is connected and H L for all x L (L is the tangent space to L at x).
An integral manifold ofH in U is always contained in a maximal integral manifold
of H in U. H is integrable on U if there exists a partition of U by maximal integral
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manifolds of H in U. For H to be integrable on U a necessary condition is that H
restricted to U be a subalgebra of V(U). If, in addition, H satisfies one ofthe follow-
ing then H is integrable on U;

(i) Frobenius. The dimension of H is constant for all x U.
(ii) Hermann [9]. H is locally finitely generated, that is, for all x U, there

exists a neighborhood V
_
U of x such that H restricted to V is the C(V) span of a

finite number of vector fields of H. (Lobry [14] has a slightly weaker form of this
condition.)

(iii) Nagano [16]. M is a real analytic manifold and H is a subalgebra of the
Lie algebra of real analytic vector fields on U.

If H is a submodule but not a subalgebra, then there exists a smallest sub-
algebra containing H, which we denote by DH. We can construct DH as follows.
We define DH H and DkH D- 1H + [H, D- 1HI. For example, DIH is
the submodule of all linear combinations of vector fields of H and Lie brackets of
vector fields of H with coefficients from C(M). DH is the union of this ascending
sequence of submodules.

Suppose U is an open neighborhood of x (Xl, x,). Then we split U
into two open halves,

U + {x U’x > Xl} and U- {x U’x < Xl}.
The control system (1) is locally semi-integrable if for all x M, there exists an
open neighborhood U of x and submodules H +, H- of V(M) such that

(i) Hx+ span {f(x,u)’ufl}
_
M for all x U +,

H- span {f(x, u)’u fl}
_
m for all x U-.

(ii) DH + and DH- are integrable on U with maximal integrable manifolds
L / and L- in U containing x.

Suppose u(t) is an admissible control and 7.(s)x is the family of integral curves
of the vector field f,(x), that is, 7u(0)x x and (d/ds)7,(s)x f,(7,(s)x). We define
the set sc(x, U) of all points accessible from x in U as
and 7,(r)x e U for all r e [0, s] and the set Cg(x, U) of all points controllable to x
in U as {7,(s)x’s <= O, u(t)efl, and 7,(r)x e U for all r e Is, 0]}.

If (1) is locally semi-integrable in U, then it is easily shown that sC(x, U)
___
L +

and Cg(x, U)
_

L-.
We now raise the question whether sC’(x, U) is "thick" in L+, i.e., whether

(x, U) has any interior as a subset of L +. The answer is affirmative as the
following generalization of the work of Chow [2], Lobry [14], and Sussmann and
Jurdjevic [19] shows.

THEOREM 1. Assume (1) is a locally semi-integrable control system and x,
U, L + and L- are as above. Then the L +-interior of sY(x, U) and the L--interior

of Cg(x, U) are nonempty.

Proof. In theorems ofthis type we shall only prove one assertion since the proof
of the other is identical. We construct inductively a sequence of maps qj" V
--, sC’(x, U) L + defined on a sequence of open sets VJ NJ such that the
image N qj(VJ) is a submanifold of dimension j. We continue until j equals the
dimension of L +.

Choose any control, say ul(t) (ul(t),..., u],(t)), and let fl(x) be the vector
field .fl(X)-.f(x, ul(x1)). Let 6 > 0 such that the integral curve sl -, 71(sl)x
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of fl is C for S e (0, ti). Let V --(0, i) and q21(S1)---71(S)X. Since the first
coordinate of f is identically 1, the image N qg(V 1) is a one-dimensional
submanifold of L +.

Suppose we have constructed N- q2j_ I(Vj- 1) and j =< dimension of
L +. Choose x e N- and a control u such that f(x)= f(x, u(xl)) N-, the
tangent space to N- at x. This can always be done, for if not, then for all x e N-and for all u efL f(x) Nx . This implies that Hx Nx for all x e N- , and
the set of vector fields on N- t, V(N- 1), is an algebra’, therefore DH restricted to
Nj- is contained in V(N- ). But this implies thatj _< dimension ofL + dimen-
sion DHx <- dimension of N- j 1.

