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BILINEAR AND NONLINEAR REALIZATIONS
OF INPUT-OUTPUT MAPS*

ARTHUR J. KRENERY

Abstract. Given a noanlinear realization of an input-output map, sufficient conditions are given
for the existence of an equivalent bilinear realization for small ¢. 1t is also shown that every nonlinear
realization can be approximated by a bilinear realization, with an error that grows like an arbitrary
power of 1.

1. Introduction. In recent years there has been considerable interest in
bilinear control systems. This interest can be attributed to the fact that this class of
systems is general enough to model many physical and biological processes and
at the same time, it is specific enough to support a rich mathematical structure
(1], [2]. [3], [4]. We would like to propose another reason for considering such
systems, namely, that in a sense to be made precise later, every nonlinear system
with control entering linearly is locally almost bilinear.

Given an input-output map, u(r}+— w(t), a bilinear realization of this is

X(t) = <A0 + Z Lt,.(l)A,)x(t),

(1.1) w(t) = Cx(f),
x(0) = x°, u(t) e Q,

where x = (x,, - -, x,), w=(w, -, w). Ay, -, A, are m x m matrices, C
Isan ! x m matrix and u(t) = (u,(t), -, u,t)) is a measurable control with values
in Q= {ujul =1,i=1,---, h}. The differential equation and map x — w are
called the dynamics and the output map of the realization and in this case are
bilinear and linear respectively. .

A nonlinear realization of an input-output map, u(t) +— z(t), 1s

M:—

(1) = boly) + ‘ u)byy).

i

(1.2) z(t) = f(U(1),
W0) = yo, u(t) € Q,

1

where v = (y,, . ¥), z=1(2;, ", 7)), boly), -, b(y) are C* n-dimensional
vector fields, fis a C* R'-valued function and u(t) = (u,(t), - - -, u,(t)) a measurable
control with values in Q = {u: |y < 1,i = 1,---, h}. Here both the dynamics and
output map, z = f(y), are nonlinear.

In Theorem 1, a necessary and sufficient condition is given for there to exist a
change of state which bilinearizes the dynamics of (1.2) for small t. As a corollary
using a technique of Brockett, we obtain sufficient conditions for the existence of a
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bilinear realization, (1.1), such that every input, u(r), gives the same output,
w(t) = z(t), for small ¢.

Theorem 2 shows that for any integer, i = 0, there exists a system with bilinear
dynamics which approximates the dynamics of (1.2) with error O(t* *! ). As a corol-
lary there exists for every nonlinear realization, (1.2), a bilinear realization, (1.1),
such that every input gives approximately the same output, w(r) = z(¢) + o(e*+ 1y,
for small ¢.

2. Preliminaries. Instead of considering (1.1), it is useful to consider the
matrix bilinear system

h
X(t) = (AO + ) uiA,->X(t),

(2.1) Wity = CX(1),
X(0) =1, u{t) e Q,

where X(r) takes values in the group, Gl(m, R), of all invertible m x m matrices.

Each column of the matrix equation (2.1)isa system of the form(1.1). Therefore
instead of considering the problems of replacing or approximating (1.2) by (1.1),
we study the equivalent problem of replacing or approximating (1.2) by (2.1).

The advantage of considering (2.1) over (I.1) is that Gl(m, R)is a Lie group and
each 4, defines a right invariant vector field, A, X, on this group, hence a member of
the associated Lie algebra, glim, B), of all m x m real matrices, This algebra is
finite-dimensional over the field, R, and the multiplication is defined by the Lie
bracket

(A 4] = A4, — AA,.

This is a noncommutative and nonassociative operation which instead satisfies
the skew-symmetry and Jacobi relations,
[Aia A,,'] = ‘[Aj’ Ai]»
and
[Ai[Aj» Ak]] = [[Ah Aj]Ak] + [Aj[An AkH'
For further discussion of Lie groups and algebras we refer the reader to [5], 61.(7].
There is a unique subalgebra, g, of gl(m, R) generated by {A4,, -, A,} under

bracketing and corresponding to this is a closed Lie subgroup, G, of Gl(m, R).
This subgroup is the set of all products of the form

exp (1;,4,) - -exp(t, A, )

™ Ty

forallk > 0 and t;, € R, [8]. Another characterization of G is that it is the set of all
accessible matrices of

h
X(t) = (Z u,.(z)Ai)X(t),
i=0

X0) =1, ;] =1, =0 h

This foliows from the theorem of Chow [9].
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The dimension of ¢ as a submanifold of Gl(m, R} is precisely the dimension of
the Lie subalgebra, g. Furthermore, it has been shown [(10], [H1] that the set of
accessible matrices of (2.1) is a subset of G with nonempty interior in the relative
topology of G, hence G is the smallest subgroup of Gl(m, R) containing all accessible
matrices of (2.1). For this reason G is said to carry (2.1).

