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Summary17

This paper is a review of the existing methods for designing an observer for a system modeled by18
nonlinear equations. We focus our attention on autonomous, finite dimensional systems described19
by ordinary differential equations. The current condition of such a system is described by its state20
variables about which we just have partial and possibly noisy measurements. The goal of the21
observer is to process these measurements and any information regarding the initial state of the22
system and to obtain an estimate of the current state of the system. This estimate should improve23
with additional measurements and, ideally, converge to the true value in the absence of noise. The24
observer does this by taking advantage of our a priori knowledge of the dynamics of the system.25

1. Introduction26

Systems are sets of components, physical or otherwise, which are connected in such a manner as to27
form and act as entire units. A nonlinear system is described by a mathematical model consisting of28
inputs, states, and outputs whose dynamics is given by nonlinear equations. Such models are used29
to represent a wide variety of dynamic processes in the real world. The inputs are the way the30
external world affects the system, the states are the internal memory of the system and the outputs31
are the way the system affects the external world. An example of such a system is32

( ) ( ) ( )( ), ,x t f t x t u t=& (1)33

( ) ( ) ( )( ), ,y t h t x t u t=
(2)34
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( ) 0ˆ0x x≈
. (3)1

The input is the m vector u, the state is the n vector x and the output is the p vector y. The state of2

the system at the initial time t = 0 is not known exactly but is approximately 0x̂ . Typically, the3
dimensions of the input and output are less than that of the state.4

A particular case is an autonomous linear system5

x Ax Bu= +& (4)6

y Cx Du= + (5)7

( ) 0ˆ0x x≈
. (6)8

Other examples include systems described by difference equations9

( ) ( ) ( )( )1 , ,x t f t x t u t+ =
(7)10

( ) ( ) ( )( ), ,y t h t x t u t=
(8)11

and infinite dimensional systems described by partial differential and/or difference equations, delay12
differential equations or integro-differential equations. This review will focus on finite dimensional13
systems described by ordinary differential equations.14

An observer is a method of estimating the state of the system from partial and possibly noisy15
measurements of the inputs and outputs and inexact knowledge of the initial condition. More16
precisely an observer is a causal mapping from any prior information about the initial state x0 and17
from the past inputs and outputs18

( ) ( )( ){ }0, :u y t tτ τ ≤ τ ≤
(9)19

to an estimate ( )x̂ t  of the current state x(t) or an estimate ( )ẑ t  of some function z(t) = k(x(t)) of20

the current state. Causality means that the estimate at time t does not depend on any information21
about the inputs and outputs after time t. This restriction reflects the need to use the estimate in real22
time to control the system. The essential requirement of an observer is that the estimate converges23
to the true value as t gets large.24

Sometimes it is not necessary to estimate the full state but only some function of it, say κ(t, x). For25
example, if one wishes to use the feedback control u = κ(t, x). This article will focus on observers of26
the full state.27

The prototype of an observer is that of an autonomous linear system Eqs. (4) - (6). The system28

( )ˆ ˆ ˆx Ax Bu L y y= + + −&
(10)29

ˆ ˆy Cx Du= + (11)30

( ) 0ˆ ˆ0x x=
(12)31

is an observer where L is an n × p matrix to be chosen by the designer. The dynamics of the error32
ˆx x x= −%  is given by33

( )x A LC x= −&% %
(13)34

( ) 0 0ˆ0x x x= −%
(14)35
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If the spectrum of the matrix A − LC lies in the open left half plane, then the error decays to zero1
exponentially fast. In this way, the problem of designing an observer for an autonomous linear2
system is reduced to the following problem. Given A, C, find L so that A − LC is Hurwitz, i. e., the3
spectrum of A − LC is in the open left half plane. We discuss when L can be so chosen in the next4
section (see Design Techniques for Time Varying Systems for further details.)5

For nonlinear systems the distinction between nonautonomous Eqs. (1) - (3) and autonomous6
systems7

