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THE HIGH ORDER MAXIMAL PRINCIPLE
AND ITS APPLICATION TO SINGULAR EXTREMALS*

ARTHUR J. KRENER"

Abstract. The high order maximal principle (HMP) which was announced in 11] is a generaliza-
tion of the familiar Pontryagin maximal principle. By using the higher derivatives of a large class of
control variations, one is able to construct new necessary conditions for optimal control problems with
or without terminal constraints. In particular, we show how the HMP can be used to prove the
generalized Legendre-Clebsch condition of Kelley, Kopp, Moyer.and Goh. The principle advantage
of this derivation is that, unlike previous ones, it remains valid even when there are terminal
constraints.

1. Introduction. Although we are interested in high order necessary condi-
tions for optimal control problems, let us first consider the following nonlinear
programming problem. Minimize the smooth function y0(x) subject to the smooth
constraints yi(x)= 0 for 1,. , rn and x M ". The set 4 is not explicitly
described, instead, given x 4 we assume there are ways of generating smooth
curves s--x(s)M for s[0, e) such that x(O)=xe. To develop first order
necessary conditions for this problem we adjoin the constraints Yi to Y0 via
Lagrange multipliers u0, ul, , u,, where u0 is normalized to be nonpositive. If
x is a minimum, then every curve x(s) as above generates a necessary condition

(1.1)
0 dd

E iYi(x(O)) E i -X yi(xe) x(O) <-- O.
ds i=0 i=0

The use of the Lagrange multipliers requires some assumption of local
convexity on the set {x: yi(x)= 0, 1,-.., rn} 4 around xe. Since 4 is not
explicitly given, this cannot be verified. Instead we assume the following: the
gradients of the functions Y0, y, are linearly independent at xe and whenever
x (s) and x2(s) are used to develop necessary conditions via (1.1), for any
0=<h -< 1 there exists a curve x3(s) 4 such that x3(O)--X and

(1.2) d d d
s xZ(O) tt ss x (0) + (1- t) s x2(O).

As we shall see later, this form of convexity suffices to justify the multipliers. Of
course if rn 0, no convexity assumption or multipliers are needed and u0 can be
set to be -1.

The goal of any collection of necessary conditions is to isolate a hopefully
unique candidate for the minimum. Additional conditions may be required to
narrow the field of possibilities and to distinguish between potential maxima and
minima. If a collection of necessary conditions of the form (1.1) does not
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HIGH ORDER MAXIMAL PRINCIPLE 257

completely accomplish this task, one can lo0k for additional curves x(s) or obtain
higher order conditions by differentiating (1.1) further.

If there are no Yi constraints (m 0), then it is clear that the first nonzero
derivative of uoYo(X(S)) must be negative for x to be a minimum. In general this
involves higher order partial derivatives of yo(x). For example, if (1.1) is assumed
to be zero, then the second derivative test is

to yo(X(O))= o SS x(O) OX’- yo(Xe) x(O)

d2

+ o yo(x e) x (0) O.

Suppose X E interior M ". Then (1.1) implies that (O/Ox)yo(xe) 0 andso (1.3)
reduces to the familiar condition where the Hessian ,o(02/Ox2)yo(xe) is negative
semidefinite at a minimum. On the other hand, if for some x(s), (d/ds)x(O)= O,
then (1.1) is trivially satisfied and (1.3) yields a condition which involves only the
gradient of Y0. The same condition can be obtained from (1.1) by reparametrizing
x(s) as x(sl/2).

If there are terminal constraints, then second order conditions similar to (1.3)
can be developed with some difficulty, since the use of the Lagrange multiplier
must be justified. For higher derivatives, this justification is so difficult as to
make the resulting necessary conditions of little practical value. The difficulties
arise because, in general, these conditions involve second and higher order partial
derivatives of Yo, Y1," ",Y,,. As was seen above, there is an exception to that; if
the first h- 1 derivatives of x(s) are zero at s 0, then

dh C3 dh

’iYi(x(O)) E li-XYi(xe)shX(O)<=O(1.4)
dsh

i=0 i=o

involves only the first partial derivatives of Yo, ", Ym. In this case, justifying the
Lagrange multiplier requires only a convexity assumption for higher derivatives
similar to (1.2). It is this type of necessary condition which we consider in this
paper.

Nowwe turn to optimal control problems which generate nonlinear program-
ming problems of the type we have been considering. Suppose we wish to
minimize yO(x(te)) subject to =f(x(t),u(t)), x(t)=x, yi(x(te))’-O, i=
1,’-’, m, and u(t)E f for t [t, tel. Let 4 denote the set of points accessible
from x using admissible controls. Suppose a control u(t) and trajectory x(t)
defined on [t, te] is a candidate for an optimal solution. We can generate curves
lying in 4 by considering the locus of endpoints x(te’, s) of a family of trajectories
x(t; s) generated by controls u(t; s) which are variations of x(t) and u(t) depend-
ing on the parameter s. The controls u(t; s) are obtained by replacing u(t) by some
other control v(t) for t Itx- s, t] where t (t, te). The reference control and
trajectory are obtained when s 0. In this way, using (1.1), one develops the usual
linear necessary conditions, i.e., the Pontryagin maximum principle (PMP), which
is most conveniently expressed in a Hamiltonian format.

It frequently happens in nonlinear control problems that the set of first
derivatives of the curves obtained by the above procedure does not fully represent
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all the degrees of freedom within the set d of accessible points around the
reference endpoint x(te). Such controls and trajectories are called singular (in the
sense of the PMP as opposed to the classical definition in the, calculus of
variations). For this reason the PMP can prove to be inadequate in determining
either a unique candidate or distinguishing between minimizing and maximizing
trajectories. (See [2].)

The high order maximum principle [HMP) is an attempt to overcome these
difficulties. More complicated control variations are used which have the property
that lower order derivatives of x (t s) are zero and the first nonzero derivatives lie
in directions within which were not available as first derivatives. Since the lower
derivatives are zero and a convexity assumption for higher derivatives similar to
(1.2) is satisfied, equation (1.4) can be applied to obtain new necessary conditions
which can also be expressed in terms of the Hamiltonian.

The organization of the rest of the paper is as follows. The statement of the
HMP is found in 2 and the proof in 3. Then the HMP is used to develop linear
and quadratic necessary conditions for singular extremals. Scalar controls are
treated in 4 and 5, and in 6, vector controls are treated. (These conditions are
called linear and quadratic not because they are linear or quadratic with respect to
the parameter s mentioned above, but rather because they are linear or quadratic
with respect to the L norm of the control variation. We elaborate on this later.)

The linear conditions are those implied by the PMP. The quadratic conditions
reduce to the generalized Legendre-Clebsch (GLC) of Kelley, Kopp and Moyer
[8] (scalar control) and Goh [4] (vector controls) when the problem in question is
normal or there are no terminal constraints. Using the HMP we can extend the
GLC to problems which do not satisfy these assumptions.

We wish to emphasize that these are not the only applications of the HMP,
rather, the HMP is a very powerful tool for constructing necessary conditions, the
simplest of which are theones mentioned above. We hope that by studying this
paper the reader will be able to construct new necessary conditions in an ad hoc
fashion which are appropriate to the problem of interest.

2. The high order maximal principle. Consider a system whose dynamics are
given by

(2.1) =]’(x, u)

subject to x(t) x and u(t) II, where x (x0, Xl," , x) with Xo t, u
(u 1, , u), ]’ a C-function of x and u, fl some subset of . The state variables x
are local coordinates on an (n + 1)-dimensional C-manifold M. However we
proceed as if they are globally defined and leave to the reader the task of "patching
things together", i.e., supplying the intrinsic meaning for all of the objects
described in a coordinate-dependent fashion.

The problem is to find a piecewise C-control u(t) II for t [t, te] which
generates a trajectory x(t) satisfying the boundary conditions

(2.2) x(t) x and yi(x(te)) O, 1,’", m,

which minimizes

(2.3) yO(x(te)).
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The functions Y0, Y1,’", Ym are assumed to be C and linearly independent
everywhere of interest. Since time is a state variable, (2.1) could be time-
dependent and the functions Y0,’", Ym could also depend on time. Control
problems where the integral of a Lagrangian are to be minimized can easily be
converted to the above format by the addition of another state variable.

The assumption of infinite differentiability is not required, it is only invoked
to avoid counting the degree of differentiability needed in a particular argument.
Piecewise differentiability means left and right limits always exist and there are
only a finite number of jumps in any compact interval. Throughout the paper we
assume that the controls being considered are C at the times in question. At
other times, similar results can be deduced by restricting to left or right limits and
by continuity. Since the details are tedious, we choose the convenient expedient of
leaving them to the reader.

Corresponding to each admissible control, u (t) II, is an admissible vector

field
fi (X) f(x, U (Xo))

which generates an admissible flow ,)/i (S)X defined as the family of integral curves
of the differential equation

d
-S ,i (S)X (’)t (S)X

satisfying the initial conditions

(O)x x.

Suppose the reference trajectory x(t)= T(t-t)x is generated by the
control u(t) for t [t, re]. Then a standard proof of the PMP is to replace the
reference control by another control u(t) for t e [t s, ] where t e (t, re). The
result is a family of trajectories x(t; s) indexed by small s => 0 whose locus of
endpoints is given by

O(te _to 0x(te; S) 3/ --tl)/l(s)To(t --S)X

T(t tl)TI(S)T(-S)X 1,
where x x(t). If we define a(s)x Tl(s)T(-s)x, then this can be written as

T(te t)ot(s)x .
For this reason, we call the map cz (s)x a control variation to u before x.

Alternately, u(t) could be replaced by ul(t) on the interval It, tl+s]
resulting in a locus of endpoints

x(te; S) T(te--t--S)T(S)X
,y(te tl)T(-S)/l(S)X 1.

oThis time we have a control variation a(s)x /(-s)/ (s)x to u after x. Various
combinations of the above are possible, for example, a(s)x=
/(-s/2)/l(s)/(-s/2)x, a control variation to u at x. As we shall see in 3, if
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u(t) and ul(t) are smooth at t 1, then all of the above yield the same necessary
conditions.