By passing to a smaller V- and N- we can assume that f(x) N- for all
x e N- and also for some 6 > 0, the integral curve of f starting at x satisfies

7(sflx e U for all x e N- and 0 < s < 6. We define (Sl, "", sfl 7(s)q_
(S1, Sj_ 1) vJ-- Vj- x (0, ) and N (V)

_
(x, U). The Jacobian

(qJcs)(s, ..., s_ , 0) is nonsingular for every (s, ..., s_ 1) e V- and hence
for sufficiently small 0" V --, N is a diffeomorphism. Q.E.D.

Example 1. Suppose M 2 and consider the control system 2 1,
22 u. g(x), lul =< 1, where g(x) is a C-(or pwC)-function satisfying g(x1)

0 if X -<_ 0 and g(xx) > 0 if x > 0. The system is locally semi-integrable for
example, if x (0, 0), then we take U M, H + DH + V(M), L + M,

d/(XO, U) x1, x2)’x 0, Ix21 g(x,) dx

H- DH- h(x) e C(M

L- {(x1, O)’x } and (x, U) {(x,, O)’X 0}.

The system 21 1, 22 U" g(X2) is not locally semi-integrable.
Example 2. Suppose M []2 and 21 1, 22 NX2, ]U] 1. The submodule

H {(hi(x), xzhz(x)):hi(x)eC(m)} is an integrable subalgebra and carries the
system everywhere; that is, for each x e M, Hx span {f(x,u):[x] <= 1}. It
partitions M into 3 integral manifolds:

and

g1= {(x1,x2)’x2 . L2 {(x1,x2)’x2 O}

L3= {(X1,X2)’X2 < 0}.

Suppose x=(0,1)6L1. Then U=M,H+ =DH+ =H- =DH- =H,L+

L- L 1, (x, U) {(xl Xz)’xl => 0, e-X’ =< x2 =< ex’} and Cg(x, U) {(x l,

Xz)’xl =< 0, ex’ =< x 2 =< e-X’}. If x (0, 0) L2, then U M, H+ DH +

H- =DH- H, L + L- L2, sC’(x,U)= {(xl,0)’x =>0} and C(x,U)
{(X1,0)’X 0}.
Example 3. Suppose M [R3 and 21 1, 2 2 U, 2 3 UX1, lU] 1. Let

fl(x),f_ l(x) be the vector fields corresponding to the constant controls u

_
1.
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Let H be the submodule which is the C(M) span off1 and f_ 1. There is one linearly
independent bracket

0

EL,f-,](x) 0

2

so DH is spanned by fl, f- and If1, f- 1]. The integrable manifold ofDH through
any point x is m. The sets ’(x, M) {71(s3)7-1(s2)7 l(Sl)X’si >= 0} and Cg(x, M)

{71(s3)7_ (Sz)71(Sl)X’si <= 0} both have nonempty interior.

3. The bang-bang theorem. Henceforth we shall consider the system

: ui(t)ai(x),
i=0

x(O)= x u(t) > O u()=

where ao, "’, ak are vector-valued functions C with respect to x2, x and
piecewise C with respect to x t. The controls, u(t), are piecewise Coo-functions
of x l, lying in the compact convex set {u:ui >= O, ui 1}. We let E
denote the set of extreme points of. E is the set of unit vectors, (0, , 0, 1, 0, ,
0), in k. We call the set of admissible controls and E the set of bang-bang
controls. We alter our notation to distinguish between the set of points, (x,
U, ), accessible in U from x by admissible controls, and the set of points, (x,
U, E), accessible in U from x by bang-bang controls. We adopt a similar conven-
tion regarding Cg(x, U, ) and Cg(x, U, E). The bang-bang question is, under
what conditions is it true that z’(x, U, E) ’(x, U, ) and Cg(x, U, E)
U,). It is well known that ’(x, U, E)_c z’(x, U,)_ closure ’(x, U, E)
and Cg(x, U, E) c_ Cg(xO u, ) c_ closure cg(x, U, E).

THEOREM 2. Suppose (3) is locally semi-integrable and U, L +, L- are as above.
Then L+-interior ’(x, U, E)= L+-interior g/(x, U,)and L--interior Cg(x,
U, E) L--interior Cg(x, U, ).