The corresponding situation for (1.2) is more complicated because of the
nonlinearity. We restrict our discussion of this system to some neighborhood,
foof v in R I b(y), b{y)are C*-vector fields defined on ¥, then the Lie bracket,
(b, b;](v). is another C* -vector field defined on ¥ by

. ob . ab.
b bJ0) = 57 b = S (b ().
) cy

Once again the skew symmetry and Jacobi relations hold.

The set, V(#), of all C*-vector fields on ¥ becomes a Lie algebra over R
with this definition, however it, in general, is infinite-dimensional. Let W)
denote the smallest subalgebra of V(1) containing {b,, ---, b,}. In many cases,
but not in general, there is a submanifold 1" of ¥ corresponding to W(¥"), and
containing y°. To be more precise, let W(y) be the linear subspace of R" formed by
evaluating the vector fields of W(7 ) at ¥. A submanifold .+" of ¥ is an integral
manifold of W( 7 )if for every y e .4, W(y)is precisely the tangent space to 4" at ¥
We define the rank of W(7 ) at ¥ to be the dimension of W(y). Then there exists an
integral manifold .4 of W(#) containing y° if the rank of W(¥ ) is constant
(Frobenius) [12] or if by(y), - . b,(y) are analytic [13]. Other sufficient conditions
are found in [12] and [14].

Henceforth we shall assume that .1 exists, the dimension of V" is the same
as the rank of W(# ) at v* and by Chow's theorem. is the set of all points in
accessible from v under the system

M=

o) =

i

10y = 3, lwl <1, i=0,--,h.

u{t)by),

I

0

The set of all points in 1" accessible from y% by (1.2) is again a subset of .4~ with
nonempty relative interior [10], so .1” is said to locally carry (1.2).

3. Bilinearization. The problem of replacing a nonlinear realization by a
bilinear one can be broken into two parts. The first is: when does there exist a
change of state which linearizes the vector fields bo(¥), -+, by(y), resulting in a
system with bilinear dynamics and nonlinear output map? The second is: given a
realization of this hybrid type, when can it be converted into a bilinear realization?

As for the first question, Guillemin and Sternberg [15] have shown that a
family of vector fields, by(y), - -, bu(y), can be converted to linear vector fields,
Ayx -, Ayx, by a change of coordinates, x = x(y), in some neighborhood of
yY if the vector fields are analytic, all vanish at y° and generate a finite-dimensional
scmisimple Lic algebra. Hermann [16] gave a formal power series construction of
the change of coordinates. However, these results are not directly applicable to
our questions, since if all the vector fields vanish at y°, then the system, (1.2), is
trivial.
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Asking for a change of coordinates to linearize the vector fields in some
neighborhood of y° is actually too restrictive for our purposes. Assuming (1.2) is
carried locally by . 4, what we would like is a system (2.1) carried by G, a neighbor-
hood..#, of I in G and a differentiable map 1.4 — .4~ which preserves solutions,
that is, A X (1)) = (1) for each u(r). The map need not be a local diffeomorphism from
&/ onto .1, for the dimension of .# could be greater than that of .t ; however, it
should be onto since . 4" carries (1.2). Hartman dealt with a similar question in
studying the structural stability of a single vector field about a critical point [21].

If such a / exists, then its differential, A, is a Lie algebra homomorphism from
the Lie algebra, g, generated by Ay, - -+, 4, onto the Lic algebra, W(.47), generated
by b,. . b, restricted to ..+". Therefore a necessary condition for 4 to exist is
that W( 1) be a finite-dimensional Lie algebra. This also turns out to be sufficient
and we have the following theorem.