The important point about these variations a(s)x is that when they are
inserted into a trajectory generated by the control u(t), the result is a family of
admissible trajectories indexed by small s _-> 0 whose locus of endpoints is a
smooth function of s. With this in mind we define a control variation a(s)x to u(t)
at x as being of the following form"

(2.4) a(s)x y(q2(s))yk (pk(S)) ya(p(s))TO(ql(S))X,
0 k kwhere 3’ y ,’" ", y are the flows of admissible controls u(t), ul(t), ., u (t)

and qi(s) and pi(s) are polynomials in s satisfying qi(0) pi(0) 0 and pi(s) >-_ 0 for
small s _-> 0. This is similar to the bundle variation of Gabasov and Kirillova [2].
The reader should note that

x(te; S)= yO(te tl)ot(s)TO(t1- t)x
is the locus of endpoints of a family of admissible trajectory for small s _-> 0, and
hence a curve in /. Moreover, x(t s) is a smooth function of s and x(t 0) is the
endpoint of the reference trajectory. Notice that if ql(s) + q2(s) q-)-’, pi(s) O, then
the control variation changes the terminal time, e. In particular, the variations
a(s)x y(+s)x lengthen or shorten the reference trajectory.

A control variation a(s)x is said to be of order h at x x(t) if there exists an
e > 0 such that

d
(2.5) ds- a(O)x(t) 0

for ] 1,-.., h- 1 and It-t l < e. In particular, for h 1, there are no lower
derivatives for which (2.5) must hold and so every variation is of order at least one.
A control variation of order h is afortiori of order 1,..., h- 1. Because the
earlier derivatives are zero, it is the h derivative of x(te;s) which supplies the
necessary condition via (1.4). As we show in the next section, it is necessary to
require (2.5) to hold in a time interval around t so that the convexity assumption
for higher derivatives holds and the use of multipliers can be justified.

The high order maximal principle (HMP). Let u(t) be an admissible control
generating the trajectory x(t)= y(t-t)x for t[t, tel. If uO(t) minimizes
yo(x(te)) subject to the boundary condition yi(x(te))= 0 for i= 1,..., m, then
there exists a nontrivial adjoint variable A(t)= (Ao(t),’’- ,A,(t)) defined for
t [t, t ] and satisfying

(2.6) A (t) -A (t) .fl_0 f(x(t), u(t)),
Ox

0
(2.7) A(te)=Y’.Pi-;--yi(x(te)), where Uo_--<0,

Ox

(2.8) A(t)f(x(t), u)<--A(t)f(x(t), u(t))=0 V u 61,

and for every control variation a(s)x of order h at x(t),

dh

(2.9) A (t) a(O)x(t)<--_0.
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Conditions (2.6), (2.7) and (2.8) are the familiar PMP and (2.1), (2.6) and
(2.8) can be conveniently expressed in terms of the Hamiltonian, H(,, x, u)=
f(x, u), as Hamilton’s differential equation

(2.10) ___O H(A (t), x(t), u(t)),
0A

(2.11) )t ----H(A(t),x(t),u(t))
Ox

and the Pontryagin-Weierstrass condition,

(2.12) 0 H(, (t), x(t), u(t)) max H(X (t), x(t), u).

(Equations (2.8) and (2.12) are zero because Xo t.) A u(t) and x(t) for which
there exists a , (t) satisfying (2.6) and (2.8) are called an extremal control and
extremal trajectory. If u(t) interior I, then (2.12) implies

H(A (t), x(t), u(t)) 0(2.13)
Ou

and the Legendre-Clebsch condition

02
(2.14)

Ou 2 H(A (t), x(t), u(t)) <-O.

The new condition (2.9) is a generalization of the Pontryagin-Weierstrass
condition to control variations of higher order. It in turn leads to a generalization
of the Legendre-Clebsch condition for extremal trajectories which are singular in
the classical sense (i.e., (2.14) not of full rank). This is demonstrated in 5 and 6.

We have fixed the initial point x(t) x but there is a straightforward
extension of the HMP to problems where the initial point is only partially
constrained. In this case (2.6)-(2.9) still hold and, in addition, A (t) must satisfy a
transversality condition similar to (2.7) as in the PMP.

When applying the HMP it is highly desirable to choose a minimal realization
of the problem under consideration where y(x) (yo(x)," , Ym (X)) is considered
as the output map. (For the theory of minimal realizations of nonlinear systems,
see Sussmann [16].) The reason for this is that the less state dimensions there are,
the easier it is to find higher order control variations satisfying (2.5), and so the
more necessary conditions result. An example of just this point is given in 5.

3o Proof of the 1-1MP. We start by noting that the order of a control variation
can easily be shifted upward.

LEMMA 3.1. Suppose a (s)x is a control variation oforder h atx 1. Thenforany
integer k there exists a control variation a2(s)x of order h k at x whose h k
derivative is a positive multiple of the h derivative of a l(s)x and hence yields the
same necessary condition when used in (2.9) of the HMP.

Proof. Define a2(s)x a(sk)x. It is straightforward to verify that a2(s)x is a
control variation as in (2.4) and of order h. k with the h-k derivative as
described.



262 ARTHUR J. KRENER

To compute higher derivatives of control variations, it is convenient to let
them operate on smooth functions as a partial differential operator.

LEMMA 3.2. A necessary and sufficient condition for a(s)x to be a control
variation oforder h atx is thatforsome e > 0 and]orevery C real-valuedfunction
tp(x) defined in some neighborhood of x 1,

d
ds

p(a(O)x(t)) 0

for j 1,..., h 1 and It- tll < e. Moreover if a(s)x is of order h at x 1,

dh 0 1) dh
dsh (((0)xl)=x (0(x d- (0)xl"

Proof. The proof is straightforward.
CooWe next show that if all the controls involved are at t then it does not

matter whether a variation is made before, after or at x x(tl).
LEMMA 3.3. Leta (s)x be a control variation to u(t) oforder h at x and q(s)

be a polynomial in s such that q(O)= O. Define a new control variation a(s)x
2y(q(s))al(s)y(-q(s))x. Then a is also oforder h atx andfurthermore yields the

same necessary condition in (2.9) ]:or

dh dh

dsh o 2(O)x (O)x

Proof. Consider a2(s)x as a function of four variables,

a2(sl, sz, s3)x y(q(s3))al(s2)y(-q(sl))X,

where Sl s2 s3 s. Then for any Coo-function, by the chain rule,

(3.1)
d (1)ai a

k

s (az(olx) Y"
i, ], k OS 0,$’i2 0$

q(O2(O’ O, Olx)

where the sum is over all i, j, k _-> 0, +.j + k I. For any k define a Coo-function,

ak
O(x) Os--3 (Y(q(O))x)"

For small s there exists a t(Sl) near t such that

"y(-q(sl))xl x(t(Sl)).

1Since a (s)x is of order h at x for 1 _-<] _-< h- 1 and small Sl,

Oi ok ai
0S--’2 0S--3 0(02(S1’ O, 0)) OS (aa(O)r(--q(Sl))X OS( (O)x(t(s1))) O.
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So for 1 _<- _-< h 1, equation (3.1) becomes

ds’ (()x) -, -r=-, o( (0, O, O)x )
=o Os Os3

d (Y(q(O))’)’(-q (O))xl)

d 0(x) 0,
ds

since y(q(s))y(-q(s))x 1= y(q(s)-q(s))xl= y(0)xl=x 1. The same argu-
ments can be repeated at each x(t), It- tll < e to show a2(s)x satisfies (2.5) in an
interval around t 1.

Similarly evaluating (3.1) for h, we have

dh dh dh

((O)x) d-;g P(al(O)x +d-- P(T(q(O))’)’(-q(O))xl)

d
sa 0(a l(0)x 1). Q.E.D.

If the control u(t) is not continuous at 1, then the trajectory has a corner at
x and the effect of control variations on either side are different. By comparing
these differences one can deduce various corner conditions for optimality, but this
is a topic we shall not pursue any further. We refer the interested reader to Kelley,
Kopp and Moyer [8], Oabasov and Kirillova [2], McDanell and Powers [12] and
Maurer [13].

The next two lemmas are crucial to the HMP because they show that for
higher order control variations satisfying (2.5), one can "add" them and, in
particular, form convex combinations as required by the use of Lagrange multi-
pliers. First we deal with control variations made at the same point of the
trajectory.

LEMMA 3.4. Suppose al(s)x, a’(s)x are control variations to u(t) at
c,) be a vector ofx =x(t1) of order hi,"’, h, respectively. Let c (Cl,

nonnegative real numbers. Then them exists a family of control variations a (s; c)x
of order h (= the least common multiple {h}) such that

dh dh’
d (0; c)x’ c,, , (O)x

i=1

Moreover a (s, c)x is continuous in c for small s >-_ 0.
Proof. For notational simplicity, assume r 2; the general case follows by a

similar argument. Using Lemma 3.1, we can assume that h hi h, and using
Lemma 3.3, that both variations are made before x 1, for example,

/ka (s)x (pk(S))’’’y (pl(S))T(q(s))x.

Define a family of new variations

a(s; c)x yk (Pk (C I/hs)) yl(pl(C I/hs))OI2(C/hs )o/O(q(c
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Introduce parameters s s2 $3 S into c (S; C)X as in the proof of Lemma 3.3.
Then for any C-function q,

d ( \ i/h j/h k/h 0 0 Ok

ds---Tqg(a(O; c)xl)=\i,j, k)Cl c2 C10Sil OsJ2 0--k3 O(Ol(O’ O’ O’ c)xl)"

If 1 --< =< h 1, this reduces as before to

de (I) Oi Ol-i
ds q((O; c)x)= C l--i q(o(O, O, O; C)X 1)

i=O OS 0S3

d 1)C S(49 (0 (O)x O,

since c is of order h at x
For h we have

dh dh dh

dsh (ol(O’c)xl):Clsh O(oll(O)xl)’-C2sh O(Ol2(O)xl). Q.E.D.

If a control variation a(s)x of order h is made at x 1, then the result is a family
of trajectories whose locus of endpoints is given by

x(te; S)= T(te- t)o(s)x 1.
The first h- 1 derivatives of x (te’, s) are zero and h derivative is given by

dh 0 O(te(3.2)
Msh x(te" 0)= ’X "Y -tl)x sh a(O)x

This is applied to (1.4) to obtain (2.9) of the HMP, but first we must show that we
can "add" the effect of control variations made at differing times.

LEMMA 3.5. Suppose al(s)x,..., ar(s)x are control variations to u(t) at
x 1= x(ta), x r---- X(tr) of order hi,’", hr respectively. Let c (cl,.. ", Cr) be a
vector of nonnegative real numbers. Then there exists a family of admissible
trajectories indexed by small s >= 0 and c whose locus of endpoints is given by
x(te; S’, C) such that

d
dsY x(te; 0; C)= 0

for j 1,..., h- 1 where h least common multiple {hi} and

dh

(0 )dh’
(3.3)

ds
hx(te; O; c)=

i=1
ci X TO(te-ti)xi oli(O)x i.

