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THE CONTROLLED CENTER DYNAMICS∗

BOUMEDIENE HAMZI† , WEI KANG‡ , AND ARTHUR J. KRENER†

Abstract. The center manifold theorem is a model reduction technique for determining the
local asymptotic stability of an equilibrium of a dynamical system when its linear part is not hy-
perbolic. The overall system is asymptotically stable if and only if the center manifold dynamics is
asymptotically stable. This allows for a substantial reduction in the dimension of the system whose
asymptotic stability must be checked. Moreover, the center manifold and its dynamics need not be
computed exactly; frequently, a low degree approximation is sufficient to determine its stability. The
controlled center dynamics plays a similar role in determining local stabilizability of an equilibrium
of a control system when its linear part is not stabilizable. It is a reduced order control system with a
pseudoinput to be chosen in order to stabilize it. If this is successful, then the overall control system
is locally stabilizable to the equilibrium. Again, usually low degree approximation suffices.
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1. Introduction. Center manifold theory plays an important role in the study
of the stability of dynamical systems when the equilibrium point is not hyperbolic.
The center manifold is an invariant manifold of the differential equation which is
tangent at the equilibrium point to the eigenspace of the neutrally stable eigenvalues.
For instance, as the local dynamic behavior “transverse” to the center manifold is
relatively simple since it is the one of the flows in the local stable (and unstable)
manifolds, the center manifold method isolates the complicated asymptotic behavior
by locating an invariant manifold tangent to the subspace spanned by the eigenspace
of eigenvalues on the imaginary axis. In practice, one does not compute the center
manifold and its dynamics exactly, since this requires the resolution of a quasi-linear
PDE which is not easily solvable. In most cases of interest, an approximation of degree
two or three of the solution is sufficient. Then we determine the reduced dynamics
on the center manifold, study its stability, and conclude about the stability of the
original system [24, 26, 21, 6, 15].

The combination of this theory with the normal form approach of Poincaré [25]
was used extensively to study parameterized dynamical systems exhibiting bifurca-
tions [27]. The center manifold theorem provides, in this case, a means of systemat-
ically reducing the dimension of the state spaces which need to be considered when
analyzing bifurcations of a given type. In fact, after determining the center manifold,
the analysis of these parameterized dynamical systems is based only on the restriction
of the original system on the center manifold whose stability properties are the same
as the ones of the full order system.

This approach was also adopted in control theory. The combination of the normal
form approach for control systems [20] and center manifold theory enabled the analysis
and stabilization of systems with one or two uncontrollable modes in continuous and
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discrete time [17, 18, 19, 14, 23, 9, 12, 13, 11, 10]. After using a linear feedback
to asymptotically stabilize the linearly controllable part, it was possible to stabilize
the whole system by focusing only on the restriction of the original control system
on the center manifold, whose dimension equals the number of uncontrollable modes
(i.e., one or two). This allows us to study the stabilizability and the synthesis of a
controller for the full order system based on the linearly uncontrollable part.

In this paper, we generalize this approach to systems with any number of un-
controllable modes by introducing the controlled center dynamics. This controlled
dynamics is a reduced order control system over which the control design for the
full order system is performed and whose dimension is the number of uncontrollable
modes. This allows us to reduce the complexity of the stabilization problem, as the
dynamics of the linearly controllable part becomes stable by choosing a linear feedback
that places its eigenvalues in the open left half-plane.

In practice, the controlled center dynamics will allow us to study the stabiliz-
ability and synthesizing stabilizing controllers for some classes of finite- or infinite-
dimensional control systems based only on the study of a reduced order finite-dimen-
sional control system given by the controlled center dynamics. Thus, this methodology
can also be viewed as a reduction technique for some classes of controlled differential
equations.

By deriving an explicit formula of the controlled center manifold and the con-
trolled center dynamics, the link between feedbacks and the resulting center dynamics
becomes clear. By changing the feedback, the stability properties of the controlled
center dynamics will change, and thus the stability properties of the full order sys-
tem will change too. Thus, choosing a feedback that stabilizes the controlled center
dynamics allows us to stabilize the full order system.

The paper is organized as follows. In section 2, we define what is meant by the
controlled center dynamics and show how a feedback will affect it. Then, in section 3,
we apply this technique to stabilize systems with a transcontrollable bifurcation using
a quadratic feedback and then using a piecewise linear feedback.