Proo]i To simplify the proof we restrict (3) to a control system on the manifold
L +, in other words we take M L +. Clearly interior ’(x, U, E)_ interior
z’(x, U,). To show the opposite inclusion we let x interior ’(x, U,).
We choose an open connected neighborhood V of x such that V c_ interior ’(x,
U,). The set of vector fields {f,:u} and {j:u E} generate the same sub-
module H and hence by Theorem 1, (x, V, E) has a nonempty interior. Let y
interior Cg(x, V, E) V

___
(x, U, ))

_
closure (x, U, E). Then there is a

sequence y" ’(x, U, E), such that ym converges to y. For m sufficiently large,
y" interior Cg(x, V, E), so y" is bang-bang accessible from x and bang-bang
controllable to x. This implies x z’(x, U, E). Q.E.D.

From Theorem 2 it is clear that ’(x, U, E) will equal ’(x, U, ) if every
admissible trajectory which does not come from a bang-bang control goes to
an interior point of z’(x, U, ). To decide when this will happen we study the
effect of control variations.
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Let #(xl) be an admissible control, j)(x)= ’. u(x,)ai(x) and 7j(s)x be the
family of integral curves of.l)(x) for j 0, 1. Suppose as we approach x 7o(S)X
e d(x, U, f) using the control u, we replace u with u for r units of time. The
result is a trajectory whose endpoint is 71(r)7o(S- r)x= 7(r)7o(-r)x. If we
vary r through small nonnegative values, we obtain a C-curve q(r) 71(r)7o(- r)x
satisfying q(0)- x. To compute the derivative from the right at 0, we define
q(ro,r) 71(r)?o(-ro)x. Then

dq(O + cq(O) cq(O)
.l’,(x) j’(x).

dr rl ro
If we continue to x )o(S1)X0 E ’(XO, U, ’-) using the control u, we can

define a new curve q(r) 7o(Sl s)7(r)7o(-r)x. This is also C for small non-
negative r and q(0) x . The derivative from the right at 0 is

q(O+)
(4)

dr
7o(S, s),(f(x) fo(x)),

where 7o(sl s), is the tangent space map induced by the map x--- 7o(S s)x.
Ifj;(x) and j’(x) are Coo in a neighborhood of the trajectory joining x and x , then
(4) can be expressed in a Taylor series,

dq(O+)_ (s-s,)
()

dr re=o/-2’ mad,,(fo)(f .I))(X1)_qt_ (_Q(S S 1)h+l

where

ad(fo)(f Jl)(xl) fl(x’) .l)(x 1),

adm(fo)(fl fo)(X’) [fo, adm- ’(J’o)(f J)] (X)

and C(s s)’ + is an error term of order (s s) + .
The second type of control variation is similar to the one introduced by

Kelley [11].
Suppose u,u,u2, u are admissible controls such that u= (2u+ u2

+ u3)/4. Then fo(X) (2j](x) + j(x) + j(x))/4. For ease of notation we
introduce another control u u so u ( uz)/4, fo(x) ( (x))/4.
Consider the control modification p(r) made at x 7(s)x, where p(r)= 7(r)
73(r)72(r)7 (r)7 o( 4r)x.

To compute the first two derivatives of this curve, we introduce new variables

ro -4r, r r2 r3 r4 r and use the chain rule

dp(O d, p(O)
-L(x) + j(x) + .l(x) + j(x) 4j(x) 0,+

dr dr ri=0

d d e +2
=o o . dr dr

4.

dr
li(x) + 2

o<=i <= dr dr "x
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Since dp(O+)/dr 0, the curve q(r) defined for small nonnegative r by q(r2/2)
p(r)is C and dq(O+)/dr dZp(0 +)/dr2 We can pull this control modification

along to x 7o(Sl)X as before and obtain

)
(6) 70(s, s),[f2,j’](x)=

(s S

m--0 /91!
ad"(fo)[f2,f3](xr) + C(s Sl)h+ 1.

Notice that if we reverse u2 and u3 in defining p(r), we obtain 7o(S s),[j,
f2](X) --))o(S1 S),[J, f3](X).