Moreover x (t s; c) is continuous in c for small S >-_ O.
Proof. Using Lemma 3.4, we can assume that the t are distinct. For

simplicity, assume r= 2, t <t and hi h2 h. The general case follows by a
similar argument. Consider the family of trajectories whose locus of endpoints is
given by

x(te; S; C) TO(te t2)oz(cl/hs)TO(t2-- tl)ot(c /hs)TO(tl-- tO)x.
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Suppose p is a C-function at X --x(te). Then using the chain rule technique,

dl (i) i l--ii/h,(l-i)/h tp(x(te" 0; C))slqP(x(te; O; c)) Cl t’2 "-i l-i
i=0 OS 082

Let

ol-i
O(X) q9 (T0(t t2)a2(c/ho)y(te- tl)x).

Then O(x) is a Coo-function at x(tl). Since a is of order h, for 1 _-<i <h,

0

OS I[t(oll(c l/hO)x1) O"

Therefore if 1 _-< < h, then

d l/h Ol
dsl qP(x(te; 0; C)):C 2 osl2(t) TO(te t2))Ct2(c/hO)x2: 0

since a 2 is of order h. A similar argument proves (3.3). Q.E.D.
In light of this lemma, we define a cone K in the tangent space at x X(te) as

the convex hull of all vectors of the form (3.2). This cone is a measure of the
controllability at x available through higher order control variations made all
along the reference trajectory. The completion of the proof of the HMP follows
Halkin’s proof of the PMP [5] using a fixed point argument. Intuitively for u(t) to
be minimal, the cone K of controllability must be separable by a hyperplane from
the cone of L of directions which satisfy the boundary conditions and decrease Y0.
Formally L is defined to be the cone of all tangent vectors r at x such that

and for i= 1,. , m,

(X y0(xe)) "r <--0

THEOREM 3.6 (HMP). Suppose them exists no nontrivial ad]oint variable
satisfying (2.6)-(2.9). Then u(t) is not minimal.

Proof. If A e= (A,""", he) defines a hyperplane separating K and L in the
tangent space of xe, i.e.,

heT" 0 V ’K,

heT"O V "rL,

then define

0
A (t) A -X ’O(te t)x"

It is easy to verify that h (t) satisfies (2.6)-(2.9).
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On the other hand, if no such Ae exists, then it follows that there exists no
hyperplane separating K* and L* where these are the cones in im+l defined by

y (xe)7 7" E K

L* { ---x Y X 7" 7" E L}
(Recall that y (Y0," ", Ym) and the (m + 1) x (n + 1) matrixOy/Ox(xe) is assumed
to be of full rank, m + 1.)

From the definition of L, the cone L* is generated by the vector (-1,
00, , 0), hence this vector must be in the interior of K*. Suppose o- ,tr are

linearly independent vectors in K* such that

(-1,0,...,0)= Z tr.
i=0

0Let 7" ,. ., 7" be vectors in K such that

0 e)Ti"r
Ox

y(x

For some h and for each 0,..., m, there is a control variation a i(s)x
made at some x(ti) such that (3.2) equals 7"i. These variations can be used to
construct a family of admissible trajectories whose locus of endpoints is given by
X(te’, S’, C) as in Lemma 3.5.

0The vectors tr ,..., o, form a basis for R +1 and we use I1" to denote the L
norm relative to this basis, i.e. IIY. ditrill . Idil In particular if r >-0, C 0 and. ci 1, then [Ir ciill- r.

By Taylor’s theorem and compactness, there exists a constantMand an e > 0
such that

S Msh+CiO-(3.4) y(x(te; S; )) y(xe)--,
i=

for all {(s, c)" 0 <: s <: e, C 0, C 1}.
For some e > 0, let

and

{m }S r CiO’i" O<--_r<--el, C >--0 and Y’. ci 1
i=O

tr* (-el/2, 0,’." ,0).

Clearly tr* interior S
_
K*. Define a map g" S --> "+ by

g r CiO’i y(x(te; (h!r) 1/h" c))
i=
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Then from (3.4) we see that if e is small enough, there exists a constant M1 such
that

g r’=oCiO’i y(xe) +r 2 CiO’i <=M1rl+I/h.
i=0

Let N(o-*, 8) denote the closed ball of radius 8 around tr* in the norm II" I1.
Choose 8 small enough so that this neighborhood is contained in S and choose
0 < 0 < 1 such that

(3.5) Mlol+l/h(8 q-tS1/2) l+l/h < 08.

Since S is a convex set containing both 0 and N(tr*, 8), it follows that it
contains N(Otr*, 08). Finally define

( 0 ) ( )gl r citr =y(xe)+r citr-g r , citr +Otr*.
=0 =0

Clearly gl is continuous and we claim that gl maps N(Otr*, 08) into itself. To
see this, suppose r citri N(Otr*, 08). Then

(3.6)
gl r i=o CiO’i --00"*

By the triangle inequality,

y(xe)+r Cio"i--g r
=0 =0

<M1rl+l/h.

Putting these two inequalities together with (3.5) we obtain

g r CiO’i --00": < 08
i=O

as desired.
By the Brouwer fixed point theorem there exists an r CiO’i such that

gl r :r CiO"
i= i=O

or

g r , CiO’i =y(xe)+Or*.
i=0

This implies that x(te; (h! r) I/h’, c) is the endpoint of an admissible trajectory
satisfying the boundary conditions with a smaller Y0 value, hence u(t) is not
optimal.

Actually x(te) is not even a local minimum for we can choose 0 as close to 0 as
we choose subject to (3.5). Q.E.D.

4. Linear conditions for scalar controls. Suppose the control of (2.1) is a
scalar and th, set [l is a subinterval of . The PMP characterizes the optimal
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control as one where the Hamiltonian achieves its maximum, and therefore we
need only consider the endpoints of f and any interior points where (2.13) and
(2.14) are satisfied. Typically for each x and A this means considering only a finite
number of discrete values of u. However, there is at least one important exception,
namely, if the dynamics are linear in the control

(4.1) a0(x) + ual(x).

Systems like this frequently arise in diverse applications because the assump-
tion of linearity is so convenient in the formulation of mathematical models.
Moreover, in Example 4.2, we show how necessary conditions developed for (4.1)
can be easily extended to systems where the control enters nonlinearly.

If the dynamics is linear in u, then so is the Hamiltonian, H, and OH/Ou does
not explicitly depend on u. If it is not zero, then the extremal control is bang-bang,
i.e., at an endpoint of 1. However, if it is zero, then the extremal control is singular
since (2.14) is trivially satisfied. Moreover, (2.13) and (2.14) do not isolate the
extremal control, and so we must consider the behavior of the system over an
interval of time.

Suppose u(t) and x(t) are extremal for t s [t, e] for some choice of A (t).
Assume that for t (t 1, t2), u(t) is C and in the interior of 1, hence singular. The
Hamiltonian is given by

H(A, x, u) Aa0(x) + uAal(x),

and (2.13) reduces to

(4.2) 0__ H(A (t}, x(t), u(t)) A (t)al(x(t)) 0
Ou

for t [t, t2]. Since A (t) annihilates H, this implies that

(4.3) H(A (t), x(t), u(t)) A (t)ao(x(t)) 0

for t [t 1, t2].
It is straightforward to verify that given an arbitrary vector field b (x) and any

solution A (t) of the adjoint differential equation along the trajectory x(t) which is
generated by the control u(t),

d
(4.4) d-)t(t)b(x(t))=A(t)[ao, b](x(t))+u(t)A(t.)[al, b](x(t)),

where the Lie bracket is defined by

[ai, b](x)= xx b(x) ai(x)- -x ai(x) b(x).

Repeated differentiation of (4.2) yields

(4.5)
dk 0

dtk Ou
H(A (t), x(t), u(t)) 0
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for t It 1, t2] and k 0,. ,o. In particular,

(4.6) H(A (t), x(t), u(t)) A (t)al(x(t)) O,
Ou

(4.7)
dO

H(A (t), x(t), u(t)) A (t)[a0, al](X(t))= O,
dt Ou

d2 0

dt--- 0-- H(A (t), x(t), u(t))
(4.8)

(t)[ao[ao, a1]](x (t)) + u(t)A (t)[a l[a0, a1]](x (t)) 0,

d3 0
H(A (t), x(t), u(t)) (t)[ao[ao[ao, al]]](x(t))

dt30u
(4.9) + 2u(t)A(t)[ao[al[ao, al]]](x(t))+(u(t))zA(t)[al[al[ao, al]]](x(t))

+ fi(t)A (t)[al[ao, aa]](x(t)) O,

and so on. (In the next section we show that [ao[al[ao, a 1]]] [a[ao[ao, a a]]].)
One could also differentiate (4.3), however, no new conditions result.

Since u(t)interior f for t(t1, t2) we can, without loss of generality,
assume that u(t) 0 for t [t 1, t2] and + 1 fl by redefining a0 and al as ao + ual
and ca for some constant c and by choosing a slightly smaller interval [t 1, t2] and a
new 1) so that every admissible trajectory of the new system is also admissible for
the old. Then (4.5) simplifies to

dk 0
(4.10)

dt---- 0-- H(A (t), x(t), u(t)) (t)adk (ao)al(x(t)) 0

for t [t1, t2], where ad(ao)al al and adk(ao)al =[ao, adk-l(ao)al].
Equation (4.5) (or (4.10)) is sometimes referred to as the linear necessary

condition for an optimal control because it is precisely this condition that one
would obtain by linearizing (4.1) around the reference trajectory and considering
the effect of a sequence of first order control variations at properly chosen times.
This is the McShane-Pontryagin approach. Moreover in the case of (4.10), it
involves brackets of ao and a which are linear in the controllable vector field a 1.

Equation (4.3) is a constant necessary condition, i.e., it is zero order with
respect to the controllable vector field al of (4.1). It follows from the first order
control variations

(4.11) t(s)x y(+s)x
whose derivative applied to (2.9) yields

d
A (t) -s t+/-(O)x(t)= +A (t)(ao(x(t))+ u(t)al(X (t)))_--< 0.