THEOREM 1. Suppose that by(y), - - -, b,(v) of (1.2} are analytic and the system
is carried locally by A" There exists a system (2.1) carried locally by .4 in Gl(m, R)
and an analytic map A4 — A" preserving solutions if and only if the Lie algebra
generated by bo{(y), -+, b(v) is finite-dimensional when restricted to A"

Proof. Assume W(..17) is finite-dimensional. Then by Ado’s theorem [17] there
exists a Lie subalgebra, g, of gi(m, R) for some m and a Lie algebra isomorphism
@:Wi( 1) - g Define a system with matrix bilinear dynamics, (2.1), by letting
A, = @(h,). Let e be the evaluation map, e: W(.17) — W(y°), defined by e(c) = c(y°)
for c e W(.1)). Then the map | = ¢ » ¢ ! satisfies the following

A ’ [Ai‘,,p ‘41‘\,] )= [hi, [bi\, N bi\,] ](}‘0)

foranyvand 0 = i,,---,i, £ h
It follows from a thcorem of the author [18] (generalized by Sussmann [19))
that there exist a neighborhood .# of I and a map A:.4 — 4" preserving solutions.
Q.E.D.
Remark 1. In general, the map 2 is locally a projection from .# onto A"
However, if the evaluation map, e: W{(.4") — W(y°), is a vector space isomorphism,
then so is [ and the abovementioned theorem implies /4 is a local diffeomorphism.
Remark 2. A Lie algebra homomorphism ¢:W(.47) - glim, R) is called a
representation of W(47) and is said to be faithful if ¢ is 1-1, and hence an iso-
morphism onto its range. If W(_1") is of dimension m, then the adjoint representa-
tion, ad:W(. 17} - glim, R), can always be constructed as follows. Choose a basis
dy.--.d, for W), and for each ce W(A") let ad(c) be the matrix B = {B;}]
defined by

[e,d] =) Bid,.
i=1
The Jacobi refation implies this is a Lie algebra homomorphism.

The kernel of ad is the center of W(.A7), 1.e., the set of all ¢ such that [¢,d] = 0
for all d e W{.+'). If the center is empty, then ad is faithful and this representation
can be used in Theorem L. If W(.4") is semisimple, then the center is empty.

Remark 3. 1f the center is not empty but is contained in the kernel of the
evaluation map, e, then the adjoint representation can still be used. In this case, [ is
constructed by the standard homomorphism theorem as illustrated in Fig. [.
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W) —% W)

|

ad(W(4) € glim, R)
Fig. 1

As for the second step in bilinearization, we have a theorem of Brockett [4]
which states that every realization with bilinear dynamics and polynomial output
map 1s equivalent to a realization with bilinear dynamics and linear output map.
This results in the following.

COROLLARY 1. Given: any nonlinear realization (1.2) of the input-output,
u(t) v z(t), satisfying the hypothesis of Theorem 1. If the map [ - A:X -z is a
polynomial, then there exists a bilinear realization (1.2) of u(t) — w(t) and a constant
T > 0 such that for any input, u(t), the corresponding outputs satisfy w(t) = z(t) for
1 €[0. T]. (Polynomial here means each component of z is a polynomial in the
components of X.)

4. Approximation of nonlinear systems by bilinear systems. If the Lie algebra,
W 1), is not finite-dimensional, then Theorem 1 does not hold; however, we can
ask whether (1.2) can be approximated by systems of type (2.1). To be more precise,
given (2.1) carried locally by .# and (1.2) carried locally by A", a C*-map A .4 — A"
preserves solutions to order g if there exists a T > 0 and K 2 0 such that for any
solution, X(t) and y(t}, of (2.1) and (1.2) using the same control

IAX(1) = w(0)] = Ket™!
forte [0, T].

THEOREM 2. Suppose that by(y), - - -, b(y) of (1.2) are C* and the system is
carried locally by V" Then for any i Z O there exists a system (2.1) carried locally by
oin Glim, R) and a C™ -map A:4 — A" preserving solutions to order p.