The last type of control modification which we consider is to stop short of x
or continue on past x . These lead to curves q(r)= 7o(xl + r)x= 7o(+r)x ,
whose derivatives are

(7)
dq(O+)

+ fo(x’).
dr

Let Kx, be the convex cone in L+, generated by the vectors of the form (4),
(6) and (7), for all 0 < s =< s and admissible controls ui(t), 1, 2, 3. We say the
trajectory of u between x and x is singular if Kx, is a proper subset of Lx+,. This
definition is different from the usual one stated in terms of the maximal principle
(see Gabasov and Kirillova [6] and Hermes [20]). Since x, the usual one is
equivalent to the following" the trajectory is singular if the cone generated by the
vectors of the form (4) and (7) is a proper subset of Mx,. There are of course less
singular controls under our definition. It can be shown, using the standard methods
(implicit function or fixed point theorem), that if Kx, Lx+, then X2 L+-interior
(x, U, O) and so is bang-bang accessible. It follows then that g(x, U, E) will
equal /(x, U, O) if the only singular trajectories are bang-bang. Consider the
following examples.

Example 4. Let M [3 and ual + (1 u)a2, 0 U 1, where

X2 X2

H is the C(M) span of a and a2 and since [a, a2] 0, DH H. The integral
manifold of H through x= (0,0,0)is L {(x,x2,x3)’x (X2)2}. Let u(t)

1/2 and x ,o(sl)x (s, 0, 0). The cone Kx,, generated by +(1/2)(a(x)
nt- a2(X1)), (a(x’) a0(X1)), and (a2(x 1) ao(xl))= (ao(X’) al(xl)) equals L,
so the trajectory is not singular in our sense. However, Kx, is a proper subset of
Mx, and so the trajector.y is singular in the usual sense. Notice that x is bang-bang
accessible, x 72(s/2)71(sa/2)x or any other bang-bang trajectory that uses a
and a2 each a total of s/2 units of time.

Example 5. Let M [4 and 9 Ulal(x) nt- u2a2(x -+- u3a3(x), u 0,
ui 1, where

1

1/2
a(x)=

1/2
az(x)=

0
a3(x)=

X2/2 0 \X2/
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0 0 0

[al az](X) O0 [al a3](x) O0 [a2, a3](x) i1/2 1/2

and all other brackets are zero.
DH is of dimension 4 everywhere so the integral manifold of DH through

x= (0, 0, 0, 0) is exactly M. The control u- (1/2, 1/4, 1/4) gives rise to the
vector field

j’;(x) !,
and If0, ai] 0. If x 70(sl)x (sl, 0, 0, 0), then the cone generated by control
variations of type (4) and (7) is a linear space of dimension 3, since the trajectory
is singular in the usual sense. If we add the variations of type (6), we see Kxl Lxl

Mxl and so is not singular in our sense. Notice that x is bang-bang accessible,

X 73(S1/8)’2(S1/8)’l(SI/2)T2(S/8)73(S,/8)X.
A subsystem of (3) is a system obtained by restricting the control u(t) to lie on

one of the faces of O, that is, if I is a subset of 1,..., k} the subsystem specified by I
is given by requiring u(t) 0 for I. We consider a face of fl, so that (3) is a
subsystem of itself.
TNOM 3. Suppose jbr every subset I of {1,..., k}, the subsystem specified

by I is locally semi-integrable. Let U be a neighborhood of x and H + and L + be the
submodule and integral man,old which carry the subsystem specified by I on U+.
U there exists h > 0 such that