Since Xo t, this condition is independent of (4.5) (or 4.10)). Therefore u(t) 0 is
extremal for t [t 1, t2] if and only if the rank of {adk (ao)aa(x(t)): k 0,. } is
less than n at each t It 1, t2]. (If the rank is n, then (4.3) and (4.10) supply n + 1
linearly independent conditions, and hence only A (t)= 0 satisfies them.)
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Notice that (4.10) was not obtained directly from a control variation, but
rather by differentiating (4.2). As a first application of the HMP, we would like to
develop (4.10) directly via high order control variations. In the next section, these
same control variations are used to obtain conditions which are quadratic in a 1.

Before we start, perhaps a word or two is required about terminology. When
we speak of high order control variations, the order is with respect to the
parameter s of the variations which is a time-like parameter. On the other hand,
when we speak of linear or quadratic conditions, we mean relative to the
controllable part of (4.1), i.e., of first or second order with respect to the integral of
the absolute variation in control. In particular, when u(t)= 0, these conditions
can be expressed using brackets which are linear or quadratic in al.

Suppose y+/-l and yo are the flows of u+/-l(t)= +/-1 and u(t) 0. Then define
the control variations

oI
+/-O(s)x ,+/- (s),O(--S)X.

Computing the first derivative,

d
ds

a+/-(O)x +/-al(x)=+/-ad(a0)al(x)

and so these control variations yield (4.10) for k 0.
Next define

(s)x y+/-l(s)y(s)y(s)y(-3s)x,
which are variations of order two, since (d/ds)a+/-l(O)x O.

To compute the second derivative, it is convenient to use the chain rule
technique and allow a +/-1

to operate on an arbitrary C-function q.

s2 q(a+/-l(0)x)= +4(aoal((x))-alao(p(x)))

+/-4[a0, al]q(x)= +/-4ad(ao)al(q(x)).

When applied to the HMP this yields (4.10) with k 1.
We generalize the above for any integer r _-> 1. Define

(s)x (s)(s)(s)(-s 2s’)x.

If s is replaced by s and s by s2, then the chain rule implies that at s 0,

ds Os2
dr+j (r -Jr- j)! ( (9r+j

(4.12) ds"+ j! 0S]2 0S1 t9S2

d2’+j (2r+j)!(2r+j)! o4 02

ds ’-----q j! j!2! Os Os+
(2r +j)! 0+ 0

r+]

t92r+j
4r"

for j=0,- -,r-1.
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From this it follows that

d
0

for j= 1,. -, r and

dr+l

dsr+l (O(tl(0)x)= +(r / 1)!ad(ao)al(tp(x)).

Of course ol(s)x does not lead to a new condition, but its generalizations
otk(s)x do, where for k odd,

Ol k(S)X ,)/+/- (()sr)0(S)!l(()sr)lO(s)
(4.13a)

l(S)Otl:t:l((kk)Sr)l(--ks--2ksr)x,
ahd for k even,

(4.13b)
1

Sr ’)tO(s)

,y(s),y+/-l((kk)sr),y(-ks-2ksr)x.
Using (4.12) it can be shown that

d
ds--7 0

for j= 1,. , r-1 and

dr+’ (r+j)’. (()li()(_l)j_iaoj_i(ao+(_l)lal)iao(O(x))dsr+] P(Otrk(O)x)= +
]! /=0 i=0

(r+j)l
(-1) C,kao aa((x)),=

i=o

where C.i,k 2k=o (--1)’ ()1.
In the next lemma we show that C,k =0 if 0_--</. <k and Ck,k (--1)kk! From

+kthis it follows that if k < r, then ar is a control variation of order r + k and

dsr+k p(tx2k(0)X) +(-1)k(r + k) Y, (__.xk-i k-i
1)" ao ala(q(x)),

i=o

which by induction on k can be shown to equal

+ (- 1)k (r + k)!adk (ao)a 1(p (x)).

Applying these variations to the HMP yields all the linear necessary conditions
(4.10).
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LEMMA 4.1.1 For any integers 0 <-_] <-- k, let

Cj,k- 2 (--1) j-

Then C,k 0 ifj < k and Ck,k (-- 1)kk
Proof. By the binomial formula,

(e- 2 (--
--o

e.

Expanding e It in a Taylor series yields

(e- 1) 2 Y’. (-1)-’
t

--o --o

For j 0,. , k 1, the coefficient of t on the left is clearly 0 so

()l)0= (-1)- _(-1
=o ]!- ]! c,.

The coefficient of t is clearly 1 so

=0 k-- k! c,. Q.E.D.

+/-1Remark. In constructing a:(s)x, we used the flows 3 of ao +/- a to obtain a
high order variation whose first nonzero derivative is a multiple of +ad (ao)a

ad (ao)(ao+a)). Suppose fl(s)x are control variations of order h along x(t)
whose h derivatives are b(x(t)) for some vector field b(x). Let fl(s)x

(pi(s)) (p(s))T(q(s))x, where T are flows of admissible controls
and pi(s)O for small s. Define. (s)x=T(pi(s))... T(p(s))x, and
construct a (s)x as in (4.13) but wth replacing T If k < r h, the result is a
control variation of order k + r. h whose k + r. h derivative is a multiple of
ad (ao)b(x(t)) along x(t).

Example 4.1. Consider the linear system

A (t)x + ub(t),

where x(0) x0 and lul 1. Introduce time as a state variable, x0 t, so that the
system is autonomous and define x (Xo, x) such that

ao()
A (xo)x

a ()
b (xo)

en
0

dxo

ad(ao)a()= d d d b(xo)+A(xo)b(xodxo b(xo)- A (xo) b (xo)- 2A (xo) dxo
e author is indebted to H. Hermes for the proof of Lemma 4.1.
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and so on. For autonomous systems this simplifies to

ad (ao)a()
(_1)Ab

Any bracket which is homogeneous of degree two or more in a() is
identically zero. Therefore OH/Ou and all its time derivatives are independent of
u, and (4.5) reduces to (4.10) regardless of whether u(t)= 0 or not.

Suppose the system is controllable, i.e., at each x there exists a k such that
ao(), a (),. , ad (ao)a (x) is of full rank, n + 1. Then there exists no nontrivial
A(t) satisfying (4.3) and 4.10) and any extremal control must be bang-bang,
lu(t)l 1. A similar analysis is given by Hermes and La Salle in 9 of [19].

Nxample 4.2. Consider a nonlinear system which is not necessarily linear in
the control

=(x, u),

where x(0)=x and u f. Given a reference control u(t)interior for
t (t a, t2), we can put the system in the form (4.1) by prolonging the control.
Define a new state x,/a u- u(t) and a new control v ,/a. Let x= (x, x,/a)
and

0
a(x)

On the hypersurface x,/a 0, which includes the reference trajectory of the
original problem

(4.14) ad (ao)a ()
)], (x

where C0(x)=[(x, u(xo)) and ]’, (x) (O/Ou)C’(x, u(xo)). Notice that prolongation
introduces a new linear direction a (x(t)) and shifts the other linear directions by
one -ao factor (4.14). In particular, if the original problem is linear in the control,
2 o(x) + u[, (x), and u(t) 0, then prolongation essentially shifts ad-(o)’, to
--adk(ao)al.

Consider the necessary conditions (4.3) and (4.5) for the prolonged problem
where k=(A, An+l) and It(k, x, v) =k(ao(x)+val(x)). The reference control is
v(t)- 0 and for k 1,

__0 lt(x(t), x(t), v(t)) x(t)a(x(t)) 0,
Ov

which implies that A,,+l(t)= 0, i.e., the prolonged adjoint variable lives on the
original state space.

For k > 1,

dk t9
0 rl(X(t), x(t), v(t)) k(t)adk (ao)a(x(t))

(4.15) -A (t)adk-l(fo)fu(x(t))
dk-1 0

H(A (t), x(t), u(t)),
dtk-1 Ou
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and so prolongation also shifts, by one time derivative, the linear necessary
conditions of the original problem. Moreover (4.3) for the prolonged problem
reduces to (4.3) for the original:

0 H(k(t), x(t), v(t))= k(t)ao(x(t))

A (t)f(x(t), u(t))
H( (t), x(t), u(t)).

Prolongation increases the dimension of the state space by one, but also
introduces linear controllability in that direction (al(x(t))) along the reference
trajectory, so the codimension of linear controllability remains constant, and
extremal trajectories remain extremal. Prolongation can also be viewed as
restricting the class of admissible control variations. In the original problem the
variation in u was required to be piecewise Coo; in the prolonged problem the
variation in u is continuous and piecewise C. It is interesting to note that this
smaller class yields the same necessary conditions for u(t) interior . This is a
consequence of the infinite differentiability of the original problem and might not
hold if it were only finitely differentiable.

Perhaps a word or two about the form of the control variations ak(s)x is in
order. They somewhat resemble the variations of Kelley, Kopp and Moyer [8].

+/-kThe derivatives of ar (s)x can be conveniently thought of as polynomials in the
+/-1 3,0noncommuting variables a0 and al. Parametrizing y by s and by s has the

following net effect; one must differentiate r times to obtain an a factor, but only
once for an a0 factor. This allows us to control the relative degrees of a0 and a 1.

+/-1The binomial coefficients and signs of y give ak(s)x the appearance of a
kth order difference operator where 3,

0 is the shift operator and 3,+/-1 are the
positive and negative evaluation operators. Needless to say, this is no coincidence
since adk (ao)al(x) is precisely the kth time derivative of al(x(t)) in any coordi-
nate system where ao(x) is a constant vector field. There are numerous other kth
order difference operators and if one were to use them in an analogous fashion as
models for constructing high order control variations, then the same necessary
conditions would result.

It is not surprising that these necessary conditions can be expressed in terms
of brackets of a0 and a for, as is well known [10], these brackets span all the
directions in which the system (4.1) can evolve. However, it is a bit surprising that

+/-kthe k + r derivative of te should be exactly equal to a bracket of a0 and al when
viewed as a formal polynomial in a0 and a 1. There is a fundamental reason for this.
Consider the real algebra of all formal polynomials in two noncommuting
indeterminates, a0 and a 1. The bracket is defined as before, [ao, a 1] aoa a ao.
Then certain of these polynomials can be constructed from a0 and a via
bracketing and forming linear combinations. Such polynomials are called Lie
elements and they are characterized by Friedrich’s criterion (see Jacobson [6,
p. 170]) which, in our present context, can be described as follows. A formal
polynomial in a0 and al is a Lie element if and only if whenever a0 and al are
replaced by arbitrary Coo-vector fields, the result is a first order partial differential
operator on smooth functions, i.e., it involves only the first partial derivatives of
the functions.
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+/-kSince the first r + k- 1 derivatives of a are zero, Lemma (3.2) states that
the r + k derivative is a first order operator. Moreover, this is independent of the
choice of a0 and al, and so this derivative must be a Lie element. Because the
degree of homogeneity in ao and a is determined by the parametrization, the r + k
derivative can only be a multiple of adk(ao)al, the only bracket which is
homogeneous in ao and a of the appropriate degrees.