2. The controlled center dynamics. Consider the nonlinear system

ζ̇ = f(ζ, v),(2.1)

where the variable ζ ∈ R
n is the state and v ∈ R is the input variable. The vector

field f(ζ) is assumed to be Ck for some sufficiently large k.
Assume f(0, 0) = 0, and suppose that the linearization of the system at the origin

is (A,B),

A =
∂f

∂ ζ
(0, 0), B =

∂f

∂ v
(0, 0),

with

rank([B AB A2B · · · An−1B]) = n− r,(2.2)

and r > 0. Moreover, assume that the system (2.1) has r uncontrollable modes on
the imaginary axis. Let ΣS denote the system (2.1) under the above assumptions.

The system ΣS is not linearly controllable at the origin, and a change of some
control properties may occur around this equilibrium point; this is called a control
bifurcation if it is linearly controllable at other equilibria [23].
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From linear control theory [16], we know that there exist a linear change of coor-
dinates and a linear feedback transforming the system ΣS to

ẋ1 = A1x1 + f̄1(x1, x2, u),

ẋ2 = A2x2 + B2u + f̄2(x1, x2, u),
(2.3)

where x1 ∈ R
r, x2 ∈ R

n−r, u ∈ R, A1 ∈ R
r×r is in the real Jordan form and its

eigenvalues are on the imaginary axis, A2 ∈ R
(n−r)×(n−r), B2 ∈ R

(n−r)×1 are in the
Brunovskỳ form, i.e.,

A2 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦, B2 =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦,

and f̄k(x1, x2, u) = O(x1, x2, u)2, for k = 1, 2.
Now consider the feedback given by

u(x1, x2) = κ(x1) + K2x2,(2.4)

with κ a smooth function and K2 =
[
k2,1 · · · k2,n−r

]
.

Because (A2, B2) is controllable, the eigenvalues in the closed-loop system asso-
ciated with the equation of x2 can be placed at arbitrary given points in the complex
plane by selecting values for K2. If one of these controllable eigenvalues is placed in
the right half-plane, the closed-loop system is unstable around the origin. Therefore,
we assume that K2 has the following property.

Property P. The matrix Ā2 = A2 + B2K2 is Hurwitz.
Let us denote by F the feedback (2.4) with Property P.
Now consider the closed-loop system (2.3)–(2.4) given by

ẋ1 = A1x1 + f̄1(x1, x2, κ(x1) + K2x2),

ẋ2 = A2x2 + B2(κ(x1) + K2x2) + f̄2(x1, x2, κ(x1) + K2x2).
(2.5)

This system possesses r eigenvalues on the imaginary axis and n − r eigenvalues in
the open left half-plane. Thus, a center manifold exists [6]. It is represented locally
around the origin as

W c = {(x1, x2) ∈ R
r × R

n−r|x2 = Π(x1), |x1| < δ,Π(0) = 0}(2.6)

for δ sufficiently small.
For any point (x1, x2) in W c we have

x2 = Π(x1);

hence

ẋ2 =
∂ Π(x1)

∂ x1
ẋ1.(2.7)

Since the points in W c obey the dynamics generated by the closed-loop system (2.5),
and since in W c the feedback law (2.4) is

u(x1, x2)|x2=Π(x1) = κ(x1) + K2Π(x1),
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then, substituting

ẋ1 = A1x1 + f̄1(x1,Π(x1), κ(x1) + K2Π(x1)),

ẋ2 = A2Π(x1) + B2(κ(x1) + K2Π(x1)) + f̄2(x1,Π(x1), κ(x1) + K2Π(x1))

into (2.7) gives the PDE satisfied by Π and κ:

Ā2Π(x1) + B2κ(x1) + f̄2(x1,Π(x1), κ(x1) + K2Π(x1))

=
∂Π

∂x1
(x1)

(
A1x1 + f̄1(x1,Π(x1), κ(x1) + K2Π(x1))

)
.

(2.8)

The center manifold theorem ensures that this equation has a local solution for any
smooth κ(x1). The reduced dynamics of the closed-loop system (2.5) on the center
manifold is given by

ẋ1 = f1(x1;κ),(2.9)

where

f1(x1;κ) = A1x1 + f̄1(x1,Π(x1), κ(x1) + K2Π(x1)).

According to the center manifold theorem, we know that if the dynamics (2.9) is locally
asymptotically stable, then the closed-loop system (2.3)–(2.4) is locally asymptotically
stable (see [6], for example).