( ),x f x u=&
(15)8

( ),y h x u=
(16)9

( ) 0ˆ0x x=
(17)10

is frequently not important as one can add time as an extra state xn+1 = t − t0 and thereby reduce the11
former to the latter. Since an observer operates in real time, time is usually observable and so can be12

added as an extra output also. Frequently models depend on parameters θ �as in ( ), ,x f x u= θ& .13

But in a nonlinear system the distinction between states and parameters is not always clearcut.14

Parameters can always be treated as additional states by adding the differential equation 0θ =& .15
Therefore, the problem of real time parameter estimation reduces to the problem of real time state16
estimation and may be solvable by an observer. If the state estimate is not going to be used in real17
time, then one can collect data after time t to estimate x(t). This problem is sometimes called18
nonlinear smoothing and is related to the identification of nonlinear systems (see 6.43.10) .19

Another example of an observer is the extended Kalman filter described in more detail in (see State20
Reconstruction by Extended Kalman Filter) and in the following statements. This is an observer for21
a nonlinear, nonautonomous system Eqs. (1) - (3) which is derived using stochastic arguments. Two22

quantities ( )x̂ t  and P(t) are computed by the extended Kalman filter. The stochastic interpretation23

is that the distribution of the true state x(t) is approximately Gaussian with mean ( )x̂ t  and24

covariance P(t).25

Most observers are described recursively as a dynamical system whose input is the measured26

variables 
u

y

 
 
 

 and whose output is the state estimate x̂  such as27

( )ˆ , , ,z f t z u y=&
(18)28

( )ˆˆ , , ,x h t z u y=
(19)29

If the state of the observer, z, is of the same dimension as the state of the system, then it is called a30
full order observer; if it is of greater dimension then it is called an expanded order observer, and if it31
is of lesser dimension, then it is called a reduced order observer.32

For example, the prototype autonomous linear observer Eqs. (10) - (12) can be written as33

( ) [ ] u
z A LC z B LD L

y

 
= − + −  

 
&

(20)34

x̂ z= (21)35

( ) 0ˆ0z x=
(22)36
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and hence is a full order observer. The state of extended Kalman filter discussed as follows is the1

pair ( )ˆ,z x P= , so it is an expanded order observer. We briefly discuss the Luenberger observer, a2

reduced order observer for a linear autonomous system in the form3

1 11 12 1 1

2 21 22 2 2

x A A x B
u

x A A x B

       
= +       

       

&

&
(23)4

1y x Du= + (24)5

( ) 00x x=
(25)6

The reduced order observer is given by7

( ) ( ) ( ) ( )22 12 21 11 22 12z A LA z A LA A LA L y Du= − + − + − −  &
(26)8

1̂x y Du= − (27)9

( )2x̂ z L y Du= + −
(28)10

where L is a design parameter. If the model is exact then 1 1x̂ x=  and11

( )2 22 12 2x A LA x= −&% % (29)12

so if the spectrum of the matrix 22 12A LA−  lies in the open left half plane then the error decays to13

zero exponentially fast. We discuss when L can be so chosen in the next section. For more on14
reduced order linear observers, (see (6.43.5.3)) .15

The state z of the observer is some measure of the likely distribution of the state of the original16
system given the past observations. If the observer is derived using stochastic arguments, the state17
of the observer is typically the conditional density of the state of the system given the past18

observations and the initial information. In the extended Kalman filter, the state ( )ˆ,z x P=  is the19

mean and the covariance of the approximately Gaussian distribution of the true state. For the full20
and reduced order linear observers described previously, which were derived by nonstochastic21
arguments, one can view the conditional density as being singular and concentrated at a single22

point, ( )x̂ t .23

2. Observability24

The question of whether an observer converges is of paramount importance. A more immediate25
question is when a nonlinear system Eqs. (15) - (17) admits a convergent observer. This leads to the26
concepts of observability and detectability which are discussed in (see 6.43.21.7) . Briefly two27
states x01, x02 are said to be distinguishable by an input u(t) if the outputs y1(t), y2(t) of Eqs. (15) -28
(17) satisfying the initial conditions x0 = x01, x0 =  x02 differ at some time t ≥ 0. The system is said to29
be observable if every pair x01, x02 can be distinguished by some input u(t). An input u(t) which30
distinguishes every pair x01, x02 is said to be universal. A system where every input is universal is31
said to be uniformly observable.32