A first order partial differential operator is characterized by the Liebnitz rule
for the first derivative of a product of functions. (Friedrich’s criterion is merely an
abstract form of this.) The following will prove useful in the next section.

LEMMA 4.2. Suppose a (s)x is a control variation oforder h atx 1. Then the first
2h 1 derivatives of a (s)x are first order partial differential operators on smooth
functions at x 1.

Proof. By Lemma (3.2) the first through h derivatives are first order operators
at x 1. As for the others, let p(x) and ,(x) be smooth functions around x 1. Then by
the generalized Liebnitz rule for higher derivatives,

-S (" ((0)xl) (0((0)xl)
j--i

1).
i=O si sj_ (OI. (O)x

Since a(s)x is of order h at x 1, only two terms of the right side are possibly
nonzero if 0 <j < 2h, so this reduces to the Liebnitz rule for first derivatives,

d 1).SS/" C/P" t(Cg (0)X 1) (9(X 1) dJ d
(a(0)x 1)+s p(a(O)x )(x Q.E.D.

COROLLARY 4.3. Suppose a (s)x is a control variation which is oforder h atx
independent ofthe choice ofao and a 1. Then the first 2h 1 derivatives must be Lie
elements when viewed as formal polynomials in the indeterminates ao and a 1.

Although the control variations considered in this section have not led to new
necessary conditions, they are useful because their higher derivatives do, as we
shall see in the next section. Another important aspect of these variations is that
they allow us to make instantaneous control modifications to move in any linear
direction. This property will allow us to cancel out undesirable lower order effects
of other variations via Lemma 3.4, and thus arrive at higher order variations. We
formalize this property in the following.

LEMMA 4.4. Suppose Co(t)," , Ck (t) are bounded C-real-valuedfunctions
for t (t 1, t2). Define a vector field along x(t) by

k

b(t) ciadi(ao)al(x(t)).
i=0

Then for any h > 2k, there exists a control variation fl(s)x of order h such that

dh

dsh fl(O)x(t)= b(t)

for t (t 1, t2).
Proof. Proceed by induction on k. If k 1, choose a constantc large enough so

< (t 1, t2). Let uthat Ico(t)l=c for t l(t) co(t)/c and construct the control varia-
+0Uons a h (S)X as before using ao+u a instead of ao+al. This is a control
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variation of order h and

dh

dsh a-(O)(x(t)) h !ad(ao)(ulal)(X(t))

h !ul(t)al(x(t))
h!

=mCo(t)al(x(t)).
C

The desired variation is (s)x a((c/h !)I/hs)x.
Now suppose the lemma is true for k 1. Then define uk (t) Ck(t)/c where

c -> Ic(t)l for t (t 1, t2). Construct a+k(s)x using ao+(--1)kuka instead of a0 + a
where r h- k > k. This is a variation of order h and

dh

h ol;k(O)(x(t)) h !adk (ao)(ukal)(X(t))
ds

h !u k (t)adk (ao)al(x(t)) + linear combination

ofadi(ao)al(x(t)) fori=0,...,k-1.
kDefine [k(s)X--Otr((/h!)l/hs)x. By induction there exist k-I(s)x of order h

such that

dh dh

[3 ksh flk-(O)x(t): b(t)-sh (O)x(t).

The desired variation is obtained by "adding"/3 k and/3k- as described in Lemma
3.4. Q.E.D.

Remark. It is important to note that in the construction of these variations,
the flow of ao+/-uial is parametrized by a multiple of s where r=h-i for

0,..., k. Therefore should we continue to differentiate, the first derivative
that could possibly involve a term quadratic in a is the 2(h- k) derivative.

COROLLARY 4.5. Consider the nonlinear system ofExample 4.2 which is not
necessarily linear in the control. Suppose u(t) is Co and in the interior of f for
t (t 1, t2). Given any bounded C-real-valued,functions Co(t)," ", Ck(t) define a
vector field along x(t) by

k

b(t) , ciad (fO)fu (x(t)).
i=0

Then for any h > 2k + 2, there exists a control variation fl (s)x of order h such that

dh

ash fl(O)x(t)= b(t)

for (t, te).
Proof. Prolong the problem as before and apply Lemma 4.4.

5. Quadratic conditions tot scalar controls. For (4.1) assume that u(t) 0
interior I is an extremal control for [t- ] < e. Then (2.14) is trivially satisfied so
that u(t) is singular. Moreover since u (t) is an extremal control, (4.3) and (4.10)
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are satisfied for some A (t). Because these are equality constraints rather than
inequality constraints, replacing A (t) with - (t) does not alter them. Therefore
they do not distinguish between minimizing and maximizing singular extremals.

To clear up this ambiguity, quadratic necessary conditions were developed by
Kelley [7], Kopp and Moyer [9], Kelley, Kopp and Moyer [8], Tait [17], Goh
[3], [4], Robbins [14], [15] and others. We refer the reader to the survey articles of
Gabasov and Kirillova [2], Bell [1] and Jacobson [18] for extensive bibliographies.
These conditions are sometimes referred to as the generalized Legendre-Clebsch
conditions (GLC) because they resemble the Legendre-Clebsch condition (2.14)
when expressed in terms of the Hamiltonian. Generally the proofs of the GLC
ignore the problem of terminal constraints either by assuming there are not any, or
by a normality assumption, a sometimes vague concept in the literature. Essen-
tially, normality means that there exists sufficient local controllability around the
reference trajectory to meet any terminal constraints that might be imposed
without affecting the validity of the GLC. We give a more precise definition later.

In this section, using the HMP, we develop quadratic necessary conditions
which generalize the GLC to problems with terminal constraints without using a
normality assumption.

Let D denote the linear space of Lie elements which are homogeneous of
degree and j in the indeterminates a0 and al, respectively, and let

Di span U D,
j=0

D=span 1,3 D,
i=0

D=span U D.
i,j=O

Let D(x)(Di(x),DJ(x),D(x)) denote the linear subspace of a tangent
vector at x obtained by substituting the vector fields of (4.1) in the Lie elements
and evaluating at x.

Suppose u(t)= 0 and x(t) are a singular extremal control and trajectory on
It1, t2]. Following Robbins [15], we say that the control is singular ofdegree h + 1
on this interval if h is the smallest integer such that for some t (t 1, t2),

[al, adh(ao)al](X(t)).Dl(x(t)).

The next theorem describes the quadratic necessary conditions for such a control
to be minimal.

THEOREM 5.1. Assume that u(t) and x(t) are defined for (4.1) on [t, te].
Suppose u(t) 0 interior 1 on the subinterval (t, t2). If u is singular of degree
h + 1 on this subinterval and h is finite, then h is odd. If u(t) is minimal, then there
exists a A (t) satisfying the PMP on [t, ] such that

(--1)(h+l)/2A (t)[al, adh(ao)al](x(t)) <-0

on the subinterval it 1,/,2].
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Note that the theorem does not imply that the degree of singularity is finite,
just that if h < o, then h must be odd, whether the extremal trajectory is minimal
or not. Later we give an example where the degree of singularity is infinite. There
may exist several subintervals of [t, e) on which the degree of singularity varies.
Before proving the theorem, we state a generalization and a corollary which do
not assume linearity in the control or u(t)= 0. First we make a generalized
definition. Suppose u(t) and x(t) are a singular extremal control and trajectory
for (2.1) on [t 1, t2]. The control is singular o[degree h + 1 on this interval if h is the
smallest integer for which there exists A(t) satisfying the adjoint differential
equation (2.6) and the constant and linear necessary conditions

(5.1) H(A (t), x(t), u(t)) O,

dk
0
H(A (t), x(t) u(t)) 0(5.2)

dtk Ou

for k 0, , o on any nontrivial subinterval of It 1, 2] such that for some in this
subinterval,

0 dh+l 0
H(A (t), x(t), u(t)) O.

OU dth+l Ou

Notice that a control could be singular of degree h + 1 0 or
THEOREM 5.2. Assume that u(t) and x(t) are defined for (2.1) on [t, tel.

Suppose u(t) interior on the subinterval (t 1, t2). If u is singular ofdegree h + 1
on this subinterval and h isfinite, then h is odd. Ifu(t) is minimal, then there exists a
A (t) satisfying the PMP on [t, ] such that

(__l)(h+l)/2 0 dh+ 0

Ou dth+10u H(A (t), x(t), u(t)) <-_ 0

on the subinterval [t 1, t2].
A singular extremal control u(t) interior and trajectory x(t) are normal

on (t 1, t2) if for each t (t 1, t2) there exists only one linearly independent A (t)
satisfying the constant and linear necessary conditions (5.1) and (5.2). Since
x (x0, , x,) this is equivalent to the assumption that the variations +/-(s)x of
(4.11) and k(s)x Of (4.13) supply exactly n-dimensional local controllability at
each x(t) for t (t 1, t2).

In particular for (4.1) and u(t) 0, this is equivalent to the assumption that
the dimension of Dl(x(t)) is n 1 for each t (t 1, t2).

COROLLARY 5.3 (Kelley, Kopp and Moyer [8]). Assume that u(t) and x(t)
are defined for (2.1) on [t, te]. Suppose u(t)6 interior 1 and is normal on the
subinterval It 1, t2]. Ifu(t) is minimal, then there exists a A (t) satisfying the PMPon
[t, which is unique to the scalar multiple by normality. Let h be the smallest
integer such that

0 dh+l 0

OU dth+10u H(A (t), x(t), u(t)) 0
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for some t (t 1, t2). If h is finite, then h is odd and on the subinterval [t 1, t2],

(__l)(h+l)/2 0 dh+l (9

Ou dth+10u H(A (t), x(t), u(t)) <- 0

must hold.
Proof. We now prove Theorem 5.1. In Example (5.2) we show that Theorem

5.2 is equivalent to Theorem 5.1 by prolongation. The corollary follows
immediately from Theorem 5.2.