The part of the feedback F given by κ(x1) determines the controlled center man-
ifold x2 = Π(x1) which in turn determines the dynamics (2.9). Hence the problem of
stabilization of the system (2.3) reduces the problem of stabilizing the system (2.9)
after solving the PDE (2.8), i.e., finding κ(x1) such that the origin of the dynamics
(2.9) is asymptotically stable. Thus we can view κ(x1) as a pseudocontrol.

Since solving the PDE (2.8) is difficult, it is usually sufficient to approximate the
center manifold. Using the Taylor expansion of Π and κ around x1 = 0 permits one
to have an approximation of the center manifold. Because κ starts with linear terms

κ(x1) = K1x1 + κ[2](x1) + · · · ,(2.10)

Π starts with linear terms

Π(x1) = Π[1]x1 + Π[2](x1) + · · · .(2.11)

The PDE implies that

Ā2Π
[1] + B2K1 = Π[1]A1,(2.12)

Ā2Π
[2](x1) + B2κ

[2](x1) + f̄
[2]
2 (x1,Π

[1]x1,K1x1 + K2Π
[1]x1)

=
∂Π[2]

∂x1
(x1)A1x1 + Π[1]f̄

[2]
1 (x1,Π

[1]x1,K1x1 + K2Π
[1]x1),

(2.13)

and so on.
For any κ[k](x1), these linear equations are solvable for Π[k](x1) since the eigen-

values of Ā2 and A1 do not coincide. In fact, K2 in (2.4) is chosen such that
�(σ(Ā2)) < 0 = �(σ(A1)).
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The degree k equations are

Ā2Π
[k](x1) + B2κ

[k](x1) −
∂Π[k]

∂x1
(x1)A1x1 =

k−1∑
j=1

∂Π[k−j]

∂x1
(x1)f̃

[j+1]
1 (x1) − f̃

[k]
2 (x1),

(2.14)

where

f̃i(x1) = f̄i(x1,Π(x1), κ(x1) + K2Π(x1)).

Note that f̃
[j]
i (x1) depends only on Π[1](x1), . . . ,Π

[j−1](x1) and κ[1](x1), . . . , κ
[j−1](x1).

For 1 ≤ i ≤ r − 1, the ith row of these equations is

Π
[k]
i+1(x1) =

∂Π
[k]
i

∂x1
(x1)A1x1 +

k−1∑
j=1

∂Π
[k−j]
i

∂x1
(x1)f̃

[j+1]
1 (x1) − f̃

[k]
2,i (x1).(2.15)

The rth row is

κ[k](x1) =
∂Π

[k]
r

∂x1
(x1)A1x1 +

k−1∑
j=1

∂Π
[k−j]
r

∂x1
(x1)f̃

[j+1]
1 (x1) − f̃

[k]
2,r(x1).(2.16)

Note that Π
[k]
1 (x1) determines Π

[k]
2 (x1), . . . ,Π

[k]
r (x1), κ

[k](x1). Therefore we may change

our point of view. Instead of viewing κ[k](x1) as determining Π
[k]
1 (x1), . . . ,Π

[k]
r (x1),

we can view Π
[k]
1 (x1) as determining Π

[k]
2 (x1), . . . ,Π

[k]
r (x1), κ

[k](x1). In other words,
instead of viewing the feedback as determining the center manifold, we can view the
first coordinate function of the center manifold as determining the other coordinate
functions and the feedback.

Alternatively we can view Π1 as a pseudocontrol and write the dynamics as

ẋ1 = A1x1 + f̄1(x1; Π1).(2.17)

We will call this dynamics the controlled center dynamics.
Now let us write explicitly the solution of (2.12) and (2.13) giving, respectively,

the linear and the quadratic approximation of the center manifold of the closed-loop
system (2.5).

2.1. Linear center manifold. In this section we solve (2.12), which gives the
linear part of the center manifold, show how it is affected by the linear part of the
feedback (2.4), and see how we can change the orientation of the center manifold
through the linear part of the feedback (2.4).

Suppose the entries in K2 are K2,1,K2,2, . . . ,K2,n−r. Then the characteristic
polynomial, P (λ), of the matrix A2 + B2K2 is defined by

P (λ) = det
(
λI(n−r)×(n−r) −A2 −B2K2

)
= λn−r −K2,n−rλ

n−r−1 − · · · −K2,2λ−K2,1.
(2.18)

The linear part of the feedback (2.4) is given by

u(x1, x2) = K1x1 + K2x2 + O(x1, x2)
2.(2.19)
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From (2.11), the linear part of the center manifold is given by

Π[1](x1) = Π[1]x1,

and (2.12) is equivalent to the following system of equations:

Π
[1]
2 = Π

[1]
1 A1,

Π
[1]
3 = Π

[1]
2 A1,

...