Consider a smooth autonomous nonlinear system without inputs33

( )x f x=&
(30)34

( )y h x=
(31)35
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( ) 00x x=
(32)1

At time t = 0 the output and its time derivatives are given by the iterated Lie derivatives2

( ) ( )00y h x=
(33)3

( ) ( )( ) ( ) ( )0 0 00 f

h
y L h x x f x

x

∂= =
∂

&
(34)4

( ) ( )( ) ( ) ( ) ( )2 0 0 00 f
f

L h
y L h x x f x

x

∂
= =

∂
&&

(35)5

and so on. If the p-vector-valued functions h, Lf (h), ( )2
fL h , . . . distinguish points then clearly the6

system is observable. For a real analytic system, this is a necessary and sufficient condition for7
observability. This suggests a way of reconstructing the state of a system, differentiate the output8
numerous times, and find the state which generates such values. One does not proceed in this9
fashion because differentiation greatly accentuates the effect of the almost inevitable noise that is10
present in the observations, and multiple differentiations greatly increase this problem. That is why11
observers are usually dynamic systems driven by  measurements. When such systems are12
integrated, the effect of the noise is mitigated not enhanced.13

For simplicity of exposition, suppose that n = kp. If the matrix14

( ) ( )
( ) ( )

( ) ( )

0

0

1
0

f

k
f

h
x

x
L h

x
x

L h
x

x

−

∂ 
 ∂ 
∂ 

 ∂ 
 
 ∂ 
 ∂ 

M

(36)15

is invertible then the p-vector-valued functions16

( )h x1ξ =
, (37)17

( )( )2 fL h xξ =
,..., (38)18

( )( )1k
k fL h x−ξ =

(39)19

are local coordinates around x0 and in these coordinates the system Eqs. (30) - (32) becomes20

y 1= ξ (40)21

1 2ξ = ξ&
(41)22

2 3ξ = ξ&

M (42)23

( )k kfξ = ξ&
(43)24
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Each ξi is a p-vector. Such a system is said to be in observable form, since it is clearly observable.1
Many algorithms for constructing observers start with the assumption that the system is in2
observable form. The observable form of a n = kp system with inputs is3

( )0y g u1= ξ + ξ,
(44)4

( )1 2 1g uξ = ξ + ξ,&
(45)5

( )2 3 2g uξ = ξ + ξ,&

M (46)6

( ) ( )k k kf g uξ = ξ + ξ,&
. (47)7

where gi(ξ, 0) = 0. Such a system is clearly observable as the input u(t) = 0 distinguishes every pair8
of points, but it may not be uniformly observable. A system9

( )0y g u1= ξ +
(48)10

( )1 2 1 1g uξ = ξ + ξ ,&

M
(49)11

( )1 2 1 ,i i ig u+ξ = ξ + ξ ,...,ξ&

M
(50)12

( ) ( )1 ,k k k kf g uξ = ξ + ξ ,...,ξ&
. (51)13

is said to be in uniformly observable form for it is clearly uniformly observable. From the14

knowledge of u(t), y(t) we can determine ξ1(t), from the knowledge of u(t), y(t), ( )1 tξ&  we can15

determine ξ2(t), etc.16

An autonomous linear system is observable if, and only if, the matrix17

1n

C

CA
O

CA −

 
 
 =
 
 
 

M

(52)18

is of full column rank in which case C, A is said to be an observable pair. Moreover, for such19
systems the spectrum of A − LC can be set up arbitrarily to complex conjugation by choice of L. (As20
a real matrix the spectrum of A − LC is invariant with respect to complex conjugation.) (See21
(6.43.5.3)).22

A system Eqs. (15) - (17) is detectable, if whenever the outputs are equal y1(t) = y2(t) from the23
initial states x01, x02 using the same control u(t), then the state trajectories converge x1(t) − x2(t) → 0.24