Except for a nowhere dense set, every t (t 1, t2) is contained in an open
interval where Dl(x(t)) is of constant dimension with a basis consisting of

{al(x(t)), ad(ao)al(x(t)), ad (ao)al(x(t))}

for some I. Without loss of generality we can assume that the open interval is all of
(t 1, t2), for at other points the theorem follows by taking continuous limits.

By repeated application of the Jacobi identity for Lie elements, [bi[bj, bk ]]
[[bi, bj]bk]+[b[bi, Ok]], and the skew symmetry relation, [6i, bi]= -[b, 6i], it is
easy to see that

l--1

[al, adi(ao)al] Y (-1)i[ao[adJ(ao)al, adi-i-l(ao)al]]
(5.3)

i=0

adi-l+ (- a)[ad (ao)al (ao)a 1].

If is even and i/2, then skew symmetry implies that the last term on the right
side is zero so

(i/2)--1

(5.4) [al, adi(ao)al] Y (-1)i[ao[adi(ao)al, adi-J-l(ao)al]].
/=0

From (5.3) and (5.4) it can be shown that a basis for the linear space D2 of Lie
elements consists of

(5.5a) {[al, adi(ao)al], adZ(ao)[al, adi-Z(ao)al], adi-l(ao)[al[ao, al]]}

if is odd, and

(5.5b)
{[a0[al, adi-l(ao)al]], ad3(ao)[al, adi-3(ao)al], adi-l(ao)[al[ao, al]]}

if is even.
Now suppose that u is singular of degree h + 1, i.e.,

[al, adi(ao)al](x(t))Dl(x(t))
on the subinterval It 1, /2] for 1,. , h- 1, but not for h. Bracketing both
sides with a0 yields

(5.6) adi(ao)[al, ad (ao)al](X(t)) Dl(x(t))
for/" 0, , c, 1,- , h 1 and [t 1, t2]. In particular,

(5.7) O2 (x (t)) O l(x (t))

on [t 1, t2] for i= 1,. , h-1.
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If h is even, (5.5b) and (5.6) imply that [al, adh (ao)al](X(t)) Dl(x(t)) which
contradicts the definition of h, hence h must be odd. Notice also that (5.6) implies
that the only bracket which keeps (5.7) from being true for i=h is
[a, ad (ao)al](X(t)).

To prove the rest of the theorem we must construct an appropriate high order
control variation. We start with a+k(s)x for any k => (h + 1)/2, r > k and r > h. We
have already computed the first k + r derivatives of this variation and we know by
Corollary 4.3 that the first 2(k + r)- 1 derivatives are Lie elements. We wish to
study the jth derivative where k + r <j -< h + 2r _-< 2(k + r) 1.

It is easy to see that this variation causes no displacement in the time direction
and so the ]th derivative cannot possibly contain an a0 term. Moreover, from the

+kparametrization of the components of ar (s)x we know that the jth derivative is a
sum of elements of D if r_-<j<2r and a sum of elements of D and D2 if
2r_--<j<3r.

We already have control variations in the directions of Dl(x(t)) so we are
only interested in the part of the/’th derivative that lies in De for 2r < --< 3r. Again
from the parametrization we know that the part from D is more precisely from
Df_, and hence a linear combination of (5.5). Moreover from (5.7) we know that

D_2r(X(t)) Dl(x(t))
for 1--<]- 2r < h, so the first derivative that could possibly furnish a new test is
] h + 2r. (Note that by the choice of r and k, it follows that ] < 3r and ] < 2(k + r)
as desired.) This derivative can be expanded in the basis (5.5) but we are really
only interested in the coefficient of [a l, adh(ao)al] for this is the part of the
derivative that lies outside Dl(x(t)).

To compute the coefficient of [a, adh (a0)al], we need only compute the
coefficient of the monomial alahoal in the ]th derivative for this is the only bracket
of (5.5) that contains that monomial. We defer to a later lemma the computation
that shows that the sign of this coefficient is (--1)(h+)/2.

In summary, we know the following. The first k + r- 1 derivatives of a +k(s)
(X(t)) are zero, derivatives k + r through h + 2r- 1 lie in Dl(x(t)) and the h + 2r
derivative consists of some parts from D(x(t)) plus a positive multiple of
(--1)(h+1)/2[a1, adh(ao)a](x(t)). To complete the proof we must make a+k(s)x
into a control variation of order h + 2r at x(t) by canceling out all the lower
derivatives for t (t 1, t2).

To do this we must apply Lemma (4.4) using the fact that
{al(x(t)),..’, ad (ao)a l(X (t))} spans Dl(x(t)). The lemma allows us to construct a
control variation of any order >2/whose first nonzero derivative is any vector
field along x(t) which lies in D(x(t)). Therefore we must choose k and r such that

+kk + r > 21 and by adding" new variations to a (s)x, we can cancel out its lower
derivatives from k + r through h + 2r- 1. Call the resulting variation (s)x.

We must be careful in doing this, for it is possible that the sign of
[al, adh(ao)al](x(t)) in the h + 2r derivative of (s)x differs from its sign in the

+kh + 2r derivative of a (s)x, and this would change the test. Recall that the
parameters of the flows of ao+a in a+k(s)x are s and, on the other hand, the
variations of Lemma 4.4 used to cancel derivatives r + k through 2r + h- 1 are
composed of the flows of ao + uia r/k-Iparametrized by s or higher powers of s.



HIGH ORDER MAXIMAL PRINCIPLE 281

So, if k > 1, then these "added" variations cannot possibly change the coefficient of
[al, adhaoal](X(t)), although it could change the part of the h +2r derivative
which lies in Dl(x(t)). However this is not important for the test since (4.10)
implies that A (t) annihilates Dl(x(t)).

In closing, we emphasize that this necessary condition is an inequality
precisely because the bracket involved is quadratic in a l. If we used a-g(s)x
instead of a+g(s)x as a base for our high order variation, the same necessary
condition would result because this is equivalent to replacing a l(x) by -al(x)
which leaves invariant the brackets quadratic in al. Using either of these varia-
tions, we have controllability in the direction (--1)(h+1)/2[a1, adh(ao)al](X(t)), but
not its negative. Q.E.D.

LEMMA 5.4. Let Ck,h be the coefficient of alahoal(qg(x)) in

d2r+h
dS2r+h’qg(Ot+r k(O)x)

where k > (h + 1)/2, r > k and r > h. Then

Ck,h ----0 if h 2, 4, ,2k-2

and

(_ 1)(h+l)/2..t.k,h >0
Proof. By direct computation,

ifh= 1,3,-.., 2k-1.

Ck,h=(2r+h)! }’. (--1)i+J()() (]-i)h
O<=i <j<--k h

If h > 0 and is even, then

i,j=0 /" h!

Expand (e-t- 1)k (et- 1)k by the binomial formula:

(e-’--l)k(et--1)k= (-1)i+’()()e (i-ilt.
i,j=O

Expand e(]-i)t in a Taylor series"

e-t- 1)g(el- 1)
g Z (-1)’+

(J- i)h th"
h=0 i,j=O h!

For h 2, 4,. , 2k- 2, the coefficient of h on the left side is clearly 0 so

k {k{k’x (j--i)h 2

i,=0 j h! (2r + h)!

and the first claim of the lemma has been shown.
If we assume h is a real variable, then for fixed k, Cg,h is a sum of k

exponentials. Therefore it has at most k 1 zeros, which we have just shown to be
h 2, 4,. , 2k- 2. It follows that Cg,h alternates signs at h 1, 3,. , 2k- 1
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and, in particular, the sign of Ck,2k_ must be the same as the coefficient of the
largest exponential which is (-1)k (-1)(h+1)/2. Q.E.D.

Example 5.1. Consider the problem of minimizing x4(te) subject to x= 0,
xo(te) 1 and

o 1, 3 x/2,
21 U, 34 -x2/2,

32 XI

Clearly the trajectory determined by u(t) 0 is not optimal, but let us apply
the previous theorems and corollary. This trajectory, x(t)=(t, 0, 0, 0, 0) for
tel0, 1], is a singular extremal since A(t)=(0, 0, 0, 0,-1) satisfies the PMP
(uniquely to scalar multiple) and 02/Ou2H O.

A straightforward calculation shows that [ai, ad(ao)aa](x(t))D(x(t)), so
the degree of singularity h + 1 2 and we apply the test

-A (t)[al, ad(ao)al](X(t)) <-_0

which is trivially satisfied. Therefore Theorem 5.1 does not rule out u(t)= O.
To understand the relationship between them, let us apply the other theorem

and corollary. For some t [0, 1] (in fact, every t), the adjoint vector/z(t)
(0, 0, 0, 1, 0) satisfies the necessary conditions (5.1) and (5.2) and the adjoint
differential equation on [0, 1]. For any [0, 1],

Od20
H((t), x(t), u(t)) O,

Ou dt20u
so again h + 1 2 and Theorem 5.2 only allows us to test if

Od20
H(A (t), x(t), u(t)) <-- O,

Ou dt Ou

which of course is trivially satisfied.
As for Corollary 5.3, it does not apply since the trajectory is not normal

(dimension of Dl(x(t)) is 2 < n 1 3).
These quadratic necessary conditions failed to rule out an obviously nonmini-

mal (in fact, maximal) trajectory because the problem was not given as a minimal
realization (see Sussmann [16]). We are only interested in Xo(te) and Xn(te), SO we
define y(x)= (y0(x), yl(x))= (x4, x0) as our output. It is clear that the x3 coordi-
nate is superfluous to the input-output description of the problem and may be
dropped. Then [a, ad(ao)al](X(t))= 0 and so h + 1 4. Since

A (t)[a, ad3(ao)a](x(t)) 1 0,

the trajectory is nonoptimal. Similarly, when applying Theorem 5.2, we find h 3
and the corresponding test rules out u(t) 0. Moreover since the dimension n + 1
of the state space is now 4 rather than 5, and the dimension ofD l(x (t)) is still 2, the
trajectory is normal by the comments following Theorem 5.2. Corollary 5.3 also
rules out the trajectory.

Notice that if an additional terminal constraint, x3(te) --0, is added to the
original problem, then the output map must be expanded to include x3 and this
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coordinate cannot be eliminated. Therefore the quadratic necessary conditions no
longer rule out the control u(t)= 0, but this is as it should be for this control
generates the only trajectory satisfying the terminal constraints.