Π
[1]
n−r = Π

[1]
r−1A1,

0 = Π
[1]
n−rA1 −K1 −K2,1Π

[1]
1 − · · · −K2,n−rΠ

[1]
n−r,

where Π
[1]
i is the ith row vector in Π[1]. Therefore,

Π
[1]
2 = Π

[1]
1 A1,

Π
[1]
3 = Π

[1]
1 A2

1,

...

Π
[1]
n−r = Π

[1]
1 An−r−1

1 ,

0 = −K1 + Π
[1]
1 An−r

1 −K2,1Π
[1]
1 −K2,2Π

[1]
1 A1 − · · · −K2,n−rΠ

[1]
1 An−r−1

1

= −K1 + Π
[1]
1 (An−r

1 −K2,1I −K2,2A1 − · · · −K2,n−rA
n−r−1
1 ).

The last equation has the form of characteristic polynomial defined by (2.18).
To summarize, the linear part of the center manifold is defined by the following

equations:

Π
[1]
1 = K1P (A1)

−1,

Π
[1]
i = Π

[1]
1 Ai−1

1 for i = 2, . . . , n− r.
(2.20)

Note that P (A1) is always invertible for the following reason. The eigenvalues of P (A1)
equal the values of P (λ) evaluated at the eigenvalues of A1. Since Ā2 = A2 +B2K2 is
Hurwitz, the roots of the characteristic polynomial (2.18) are all in the open left half-
plane. Since the eigenvalues of A1 are all on the imaginary axis, which are different
from the roots of P (λ), we deduce that P (A1) has no zero eigenvalue. Thus, the
matrix P (A1) is invertible.

Theorem 2.1. Given the feedback F , the center manifold is given by

x2 = Π[1]x1 + O(x2
1),

with the components of Π[1] uniquely determined by (2.20).
Now let us show that the orientation of the center manifold can be changed by

changing K1 in (2.10).
If we view the center manifold, represented by x2 = Π(x1), as a submanifold in

the space of (x1, x2) ∈ R
n, we can say that the orientation of the center manifold at

the origin is a basis of the orthogonal complement subspace of the tangent space of
the center manifold. Indeed, the orientation of the center manifold at the origin is
a set of vectors which are orthogonal to the manifold; they are linearly independent;
and they generate a complement subspace of the manifold.
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Theorem 2.2. Given any (n− r) × r matrix of the form

[M(n−r)×r N(n−r)×(n−r)],

its row vectors define the center manifold orientation at the origin for (2.3)–(2.19) if
and only if N−1 exists and Π[1] = −N−1 M satisfies (2.20).

Proof. Suppose that [M(n−r)×r N(n−r)×(n−r)] defines the orientation of the
center manifold. Then it is orthogonal to the tangent space of the center manifold. It
is known that the tangent space of the center manifold is given by its linear part

x2 − Π[1]x1 = 0,

where Π[1] satisfies (2.20). In the (x1, x2)-space, a set of orthogonal vectors of
the tangent space is the row vectors of [−Π[1]| I]. Therefore, both [−Π[1]| I] and
[M(n−r)×r N(n−r)×(n−r)] generate the same space, which is orthogonal to the tan-

gent space of the center manifold. Therefore, the row vectors of [−Π[1] I] are linear
combinations of the row vectors in [M(n−r)×r N(n−r)×(n−r)], i.e.,

[−Π[1]| I] = N−1[M(n−r)×r N(n−r)×(n−r)].

So Π[1] = −N−1 M, and it satisfies (2.20).

On the other hand, suppose −N−1 M satisfies (2.20). By Theorem 2.1, the linear
space

N−1 M x1 + x2 = 0

represents the linear part of the center manifold. It is the tangent space of the center
manifold. Therefore, [N−1 M | I], the row vectors in the coefficient matrix of this
equation, form a basis of the orthogonal space. It is easy to check that the row vectors
of [M N ] and [N−1 M | I] generate the same vector space. Therefore, [M N ] defines
the orientation of the center manifold.