For an autonomous linear system, the kernel of the matrix Eq. (52) is the largest invariant subspace25
of the matrix A contained in the kernel of C. It is not hard to show that the system is detectable if,26
and only if, the spectrum of A restricted to the kernel of Eq. (52) is in the open left half plane.27
Clearly, the spectrum of A − LC on the kernel of Eq. (52) does not depend on L. The rest of the28
spectrum of A − LC can be set up arbitrarily to complex conjugation by choice of L.29

Hence a linear system admits a convergent observer if, and only if, it is detectable. It is not hard to30
show that the system Eq. (23) - (25) is detectable if, and only if, the reduced system is.31
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2 22 2x A x=&
(53)1

12 2y A x= (54)2

Hence a linear system admits a convergent reduced order observer if and only if it is detectable.3

3. Construction of Observers by Linear Approximation4

Consider an autonomous nonlinear system without inputs Eqs. (30) - (32) . If the system is known5
to operate in a neighborhood of some fixed state, say x = 0 where f (0) = 0, h(0) = 0, then the6
simplest approach to constructing an observer is to approximate the dynamics around this operating7
condition by the linear autonomous system8

x Ax=& (55)9

y Cx= (56)10

( ) 00 0x x= ≈
(57)11

where12

( )0
f

A
x

∂=
∂ (58)13

( )0
h

C
x

∂=
∂ (59)14

and use an observer for the latter,15

( )ˆ ˆ ˆx Ax L y y= + −&
(60)16

ˆ ˆy Cx= (61)17

( ) 0ˆ ˆ0x x=
. (62)18

The error ˆx x x= −%  dynamics is19

( ) ( ) ( )x A LC x f x Lh x= − + −&% %
(63)20

where21

( ) ( )f x f x Ax= −
, (64)22

( ) ( )h x h x Cx= −
. (65)23

If the linear system is detectable, then there are choices of L such that the spectrum of A − LC lies in24
the open left half plane. But the original system must be locally asymptotically stable to 0 for the25
observer to converge. And, if it is locally asymptotically stable to 0, an observer may not be needed26
as the estimate ˆ 0x =  is asymptotically correct.27

A slightly more sophisticated approach is preferable. Define the observer to be28

( ) ( )ˆ ˆ ˆx f x L y y= + −&
(66)29

( )ˆ ˆy h x=
(67)30



E6-43-21-15-TXT_NT.doc 06/23/038

( ) 0ˆ ˆ0x x=
. (68)1

Suppose the system Eqs. (30) - (32)  is stable around x = 0 in the sense of Lyapunov; i. e., if the2
system starts in a sufficiently small neighborhood of 0 it stays close to 0. If the original state x0 and3

state estimate error 0 0 0ˆx x x= −%  are sufficiently small then the observer error converges to zero.4
Hence, this is a local observer where local is meant in two senses. Both the original state x0 and the5

original state estimate error 0 0 0ˆx x x= −%  must be close to 0 for guaranteed convergence of the error.6

To see this, suppose the spectrum of A − LC lies in the open left half plane, then there exists a7
positive definite solution P−1 to the Lyapunov equation8

( ) ( )1 1A LC P P A LC I− −′− + − = −
. (69)9

So, if x(t) satisfies Eqs. (30) - (32)  and ( )x̂ t  satisfies Eqs. (66) - (68), then10

( ) ( ) ( )1 1 1d
x P x x x f Lh P x x P f Lh

dt
− − −′′ ′ ′= − + − + −% % % %% % % % % %

(70)11

where12

( ) ( ) ( ),f f x x f x f x x Ax= = − − −% % % % %
, (71)13

( ) ( ) ( ),h h x x h x h x x Cx= = − − −% % % % %
. (72)14

Assuming that the system is sufficiently smooth, the last two terms on the right side are O(x)O( x% )215
and so are dominated by x x′% %  for small ,x x% . Hence, the right side is negative and the error16

converges to zero.17

If the system has an input Eqs. (15) - (17) and the input is measurable, then18

( ) ( )ˆ ˆ ˆ,x f x u L y y= + −&
(73)19

( )ˆ ˆ,y h x u=
(74)20

( ) 0ˆ ˆ0x x=
(75)21

is an local observer. If the controlled system Eqs. (15) - (17) stays in a sufficiently small22
neighborhood of the origin then the observer converges as before based on the analysis of Eq. (70)23
but with24