Example 5.2. Once again consider a nonlinear system which is not necessarily
linear in the control as in Example 4.2. Prolong the system as before by
introducing new state and control variables. On the hypersurface Xn+l 0, which
includes the reference trajectory

[al adh(ao)al](X) (fo)fu,.(x)-2 adh-2-i(fo)[fu, adi(fo)fu](X)
i--0 0

when f0, fu are as before and fu.(x)= (O2/Ou2)f(x, u(xo)). This shows that the
GLC for h 1 of the prolonged problem is equivalent to the Legendre-Clebsch
condition of the original.

If the original problem is linear in the control, /=fo(x)+ uf (x), and u(t)
0, then the prolongation shifts D_2(x(t)) to Dh2(X(t)). It also shifts the GLC for
h-2 to the GLC for h; the lower order GLC is satisfied with equality and
therefore multiplication by ,k(t) cancels all but A (t)[f, adh-2(fo)f](x(t)) on the
right side of (5.8).

Prolongation can be used to show that Theorem 5.1 implies Theorem 5.2 for
an arbitrary nonlinear system (2.1). A straightforward calculation shows that for
h__>l.

0 dh-1 O
H(A (t), x(t), u(t))

Ou dth-10u
h-2

A (t)adh-l(fo)fu,u(X)+ Y. A (t)ad (f0)[f, adh-2-i (fo)fu](X(t))
i=0

-Jr (t)[a 1, ad
h (ao)a 1](x(t)).

Many proofs of the GLC are based on the reverse of prolongation. In the
literature this is known as a "transformation of control variable" or "passing to
the accessory minimum problem". By using the integral of the old control as the
new control variable, the GLC for h is converted into the GLC for h-2.
Repeated application reduces the GLC for h to the Legendre-Clebsch condition
which has been previously demonstrated. The principal difficulty in applying this
technique is that in effect, one is dropping the dimension of the state by changing a
state variable to a control variable. Another way of looking at this is to say that one
is allowing impulse controls. One must justify the claim that necessary conditions
developed using this wider class of controls are also necessary conditions for the
original class. These problems are usually ignored in the literature and instead
normality is assumed to be sufficient to overcome any difficulties that arise in this
fashion and also to meet the terminal constraints.

Example 5.3. To see that the degrees of singularity h + 1 can be infinite,
consider the problem of minimizing x2(te) subject to x(0)= 0, Xo(te) 1, lul--< 1
and

-/o 1, i2 x/6,
l=U+X2

1-
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A straightforward computation shows that along the trajectory x(t)= (t, O, O)
generated by the control u(t)= 0 for the adjoint variable A (t)= (0, O,-1),

dh 0

dth Ou
H(A (t), x(t), u(t)) 0

and

odho
OU dth Ou

(t), x(t), u(t)) o

for all h. Therefore this trajectory is a singular extremal, and the quadratic tests
are inconclusive. To show the nonoptimality of this trajectory, the HMP must be
used to construct a necessary condition which is particularly suited to the problem
at hand, i.e., a cubic or higher test.

Let tz+(s)x and cz (s)x be defined by (4.11) and (4.13) respectively, such that

d
+/-(0)x-- =t: (1, 0, 0),

ds
a

d
"7(s)x + (o, o),

+/-l(s)x. It is easy to show that this is aand so the trajectory is normal. Consider a
variation of order two and

d2

ds-- a=l(s)x + 4[a0, all(x),

4-1but this bracket is zero along x(t). Therefore; in this case, a are of order at least
+/-13. Computing the next derivative which also must be a Lie element (since tr is of

order 2 for all ao and al),

d3

+a(s)x :t:6[a0[a0, al]](x)- 10[al[a0, aa]](x).
ds 3 t

The first of these brackets is zero and the second is (0, -2, 0) along x(t). Therefore
this derivative can be canceled by "adding" tr-(21/3s3/6)x via Lemma 3.4. Call
the resulting variation fl+(s)x; it is of order 4 along x(t). Because of the

+0 +/-1parametrization of a it follows that the fourth derivatives of/3
+/- and a are

identical. This derivative is not a Lie element, but it is in the span of D(x(t)). By
direct computation,

d4

ds---z B+/-(s)x +/- (0, 0, 6).

Applying this to the HMP yields the nonoptimality of u(t)= O.
This is actually a third order test because it is a multiple of [al[al[a0, a 1]]]

x)= (0, 0, 1) which is cubic in al. A similar conclusion can be obtained by the
method of Hermes [20].

This example demonstrates how one constructs necessary conditions which
are adapted to a particular problem. First one applies the standard linear and
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quadratic tests developed in the last two sections. If these are inconclusive, i.e.,
they are satisfied with equality rather than strict inequality, then one must
construct cubic and higher tests ad hoc. The basic building blocks are the family of

+/-kvariations ar (s)x. One works with as small a k and r as possible and considers the
higher derivatives. If these can be canceled using linear or quadratic controllabil-
ity, then one "adds" the appropriate variations to do so. Higher derivatives are
considered and hopefully a definitive test is eventually realized.

6. Quadratic conditions for vector controls. In this section, we generalize the
results of the last to a system with vector controls,

(6.1) : ao(x) + Z ua(x),
i=1

where u (ua,..., u) is constrained to lie in l, a subset of with nonempty
interior.

By fixing all but one of the controls and varying the other, one obtains the
previously discussed linear and quadratic necessary conditions for each control.

These are the same linear necessary conditions involving (dh/dth)(O/Oui)H
(or if u(t)= O, adh(ao)ai) for 1,-’’, l, and the same quadratic conditions
involving (c3/c3ui)(dh/dth)(c3/c3ui)H (or if u(t) O, [ai, adh (a0)ai]) for 1, , I.
There are, however, new quadratic necessary conditions associated with the
mixed partials (O/Oui)(dh/dth)(O/Ou)H (or if u(t)= 0, [ai, adh(ao)a]) for i,f=
1,-..,1.

These conditions were first developed by Goh [4] using a sequence of
accessory minimum problems under an assumption of normality. We use the
HMP to prove these results and extend them to problems with terminal con-
straints without normality.

Let D denote the linear space of Lie elements which are homogeneous of
degree in the indeterminate a0 and homogeneous of degree ] in the vector of
indeterminates (a,. ., at), and let Di, D, D, D(x), Di(x), D (x) and D(x) be as
before. Since there is more than one controllable vector field, there are some
significant differences. For example, D which previously was {0} since [a 1, a]-
0, now contains the nontrivial Lie elements [a, ai] where ].

Suppose the reference control is u(t)= 0. Associated with each control
there is a degree of singularity hi / 1 defined as before; hi is the smallest integer
such that for some t 6 (tx,/2),

[ai, adh’(ao)ai](x(t)) Dl(x(t)).

We wish to emphasize tile fact that Dl(x(t)) contains adk (ao)aj(x(t)) where ] i,
but the arguments of Theorem 5.1 are still valid, so that if hi < o, it must be odd.

THEOREM 6.1. Assume that u(t) and x(t) are defined for (6.1) on [t, tel.
Suppose u(t)=0interior II and each ui is singular of degree hi + 1 on the
subinterval t 1, t2). ffu(t) is minimal, then there exists a A (t) satisfying thePMPon
[t, t ] such that on the subinterval [t, t2],

(6.2) A (t)[ai, adk (ao)aj](x(t)) 0
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for k 0,. , (hi + hj)/2-1, 1 <-_ i, j <-_ I. Moreover, if hi < for 1,. , k <-_ l,
then the k k matrix whose i, ] entry is

(6.3) (- 1)%+1/2A (t)[ai, adh’+h)/e(ao)aj](x(t)),
where 1 <-_ i, ] <- k must be symmetric and nonpositive definite.

The following theorem generalizes the above to an arbitrary nonlinear
system (2.1) where u(t) is not necessarily zero. Recall that the control ui is
singular of degree hi + 1 on It 1, 2] if hi is the smallest integer such that for some

(t 1, t) there exists A (t) satisying the adjoint differential equation (2.6) and the
constant and linear necessary condition

(6.4) H(A (t), x(t), u(t)) O,

dk 19
(6.5) dt---# 19--i H(A (t), x(t), u(t)) 0

for k 0,. , oo and ] 1, , on any nontrivial subinterval of It 1, te] such that
for some t in this subinterval,

19 dh+l
19
H(A (t), x(t), u(t)) # O.

19Hi dth +1 19Hi

Again we wish to emphasize that (6.5) must hold for every u and if h < c, it must
be odd.

THEOREM 6.2. Assume that u(t) and x(t) are defined for (2.1) on [t, te].
Suppose u(t) interior and each ui is singular ofdegree hi + 1 on the subinterval
(t 1, t2). Ifu(t) is minimal, then there exists a A (t) satisfying thePMPon [t, t such
that on the subinterval [t 1, re],

19 dk 19
H(A (t), x(t), u(t)) 0

19ui dtk 19u
for k 0," ", (hi + h)/2, 1 <- i, j <- I. Moreover if hi < az for 1,. , k <-_ l, then
the k x k matrix whose i, ] entry is

(_l)(h+l)/2 19 d(h’+h)/2+1 19

19ui dth’+h)/+l 19u
H(A (t), x(t), u(t)),

where 1 <-_ i, j <- k, must be symmetric and nonpositive definite.
As before, a singular extremal control u(t) interior fl and trajectory x(t)

are normal on (t 1, e) if for each t(t1, 2) there exists only one linearly
independent vector A (t) satisfying the constant and linear necessary conditions
(6.4) and (6.5).

COROLLARY 6.3 (Goh [4]). Assume thatu(t) and x(t) are definedfor (2.1) on
[t, te]. Suppose u(t) interior f and is normal on the subinterval (t 1, t2). Ifu(t) is
minimal, then there exists a A (t) satisfying thePMPon [t, te], which is unique to the
scalar multiple by normality. Let hi be the smallest integer such that

0 dh,+ 19

1911 dthi+ 1911
H(A (t), x(t), u(t)) 0
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for some (t 1, t2). Then each finite hi must be odd and on the subinterval It 1, 2]
such that

odko
OU dtk Ou

H( (t), x(t), u(t)) o

must hold for k 0,. , (hi +hi) 1 i, <- I. Moreover if hi < oo for
1,. , k <- l, then the k x k matrix whose i, entry is

(_l)(hj+l)/2 0 d(h’+hj)/2+l c3

Oui dt(h’+hp/24i H(A (t), x(t), u(t)),

where 1 i, j <- k must be symmetric and nonpositive definite.
Remark 1. Goh [4] does not express his necessary conditions in above form,

but they are equivalent. The Hamiltonian formulation of Corollary 6.3 makes the
conditions easier to describe and apply. They are closer to Robbins 15], but his
results are weaker for they do not include quadratic conditions involving two
controls which are singular of differing degrees.