Now consider the change of coordinates

x̃2,i = x2,i − Π
[1]
1 Ai−1

1 x1, i = 1, . . . , n− r;(2.21)

then

˙̃x2,i = x̃2,i+1, i = 1, . . . , n− r,

˙̃x2,n−r =

n−r∑
i=1

k2,ix̃2,i.

Hence, the coefficient K1 has been removed from the x2-part of the dynamics (2.3)–
(2.19) by a change of coordinates. With K1 = 0, we deduce from (2.20) that Π[1] = 0.
So the linear terms of the center manifold have been removed.

Proposition 2.3. Given any feedback (2.19) satisfying Property P, and the
change of coordinates (2.21), the center manifold is given by

x̃2 = O(x2
1).(2.22)
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2.2. Quadratic approximation of the center manifold. In this section, we
solve explicitly (2.13) giving the quadratic approximation of the center manifold and
show how it is related to the quadratic part of the feedback (2.4).

Under a linear change of coordinates (2.21), the system is transformed into

ẋ1 = A1x1 + f̄
[2]
1 (x1, x̃2 + Π[1]x1, κ

[2](x1)) + O(x1, x̃2)
3,

˙̃x2 = A2(x̃2 + Π[1]x1) + B2(K1x1 + K2x̃2 + K2Π
[1]x1 + κ[2](x1))

+ f̄
[2]
2 (x1, x̃2 + Π[1]x1, u(x1, x̃2 + Π[1]x1)) − Π[1]A1x1

− Π[1]f̄
[2]
1 (x1, x̃2 + Π[1]x1, u(x1, x̃2 + Π[1]x1)) + O(x1, x̃2)

3,

in which u is the feedback defined by (2.4). Define a quadratic vector field f̃
[2]
2 (x1, x̃2)

by

f̃
[2]
2 (x1, x̃2) = f̄

[2]
2 (x1, x̃2 + Π[1]x1,K1x1 + K2x̃2 + K2Π

[1]x1)

− Π[1]f̄
[2]
1 (x1, x̃2 + Π[1]x1,K1x1 + K2x̃2 + K2Π

[1]x1).
(2.23)

Then from (2.21) and (2.23), equation (2.3) is equivalent to

ẋ1 = A1x1 + f̄
[2]
1 (x1, x̃2 + Π[1]x1, u(x1, x̃2 + Π[1]x1)) + O(x1, x̃2)

3,

˙̃x2 = A2x̃2 + B2(K2x̃2 + κ[2](x1)) + f̃
[2]
2 (x1, x̃2) + O(x1, x̃2)

3.
(2.24)

In the (x1, x̃2) coordinates, the center manifold has the form (2.22).
It satisfies the center manifold equation

A2Π
[2](x1) + B2(K2Π

[2](x1) + κ[2](x1)) + f̃
[2]
2 (x1, 0) =

∂Π[2](x1)

∂x1
A1x1,

or, equivalently,

Π
[2]
i+1(x1) =

∂Π
[2]
i (x1)

∂x1
A1x1 − f̃

[2]
2,i(x1, 0) for i = 2, 3, . . . , n− r,

0 =
∂Π

[2]
n−r(x1)

∂x1
A1x1 − f̃

[2]
2,n−r(x1, 0) −K2Π

[2](x1) − κ[2](x1).

(2.25)

In the following, we adopt the matrix notation

Π
[2]
i (x1) = xT

1 Qix1,

f̃
[2]
2,i(x1, 0) = xT

1 Rix1,

κ(x1) = xT
1 Lx1,

(2.26)

where Qi, R, and L are symmetric r × r matrices. Define a linear operator by

LA1(Q) = AT
1 Q + QA1(2.27)

for all symmetric r × r matrices Q. Then (2.25) is equivalent to

Qi+1 = LA1
(Qi) −Ri for i = 2, 3, . . . , n− r,

0 = LA1
(Qn−r) −Rn−r −K2,1Q1 − · · · −K2,n−rQn−r − L.
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Solving these equations, we have

Qi = Li−1
A1

(Q1) −
i−2∑
j=0

Lj
A1

(Ri−j−1),

P (LA1)Q1 = L + R(n−r) +

n−r∑
i=2

i−2∑
j=0

K2,iLj
A1

(Ri−j−1).

(2.28)

To summarize, the equations (2.28) imply the following result on the quadratic ap-
proximation of the center manifold.