( ) ( ), ,f f x u f x x u Ax= − − −% % %
, (76)25

( ) ( ), ,h h x u h x x u Cx= − − −% % %
. (77)26

Frequently, the state estimate x̂  is used in a feedback control law u = κ( x̂ ). For the observer Eqs.27
(73) - (75) to converge with the open loop system Eqs. (15) - (17) need not be stable, but the closed28
loop system should be. If the spectrum of A − LC lies in the open left half plane, if the state29

feedback u = κ(x) locally exponential stabilizes the system Eqs. (15) - (17), and if x0, 0x%  are30
sufficiently small then the state estimate feedback u = κ( x̂ ) will also be locally exponential31
stabilizing the system and the observer will converge locally.32

The previously shown techniques require choosing L so that A − LC is Hurwitz. Of course, if there33
is one such L, there are many and the question is which one to choose. One reasonable way of34
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choosing L is via an approximating Kalman filter (see Kalman Filters). Assume that the linear1
approximating system Eqs. (55) - (57) is corrupted by noise,2

x Ax Gw= +& (78)3

y Cx Jv= + (79)4

( ) 0 0ˆ0x x x= + %
(80)5

where w, v are standard independent white Gaussian noises, and 0x%  is an independent Gaussian6
initial condition. Let the system be detectable and Q = G G′ , R JJ ′= . If R is invertible, then the7
long time, stationary Kalman filter for this system is8

( )ˆ ˆx Ax L y y= + −&
(81)9

ˆ ˆy Cx= (82)10

( ) 0ˆ0x x=
(83)11

The observer gain is12

1L PC R−′= (84)13

where P is the unique positive definite solution to the algebraic Riccati equation14

10 AP PA Q PC R CP−′ ′= + + − (85)15

This observer gain L is used in the observer Eqs. (73) - (75).16

The Kalman filtering approach in effect replaces the design parameter L by a pair of design17
parameters Q, R. The tradeoff between these two parameters is roughly as follows. The smaller that18
R is as compared to Q, the more weight the observer puts on the most recent observations in19
arriving at its estimate. Making R smaller while holding Q constant tends to move the spectrum of20
A−LC further left. At first this might seem an unmitigated benefit, but the further left that the21
spectrum is the more errors in the observations increase the errors in the estimate. An observer with22
the spectrum far to the left is severely compromised by observation noise and even by driving noise23
although to a lesser extent. The Kalman filter finds the optimal place to put the spectrum given the24
relative magnitudes (covariances) of the noise.25

If the system Eqs. (1) - (3) is not operating in the neighborhood of some fixed state, then the26
extended Kalman filtering approach can be used to construct an observer Eqs. (100)- (101). In27
effect, the nonlinear system Eqs. (1) - (3) is approximated by a time varying linear system along the28
estimate of the state trajectory with standard independent white Gaussian noises w, v,29

( ) ( ) ( )x A t x B t u G t w= + +&
(86)30

( ) ( ) ( )y C t x D t u J t v= + +
(87)31

where32

( ) ( ) ( )( )ˆ, ,
f

A t t x t u t
x

∂=
∂ , (88)33

( ) ( ) ( )( )ˆ, ,
f

B t t x t u t
u

∂=
∂ , (89)34
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( ) ( ) ( )( )ˆ, ,
h

C t t x t u t
x

∂=
∂ , (90)1

( ) ( ) ( )( )ˆ, ,
h

D t t x t u t
u

∂=
∂ . (91)2

A Kalman filter for this linear system is3

( ) ( ) ( )( )ˆ ˆ ˆx A t x B t u L t y y= + + −&
(92)4

( ) ( )ˆ ˆy C t x D t u= +
(93)5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1P t A t P t P t A t Q t P t C t R t C t P t−′ ′= + + −& (94)6