Proof. An abstract Lie algebra, g, is a vector space over R with a multiplica-
tion which satisfies the skew symmetry and Jacobi relations. Suppose a,, -, a,
are elements of g: then we call [a; ---[a; _,,a;]---] a bracket of order v of
aqy. . a,. One way to construct an abstract Lie algebra, g, is to consider a4, - -
a, to be elements of the algebra and linearly independent over R. Then treat
all the brackets of these up to and including order v as new elements of g which
arc linearly independent except for those relations implied by the skew symmetry
and Jacobi relations. All brackets of order greater than v are taken to be 0. The
result is a finite-dimensional Lie algebra which we shall call the canonical algebra
of order vith h + 1 generators.

By Ado’s theorem, this algebra is isomorphic to a subalgebra of gl(m, R)
which we also denote by g. Under this identification, each a; becomes a m x m
matrix, A;. and these are used to construct (2.1). We call the resulting system the
canonical system of order w with h controls.

Next we define a linear map [:g — R” by setting

[‘["11'\ T [Ai\, o Ai‘,] )= [hi‘ e [hiv,u h.‘\,] T ]()’0)~

It then follows from a theorem of the author [20] that there exists a neighborhood,
JZ. ol I in the subgroup, G, of Gl(m, R) carrying (2.1), a neighborhood, .4", of y* in
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the submanifold carrying (1.2)and a C*-map A:.4 — 4" which preserves solutions
to order u. Q.E.D.

Remark 1. Once again 4 is locally a projection; however, it need not be onto
-1 unless the brackets of b,, -+, b, up to order x span the tangent space to A" at
v%. Of course if [ is 11, then so is 1.

Remark 2. The adjoint representation of the canonical algebra of order y
is not a faithful representation because the center consists of all brackets of
ay, -, ayof order u. However, for precisely this reason, the adjoint representation
of the canonical algebra of order u + 1 is isomorphic to the canonical algebra of
order g and can be used to construct (2.1).

Remark 3. Since the canonical algebra is nilpotent, the algebra generated by
Ay, -+ A, will be nilpotent, and hence any matrix exponential solution of (2.1
for piecewise constant u is a finite series with no terms of order greater than p.

Remark 4. The dimension of (2.1) is the dimension of the Lie algebra generated
by 4y.---. 4, and not m or m?. The system (2.1) as constructed in the theorem
may not be of minimal dimension among bilinear systems which preserve solu-
tions of (1.2) to order u. A smaller system can be constructed as follows.

Since [ is only a linear map, the kernel of | need not be an ideal of g. However,
it 1s a subalgebra of g because I preserves brackets to order p and all higher order
brackets are 0 in g. Let h denote the largest ideal of g contained in the kernel of /.
Then the nilpotent Lie algebra g/h can be used in place of g in the construction of
the theorem. There may also be Lie algebras of smaller dimension than g/h which
need not be nilpotent that can be used to construct (1.1), for example, if (1.2)
generates a finite-dimensional Lie algebra.

COROLLARY 2. Given any nonlinear realization, (1.2), of the input-output map,
ult)— z(t). and any integer p = 0, there exists a bilinear realization (1.1) of u(t)
F>wlt) and constants M and T > 0 such that for any input, u(t), the corresponding
outputs satisfy

w(t) — z(t)] < Me**' for te [0, T].

Proof. Using Theorem 2, we construct a system with the matrix bilinear
dynamics and a map A4 — .¢" which preserves solutions to order y. We define
a polynomial output map, i, for this system by letting ¢ be the power series
expansion around [ of f > 4 up to and including terms of order . Using Brockett’s
technique [4], an equivalent system with bilinear dynamics and linear output map
can always be constructed, so all we need show is that our system with bilinear
dynamics and polynomial output map approximates (1.2) as required.

By passing to smaller neighborhoods if necessary, we can assume .# and

b are compact; then there exist constants K, and K, such that

LX) = (X)) = KGIX = I1**! forany X e

L/ = fOA S Kyt =y forany y', y* € A"

Let X(¢) and y(t) be the solutions of our matrix bilinear system and (1.2) for
the same control |u(1)]. Then since A preserves solution to order L, there exists a
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Kjyand T > Osuch that for 1 € [0, T],
AX(@) =y = Kyt
By a standard argument there exists a constant, K, such that for € [0, T],
1X(1) — 1| £ K,t.

Putting it all together, we have

WAX(0) — f(H(
S X)) — f = AX@) + 1S > MX(@) — ()]
S KX = 117 + K JAX (1) — y()
S(K KA 4 K Kt t Q.E.D.
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