Remark 2. The above results make it desirable to choose coordinates in the
control space 1

_
so that the controls Ul, , u are singular of as high a degree

as possible. We discuss how this is done in Examples 6.1 and 6.2.
Proof. We now prove Theorem 6.1, Theorem 6.2 follows by prolongation as

before, and the corollary follows immediately from Theorem 6.2.
By repeated application of the Jacobi identity,

(6.6)

p-1

[ai, adk(ao)ai]= Y. (-1)[ao[ad(ao)ai, adk--’(ao)ai]]
o’=0

+ (- 1)P[adp (ao)ai, adk-p (ao)aj ].

Letting p k, we obtain

(6.7)
[ai, adk (a0)a ] (- 1)k/l[aj, adk (ao)ai]

k-1

+ Y, (-1)[ao[ad(ao)ai, adk--l(ao)aj]].
cr=O

These equations imply that a basis for the linear spaceD of Lie elements consists
of the union of (5.5) with

(6.8) {adk-(ao)[ai, ad(ao)ai] O <- cr <- k, 1 <-_ <] <-_ k}.

Note the presence of terms like [ai, adk (ao)ai] in this basis even when k is even.
If =], then (6.2) follows immediately because ui is assumed singular of

degree hi + 1. Suppose /" and k <- (hi + hi)/2-1. Choose any ki and k such that

ki + k k and ki -< (hi 1)/2, k _-< (h 1)/2. Choose ri > ki, r > k such that

ki + ri k + ri. Define a pair of control variations

#(s)x * "+" *(r, ’(s)r I,s)srn ’(S)skJ(s)y(--2p(s)-- 2q(s))x,
where

+k. +k. 0srn ’(slx a n ’(sty (p(sllx
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using the control ai instead of al;

a, ts)y tq(s))x
k. +/-

using the control aj and p(s) kis + 2k’s t’ q(s) kjs + 2 ’s ’. In other words, fl (s)x
-k. +k.are constructed by "adding" ak’(s)x and a,, ’(s)x made wth ai to a ,(s)x and

-k(S)X made with a.
kFrom the definitions of ,k’ and , (s)x and the chain rule we have

dp d’+/-k(r, (0)X y0(p(0))X,
ds

da o+/-k,ox=
d o(

dsa tr, -s / q(O))x

if 1 =< p < ki + ri, and

dk+r dk+r (ri d- ki)
dski+ri ri (O)x dski+r 0(0))/(--1)ki

ki
adk’(ao)ai(x),

d,+r,dk’+ri
k,(o)x sk,ri T(q(O))x(--1)k’dsk’+" k[

adk(a)a(x)"

Using this we see that

da
fl(O)x d k. d

ds
’(0)X

(6.9)
d :k+s /(p(0) + q(O))a t, ’(0)3’(-P(0) q(O))x

d
+d-- 3’(2P(0) + q(O))ak(0)/(--2p(0)- q(O))x

if 1 <_--p <2(ki +ri). If p 2(ki +ri) we have the above plus the extra terms on the
right,

(6.10) : (_1),/ ((ki + r)!) [ad,(ao)ai, ad(ao)a].
ki k

We wish to make +/-(s)x into a control variation of order 2(ki +ri) by
"adding" other variations to cancel out the right side of (6.9) for p=
1,-.., 2(ki + ri).

Since at, ’(s)x and a are "added" to make fl+/-(s)x and the former are
of order ki + r, so must be the latter. Moreover the ki + ri derivative of/3 +/-(s)x is
just the sum of the corresponding derivatives of the former and hence zero.
Therefore +/-(s)x are control variations of order at least ki + ri + 1 independent of
ao, ai and a and so all their derivatives up to 2(k + ri)+ 1 are Lie elements.

Studying the right side of (6.9) forp <- 2(ki + ri) we see that it contains no cross
terms, i.e., terms with both an a and an a2 factor. It involves only linear brackets
and brackets either quadratic in a or quadratic in a. By the relationship of k and
k to the degrees of singularity hi and hi, it follows that the right side of (6.9) along
x(t) is in Dl(x(t)). Therefore it can be canceled using Lemma (4.4).
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The result is a pair of control variations of order 2(ki + ri) whose 2(ki + ri)
derivatives are given by (6.10). Using (2.9) of the HMP it follows that if u(t) is
minimal, then

(6.11) X (t)[adk’(ao)a,, adkJ(ao)aj](x(t))= O.

Differentiating (6.11) with respect to time yields

X (t)adp (ao)[adk’(ao)a, adkJ(ao)aj](x(t)) O,

and so (6.6) and induction on k ki + k implies (6.2).
To show (6.3) we first assume that each hi h for 1,. , k. Let M(t) be

the k x k matrix whose i, j entry is

(-- 1)(h+l)/2A (t)[ai, ad(ao)a](x(t)).

It follows from (6.2) and (6.7) for odd h that M(t) is symmetric. To show that M(t)
is nonpositive definite along minimal trajectories is equivalent to showing that for
any u (t) (u(t), Uk (t)),

u(t)M(t)u(t) <= O
along minimal trajectories.

Given any such u(t), define a new system with scalar control v by

(6.12) bo(x) + vbl(x),

where bo(x) ao(x) and bl(x) Y’. ui(xo)ai(x). Applying Theorem 5.1 to (6.12) we
see that the control v is singular of degree h + 1 and we obtain the necessary
condition

(6.13) (--1)(h+l)/2X (t)[ba, adh(bo)bl](X(t)) <=0.

Now

(6.14)

[bl, adh (bo)bl](X(t)) Z ui(xo)ui(xo)[ai, adh (ao)a](x(t))
id

2+ terms from Dp(x(t)) for p < h.

So, applying (6.13) and (6.2) to (6.14) yields the desired result.
Suppose the degrees of singularity of the various controls are not the same. If

we prolong u, i.e., define a new state X,+x ui and new control v :/,+1, then we
obtain a system of the form

b0(x) + vbi (x) + E ujb(x),

where x (x, X,+l) and

bo(x) (a(x) +x"+la(x))0
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Along Xn+l "--0 for ] i,

[b, ad(bo)b]()= 2 ad--(ao)[a, ad(ao)a](x)
o’----0

0

[b,, adp (bo)b](x) ([a, ad 0)a(x)]),
[b, ad(bo)b]()=

ad (ao)[a, ad(ao)a](x)

0

0

erefore the degree of singularity of v us hi + 3. In this way, all the controls can
be made singular of the same degree and (6.3) follows from repeated use of the
above identities. Q.E.D.

Example 6.1. Suppose u(t) generates a normal singular extremal for (2.1)
on [/1, t2] and we wish to apply Corollary 6.3. To obtain as many necessary
conditions as possible it is desirable to make a time-dependent change of
coordinates of the control space fl l.

Start with the symmetric x matrix

Mo(t) OuiouH(A (t), x(t), u(t))

where li,]l and A(t) is uniquely determined to the scalar multiple by
normality. By passing to a subinterval if necessary, we can assume that rank Mo(t)
is constant and equal to l-ll where 110 by assumption. ere exists an
orthonormal basis e(t),..., e(t) for such that

Mo(t)e(t) 0

for 1,- , l. Make the change of coordinates

u)=Eo(t)u1,
where u)= (u), u)) are the original coordinates, u1) (u), u1)) are
the new coordinates and

Eo(t) (e(t) e(t)).
On the subspace l 9 spanned by e(t), , e(t), we continue to change

coordinates. Consider the l x l matrix

d0 0
H( (t), x(t), u(t))),Ml(t)

Oui dt20u
where 1 i, ] 11. is matrix is symmetric, and by passing to a subinterval if
necessary, we can assume it is of rank l-12 for each t (t, t). Choose an

l(t) e(t) for such thatorthonormal basis e

M(t)e (t) 0
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for 1,. , 12. Make the change of coordinates

U
(2) =E2(t)u (1),

where

E2(t)=te(t) e,(t) O__lO 1/t
We continue on in this fashion until some Mk (t) is of full rank or it becomes

clear that some controls are singular of infinite degree. Then apply the corollary.
Example 6.2. Suppose u(t) generates a singular extremal for (2.1) on [t 1, t2]

which is not normal and We wish to apply Theorem 6.2. Once again, to obtain as
many necessary conditions as possible, we must make a change of coordinates in
the control space.

Since the trajectory is not normal at each t e (t l, i2), there exists more than
one linearly independent A satisfying the constant and linear necessary conditions
(6.4) and (6.5). By passing to a subinterval if necessary, we can assume that the
dimension of the space of such A is constant, say 19, at each t e (t 1, t2), and therefore
there exist p linearly independent solutions A l(t), ,AP(t) of the adjoint
differential equation (2.6) satisfying (6.4) and (6.5).

Define p symmetric x matrices:

0
2

M’(t) H(A’(t), x(t), u(t))
OuiOu

where 1 o-p and 1 _-< i, ] _-< 1. By passing to a subinterval if necessary we can
assume that the rank of the p x matrix,

IMP(t)tMo(t)

is constant, say 1-11. Choose an orthonormal basis e(t),..., eo(t) for l such
that

Mo(t) e(t) 0

for 1,. ., 11. Make the change of coordinates

u()=Eo(t)u (1)

where u (), U
(1) and Eo(t) are as in Example 6.1.

On the subspace q spanned by e(t),..., e(t),’we continue to change
coordinates. Consider the p symmetric la 11 matrices

M(t)
Od20

Oui dt20us H(A (t), x(t), u(t)))
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where 1 tr p and 1 =< i,/" _-< 11. Define

tMll(t)tMl(t)

and so on until some Mk (t) is o full rank or it becomes clear that some controls are
singular o innite degree. Then apply Theorem 6.2.

7. Conclusion. The purpose of this paper was to introduce the HMP as a
useful tool for constructing high order necessary conditions for optimal control
problems with terminal constraints. The HMP is a natural extension of the PMP
based on a generalized form of the Pontryagin-Weierstrass condition.

We used the HMP to rigorously demonstrate the GLC for problems with
terminal constraints with or without normality. Heretofore the proofs of the GLC
relied on a blanket assumption of normality to guarantee their validity.

The HMP can also be used to develop necessary conditions specifically
tailored for the problem of interest as in Example 5.3. These special conditions
might involve cubic or higher effects of control variations. Further research is
needed to discover whether they can be put in a systematic form.
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