Theorem 2.4. If

x2 = Π[1](x1) + Π[2](x1) + O(x1)
3

approximates the center manifold of (2.3), then Π[2](x1) is uniquely determined by
the equations

Π
[2]
i (x1) = xT

1 Qix1 for i = 1, 2, . . . , n− r,

where

Q1 = P (LA1)
−1

⎛⎝L + Rn−r +

n−r∑
i=2

i−2∑
j=0

K2,iLj
A1

(Ri−j−1)

⎞⎠ ,

Qi = Li−1
A1

(Q1) −
i−2∑
j=0

Lj
A1

(Ri−j−1),

in which LA1 is the operator defined by (2.27); Ri is from the quadratic dynamics
and is defined by (2.26) and (2.23); L is from the quadratic feedback and is defined
by (2.26); and P is the characteristic polynomial of A2 + B2K given by (2.18).

Similar to the derivation of the linear center manifold, the operator P (LA1) is
always invertible. The set of eigenvalues of the operator LA1 is {λi + λj : for
i, j = 1, . . . , r} with λ�, � = 1, . . . , r, being the eigenvalues of A1. Therefore, σ(A1) = 0
implies that the eigenvalues of LA1 are all on the imaginary axis. Since Ā2 is Hurwitz,
the roots of P (λ) are all in the left half-plane. They do not coincide with the eigen-
values of LA1 . Thus the eigenvalues of P (LA1) given by P (λi+λj), i, j = 1, . . . , r, are
nonzero. The linear operator, P (LA1

), from R
r×r to R

r×r must be invertible. The
implicit differential equation (2.13) is thus solvable since P (LA1

) is invertible.
There are some special cases in which the center manifold is simpler. For instance,

if (2.24) is in quadratic normal form (see [20]), then f̃
[2]
2 is independent of x1. In this

case, f̃
[2]
2 (x1, 0) = 0. Therefore, Ri = 0. Under the feedback

u = K2x2 + xT
1 Qfbx1,

the quadratic approximation of the center manifold of (2.24) is

x2 = Π[2](x1),

where

Π
[2]
i (x1) = xT

1 Qix1,

Q1 = P (LA1)
−1(Qfb),

Qi = Li−1
A1

(Q1).
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One special but useful case include systems with a zero uncontrollable mode
(transcontrollable bifurcation). In the following section, the specific center manifolds
of these systems are derived. The results in this section provide a tool to reduce
a system to a low-dimensional center manifold. Feedback laws for the control of
bifurcations can be derived based on the reduced system on the center manifold of
the closed-loop system.

3. Stabilization of systems with transcontrollable bifurcation. In this
section, we use the precedent results to stabilize systems with a transcontrollable
bifurcation, i.e., those where A1 = 0 ∈ R.

From [17, 18], we know that there exists a quadratic change of coordinates and
feedback,

x = z + φ[2](z),

u = v + α[2](z, v),

bringing the system (2.3) to a quadratic normal form

ż1 = βz2
1 + γz1z21 +

r+1∑
i=1

δiz
2
2i + O(z1, z2, v)

3,

ż2 = A2z2 + B2v + O(z1, z2, v)
2,

(3.1)

with z2,r+1 = v. Moreover, we know that this system has a transcontrollable bifurca-
tion if γ2 − 4βδ1 > 0 (see [17, 18]).

Now suppose that we use the linear feedback

v = K1z1 + K2z2,

and assume that the linear part of the center manifold is given by

z2 = Π[1]z1.

Since A1 = 0, we deduce from (2.20) that

Π
[1]
i = 0, i = 2, . . . , r,

K1 = −K21Π
[1]
1 ;

(3.2)

so Π
[1]
2 , . . . ,Π

[1]
r ,K1 depend on Π

[1]
1 .

Thus, the controlled center dynamics is

ż1 =
(
β + γΠ

[1]
1 + δ1(Π

[1]
1 )2

)
z2
1 + O(z1)

3.

Because γ2−4βδ1 > 0, there are two choices of Π
[1]
1 such that β+γΠ

[1]
1 +δ1(Π

[1]
1 )2 = 0.

After such a choice, the stability of the controlled center dynamics depends on cubic
terms.

We use quadratic and cubic change of state coordinates and invertible quadratic
and cubic feedback,

x = z + φ[2](z) + φ[3](z),

u = v + α[2](z, v) + α[3](z, v),
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to bring the system from linear normal form to quadratic and cubic normal form
(see [23]):

ż1 = βz2
1 + γz1z21 +

r+1∑
i=1

δiz
2
2i + β̄z3

1 + γ̄z2
1z21 +

r+1∑
i=1

δ̄iz1z
2
2i

+

r+1∑
i=1

r+1∑
j=i

ε̄ijz2iz
2
2j + O(z1, z2, v)

4,

ż2 = A2z2 + B2v + O(z1, z2, v)
2.