(i) DhH DH] .lbr all x L+,
(ii) given any is I,j 1, ..., 4, and any m, m < h, there exists a function

g(x) 0 such that for all x L + either

D Hadm(ai) [ai ai (x) g(x)adm(ai4) [ai ai (x) mod +

o

D Had(ai3) [ai ai] (x) (x)adm(ai) [ai ai] (x) mod +,

then s’(x, U, E) (x, U, f).
Proof Let I {1,..., k} and u(t), um(t), vl(t), l)m(t) be controls

lying in the interior of f, that is, 0 < u{(t) < and 0 < vj(t) < for j 1,..., m,
1, ..., k. LetJi(x) Z=I u{(x)ai(x)and gj(x) = vj(x)ai(x). By induction

on m < h, we show there exists a 2(x) > 0 such that

[f" [f,,,Eai, ail]"" ](x)=_ (x)[g, [gm[ai, ai2]] ](X)mod +.
It is trivial for m 0 and it follows immediately from (ii) for __< m < h.
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Therefore ifu(t)lies in the interior off in some neighborhood ofx 7o(Sl)X,
then +D H,, is spanned by the vectors

ai(xl), [ai, aj] (xa), adl(fo)[ai, aj] (x), ad- ’(fo)[ai, aj] (xl),

for 1 =< i, j =< k. But the cone K,, contains fo(x), ai(x 1) fo(x ), and, (s s,)adm(fo)[ai, aj.](x, + C(s s,)
=o m!

for all 1 =< i,j k and small s s =< 0. Hence, K, equals DH+ DH+. This
implies x (x, U, E).

If u(t) is not interior to f at x but is interior to some face of f of dimension
>_ 1, then we repeat the above argument for the subsystem generated by that face.
The controls that lie on faces of dimension 0 are bang-bang controls. Q.E.D.

There is a bang-bang controllability version of Theorem 3 that assumes the
same hypothesis except H- and L- replace H+ and L + in (i) and (ii). Together
they yield a global result.

COROLLARY 4. Supposefor all x M, there exists a neighborhood U ofx such
that (x, U, E) (x, U, )) and OK(x, U, E) OK(x, U, )). Then a’(x, M, E)
(x, M, f) and Cg(x, M, E) Cg(x, M, f).
Proof. Suppose u(t) is an admissible control. We must show 7o(S)X (x,

M, E) for all s _> 0. Let s inf {r >= O’7o(S)X ’(x, M, E)} and x 7o(S)x.
Ifx (x, M, E), then by hypothesis there exists an e > 0 such that for all r [0, e),
7o(r)x 7o(r + s)x l(x, M, E)

_
l(x, M, E). This contradicts the definition

of s. If x (x, M, E), then there exists e > 0 such that for all r (-e, 0], 7o(r)x
7o(r + s)x Cg(x, M, E). By the definition of s, for small r, 7o(r + s)x l(x,

M, E) so x (x, M, E). This is a contradiction.
COROLLARY 5 (Halkin-Levinson). Consider the linear control system defined

on M " by

(8) F(t)x + G(t)v + h(t),

where F(t), G(t) are matrices, h(t) is a vector of piecewise analytic functions and
the control v(t)= (vl(t), ..., v,(t)) is a piecewise analytic function satisfying
Ivi(t)[ <= 1. If x is accessible j?om x by an admissible control, then x is accessible

from x by a piecewise analytic bang-bang control v(t), where Ivi(t)l 1.

Proof Let a(x),..., ak(x) be the right side of (8) for the finite number of
constant controls satisfying Iv(t)l 1. Then (8) can be put in the form (3) and
each of the a(x) is piecewise analytic. It follows that every subsystem of (3) is
locally semi-integrable. By direct computation it is easy to show

adm(ai3) [ai, ai2] (x) adm(ai4) [ai, ai2 (x) for all m 1, 2, 3, "",

and for any x there always exists a neighborhood, U, of x and h > 0 such that
+D H DH+ for all x e U / and DhH-o for all x e U so the result follows from

Theorem 3 and Corollary 4. Q.E.D.
Notice that Examples 4 and 5 satisfy the conditions of Theorem 3. As a

counterexample, consider this one taken from Filippov [5] as modified by Lobry
[14].
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Example 6. Let M [3, 2 ual + (1 u)a2 and 0 -< u < 1, where

1

al(x)= 1-x az(x)= 1-x
1

0

[al[a,az]](x) [az[az,al]](x) -4

0

Condition (ii) of Theorem 3 fails and the point (1, 1, 0) is accessible from (0, 0, 0)
by the singular control u 1/2, but is not bang-bang accessible (see Filippov [5]).

0

[a,az](X) 4x

o
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