( )0 0ˆ ˆx t x= (95)7

( )0 0P t P=
(96)8

( ) ( ) ( )Q t G t G t′=
(97)9

( ) ( ) ( )R t J t J t′=
(98)10

( ) ( ) ( ) ( )1L t P t C t R t−′=
(99)11

The form of an extended Kalman filter is slightly different and obtained by changing the first two12
equations as before13

( ) ( )( )ˆ ˆ ˆ, ,x f t x u L t y y= + −&
(100)14

( )ˆ ˆ, ,y h t x u=
. (101)15

The matrices Q(t), R(t) are design parameters, the former represents the uncertainty in the system16
dynamics (the driving noise covariance) and must be chosen to be nonnegative definite. The latter17
represents the uncertainty in the system measurements (the measurement noise covariance) and18

must be chosen to be positive definite. The initial state estimate 0x̂  and its covariance P0 describe19
the prior knowledge of the true state at the beginning of the process.20

The extended Kalman filter is the most widely used nonlinear observer. Its virtues are its relative21
simplicity and its frequently good performance. Unfortunately, though it is not guaranteed to22
converge, here is a simple example where it fails.23

( ) ( )21x f x x x= = −&
(102)24

( ) 2 2y h x x x= = −
. (103)25

The system is observable as h, Lf (h), ( )2
fL h  separate points. The dynamics has stable equilibria at26

x = ±1 and an unstable equilibrium at x = 0. Under certain conditions, the extended Kalman filter27
fails to converge. Suppose the x0 = 1 so x(t) = 1 and y(t) = 1/2 for all t ≥ 0. But h(−1/2) = 1/2 so if28

0x̂  ≤ −1/2 the extended Kalman filter will not converge. To see this notice that when x̂ (t) = −1/2,29

the term y(t) − ŷ (t) = 0 so x̂&  = f ( x̂ (t)) = f (−1/2) = −3/8. Therefore x̂ (t) ≤ −1/2 for all t ≥ 0.30
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It is not hard to see that any one dimensional observer will encounter the same difficulties as the1
extended Kalman filter. One way around this difficulty might be to embed the system into a higher2
dimensional system in observer form.3

4. Construction of Observers by Error Linearization4

There are several approaches that rely on finding a change of state coordinates that makes the5
problem of constructing an observer easier. Perhaps, the simplest way is to try to find a change of6
state and output coordinates7

( )z x= θ
(104)8

( )w y= γ
(105)9

that transforms the nonlinear autonomous system Eqs. (15) - (17) into a linear autonomous system10
with input output injection,11

( ),z Az u y= +α&
(106)12

( ),w Cz u y= +β
. (107)13

One would like the transformations to be global diffeomorphisms, but one may have to settle for14
local diffeomorphisms around x0, y0 which map to z0 = 0, w0 = 0.15

It is easy to construct an observer for the latter system,16

( ) ( )ˆˆ ˆ ,z Az u y L w w= +α + −&
(108)17

( )ˆ ˆ ,w Cz u y= +β
(109)18

( ) ( )0 0ˆˆ ˆ0z z x= = θ
(110)19

( )ˆ ˆx z−1= θ
(111)20

with linear error dynamics21

( )z A LC z= −&% %
(112)22

( ) 0 0ˆ0z z z= −%
. (113)23

where ˆz z z= −% . If the nonlinear autonomous system Eqs. (15) - (17) is linearly observable at x0,24
then C, A is an observable pair, so one can set the spectrum of A − LC in the open left half plane and25
the error will go to zero exponentially.26

One can leave the observer in ẑ , w coordinates or transform the observer Eqs. (108) - (111) back27
into x̂ , y coordinates,28

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
1

ˆ ˆ ˆ ˆ ˆ, , , ,x f x u x u y u h x L y C x u y
x

−∂θ = + α −α + γ − θ −β ∂ 
&

(114)29

( ) 0ˆ ˆ0x x=
(115)30

The advantage of x̂ , y coordinates is that they may be natural to the system. The advantage of ẑ , w31
coordinates is that the observer is a stable linear system driven by a signal that depends on the input32
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and the output. If the signal is bounded, then the estimate remains bounded; even if the coordinate1
transformations are only approximate.2