(3.3)

Let ΣT denote this system. Because z2 is linearly stabilizable, the quadratic and
cubic terms will not affect the stability properties of the z2-dynamics.

3.1. Stabilization using a quadratic feedback. Consider the quadratic feed-
back

v = K1x1 + K2x2 + κ[2](z1)(3.4)

to shape the linear and quadratic parts of the center manifold

z2 = Π[1]z1 + Π[2](z1),

which in turn shape the quadratic and cubic parts of the controlled center dynamics.
The procedure to choose K1 and K2 in (3.4) is as follows. From Property P, we know

that K2 is such that σ(A+B2K2) < 0. Moreover, we choose Π
[1]
1 so that the quadratic

part of the controlled center dynamics is zero; then we deduce K1 from (3.2).

We can choose Π
[2]
1 (z1) = cz2

1 arbitrarily; then the controlled center dynamics is
given by

ż1 =
(
(γ + 2δ1Π

[1]
1 )c + β̄ + γ̄Π

[1]
1 + δ̄1(Π

[1]
1 )2 + ε̄1(Π

[1]
1 )3

)
z3
1 + O(z1)

4.

There were two possible choices of Π
[1]
1 that canceled the quadratic part of con-

trolled center dynamics. Since γ2 − 4βδ1 > 0 there is at least one such Π
[1]
1 so

that γ + 2δ1Π
[1]
1 �= 0.

Then we can choose c so that

(γ + 2δ1Π
[1]
1 )c + β̄ + γ̄Π

[1]
1 + δ̄1(Π

[1]
1 )2 + ε̄1(Π

[1]
1 )3 < 0

and the controlled center dynamics is locally asymptotically stable, so the closed-loop
system is locally asymptotically stable.

Theorem 3.1. Consider system (3.3) with γ2 − 4βδ1 > 0; then the quadratic
feedback (3.4) locally asymptotically stabilizes the system ΣT .

3.2. Stabilization using a piecewise linear feedback. The quadratic con-

troller (3.4) is not robust to small parameter variations because we must choose Π
[1]
1

such that

β + γΠ
[1]
1 + δ1

(
Π

[1]
1

)2
= 0

to cancel the quadratic part of the controlled center dynamics. A small variation of
β, γ or δ1 introduces quadratic terms in the controlled center dynamics, and hence
instability.
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Therefore we take an alternative approach. We use a piecewise linear feedback;
i.e., κ is of class C0. So κ is not smooth as supposed previously, but we will see that
our approach is still valid.

The control law has the form

v = K1(z1)z1 + K2z2 + O(z1, z2)
2,(3.5)

with

K1(z1) =

{
k̄1, z1 ≥ 0,

k̃1, z1 < 0.

Under the feedback (3.5), the system (3.1) has n − 1 eigenvalues with negative real
parts (Ā2 is Hurwitz), and one zero-eigenvalue.

Theorem 3.2. Consider the closed-loop system (3.1)–(3.5); then there exists a
center manifold defined by z2 = Π(z1) whose linear part is determined by the feedback
(3.5).

Proof. The linear part of the dynamics (3.1)–(3.5) is given by

ż1 = O(z1, z2)
2,

ż2 = B2K1(z1)z1 + Ā2z2 + O(z1, z2)
2.

(3.6)

Let Σk̄1
(resp., Σk̃1

) be the system (3.6) when K1(z1) = k̄1 (resp., K1(z1) = k̃1) for
all z1. Since the system Σk̄1

(resp., Σk̃1
) is smooth and possesses one eigenvalue on

the imaginary axis and n − 1 eigenvalues in the open left half-plane, then, from the
center manifold theorem, in a neighborhood of the origin, Σk̄1

(resp., Σk̃1
) has a center

manifold W
c

(resp., W̃ c).
For Σk̄1

, the center manifold is represented by z2 = Π(z1) for z1 sufficiently small.
Its equation is

ż2 = A2Π(z1) + B2(k̄1z1 + K2Π(z1)) + O(z1, z2)
2

=
∂ Π(z1)

∂ z1
ż1 = O(z1, z2)

2.
(3.7)

Since the linear part of the center manifold is of the form z2 = Π
[1]
z1 and its ith

component is z2,i = Π
[1]

i z1 for i = 1, . . . , n−1, using (3.7) we obtain that Π
[1]

1 = − k̄1

k2,1

and Π
[1]

i = 0 for 2 ≤ i ≤ n− 1. Similarly for Σk̃1
, the center manifold is represented

by z2 = Π̃(z1). Its linear part is given by z2 = Π̃[1]z1, whose components are defined

by Π̃
[1]
1 = − k̃1

k2,1
and Π̃

[1]
i = 0, for 2 ≤ i ≤ n − 1. Since Ā2 has no eigenvalues on the

imaginary axis and k2,1 is the product of all the eigenvalues of Ā2, then k2,1 �= 0.

The center manifolds W
c
and W̃ c intersect along the line z1 = 0, since Π(z1)|z1=0 =

0 and Π̃(z1)|z1=0 = 0.
Hence, if we slice them along the line z1 = 0 and then glue the part of W

c
for

which z1 > 0 with the part of W̃ c for which z1 < 0, along this line we deduce that, in
an open neighborhood of the origin, the piecewise smooth system (3.6) has a piecewise
smooth center manifold Wc. The linear part of the center manifold Wc is represented
by z2 = Π[1]z1. The ith component of z2, z2,i is given by

z2,i = Π
[1]
i (z1)z1,(3.8)
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with

Π
[1]
1 (z1) = −K1(z1)

k2,1
and Π

[1]
i (z1) = 0 for i ≥ 2.(3.9)

Using (3.3) and (3.8), the controlled center dynamics is given by

ż1 =

{
Φ(Π

[1]

1 )z2
1 + O(z3

1), z1 ≥ 0,

Φ(Π̃
[1]
1 )z2

1 + O(z3
1), z1 < 0,

(3.10)

with Φ the function defined by Φ(X) = β + γX + δ1X
2.

The following theorem shows that the origin of the system (3.10) can be made
asymptotically stable.

Theorem 3.3. Consider system (3.3) with γ2 − 4βδ1 > 0; then the piecewise
linear feedback (3.5) locally asymptotically stabilizes the system ΣT .

Proof. Since γ2 − 4βδ1 > 0, and given any Φ0 such that 0 < Φ0 < |β − γ2/(4δ)|,
there is a Π

[1]

1 such that Φ(Π
[1]

1 ) = −Φ0 and a Π̃
[1]
1 such that Φ(Π̃

[1]
1 ) = Φ0. The

controlled center dynamics is then

ż1 = −Φ0|z1|z1 + O(z1)
3,

which is locally asymptotically stable.
To show the local asymptotic stability of the closed-loop system, we make the

change of coordinates

z2new = z2old − Π(z1).

In these new coordinates the system becomes

ż1 = −Φ0|z1|z1 + ḡ1(z1, z2),

ż2 = Ā2z2 + ḡ2(z1, z2),

where ḡi(z1, 0) = 0, ∂ḡi
∂z2

(0, 0) = 0. So given any ε > 0, there exists a δ > 0 such that
if |z| < δ, then

|ḡi(z1, 0)| < ε|z2|.

Since Ā2 is Hurwitz, there exists a unique P such that

PĀ2 + ĀT
2 P = −I.

Since P is positive definite, then there exists 0 < m ≤ M such that1

m|z2|2 ≤ zT2 Pz2 ≤ M |z2|2.

Let V be the composite Lyapunov function [22]

V (z1, z2) =
1

2
z2
1 +

√
zT2 Pz2 ;

1We can choose m = λmin(P ) and M = λmax(P ), the smallest and the largest eigenvalue of P ,
respectively.
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then

d

dt
V (z1, z2) ≤ −Φ0|z1|z2

1 + |z1||ḡ1(z1, z2)| +
1

2
√
m

(−|z2| + 2M |ḡ2(z1, z2)|)

≤ −Φ0|z1|z2
1 − |z2|

4
√
m

−
(

1

4
√
m

− ε

(
δ +

M√
m

))
|z2|.

By choosing ε such that 1
4
√
m

− ε(δ + M√
m

) > 0, then d
dtV (z1, z2) < 0. So the origin of

the closed-loop system (3.3)–(3.5) is asymptotically stable.
With this approach, we generalize the results in [4], where the authors used a

piecewise linear optimal controller to stabilize a special class of systems of the form
(3.1).
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