The problem with this approach is that there are very few systems Eqs. (15) - (17) that can be3
transformed into Eqs. (106) - (107). The functions Eqs. (104) - (105) must satisfy a first order4
system of partial differential equations and must be at least local diffeomorphisms. To be solvable,5
the system of partial differential equations must satisfy integrability conditions that are quite6
restrictive. Also, the system Eqs. (15) - (17) needs to be linearly observable at x0.7

This last condition can sometimes be avoided by allowing Eqs. (104) - (105) to be semi-8
diffeomorphisms: that is, smooth functions with continuous inverses.9

To get around this problem, one can broaden the class of systems Eqs. (106) - (107) to those in so-10
called state affine form11

( ) ( ), ,z A u y z u y= +α&
(116)12

( ) ( ), ,w C u y z u y= +β
. (117)13

For these systems one can use a Kalman filtering approach,14

( ) ( ) ( )( )ˆˆ ˆ, ,z A u y z u y L t w w= +α + −&
(118)15

( ) ( )ˆ ˆ, ,w C u y x u y= +β
(119)16

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1P t A t P t P t A t Q t P t C t R t C t P t−′ ′= + + −&
(120)17

( ) ( ) ( )Q t G t G t′=
(121)18

( ) ( ) ( )R t J t J t′=
(122)19

( ) ( ) ( ) ( )1L t P t C t R t−′=
. (123)20

The partial differential equations for these state affine transformations are more complicated, but21
the integrability conditions are less stringent. These techniques have been successful employed for22
low dimensional problems but the calculations grow in complexity as the dimensions increase.23

If one assumes that the input u(t) and/or the output y(t) is differentiable, then one can allow A, C, α,24
β to depend on their derivatives. The partial differential equations for θ, γ �get even more25
complicated, but the integrability conditions become even less stringent. Of course, this approach is26
not advisable if there is noise present.27

Recently, a simpler approach has been introduced for real analytic systems without inputs,28

( ) [ ] ( ) [ ] ( )2 3 ...x f x Fx f x f x= = + + +&
(124)29

( ) [ ] ( ) [ ] ( )2 3 ...y h x Hx h x h x= = + + +
(125)30

( ) 00 0x x≈ =
(126)31

where [ ] ( ) [ ] ( ),d df x h x  denote the degree d terms in the Taylor series expansion of f (x), h(x). One32

seeks a local diffeomorphism z = θ(x) and an output injection β(y) that transforms Eqs. (30) - (32)33
into34

( )z Az y= −β&
(127)35
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where A is Hurwitz. If these can be found, then the observer1

( )ˆ ˆz Az y= −β&
(128)2

( )ˆ ˆx z−1= θ
(129)3

has exponentially stable linear error dynamics, with linear error dynamics4

z Az=&% % . (130)5

Necessary conditions for the existence of such a local diffeomorphism and output injection are that6
H, F be an observable pair, and that there are no resonances between the eigenvalues of F and those7
of A. Suppose the spectrum of F is (λ1, . . . , λn) and the spectrum of A is (µ1,. . . , µn). A resonance8
occurs when there is a nonzero vector k = (k1, . . . , kn) of nonnegative integers and some j, 1 ≤ j ≤ n,9
such that10

1

n

i i j
i

k µ
=

λ =∑
. (131)11

As originally proposed, a sufficient condition for the existence of such a local diffeomorphism and12
output injection was that the spectrum of F be either in the open left half plane or the open right half13
plane. This ruled out many interesting cases. The former implies that the system is exponentially14
stable, and so x̂ (t) = 0 is a convergent observer. The latter implies that the system is exponentially15
unstable, and so a local observer is not of much use. But, recently, a much weaker sufficient16
condition has been found, and the spectrum of F can be arbitrary. This method has not been17
extended to systems with inputs as yet.18

All of the above approaches lend themselves to power series methods for finding the desired19
transformations term by term up to any degree of accuracy. For brevity, we illustrate this for only20
the last method. The Hurwitz matrix A, the local diffeomorphism z = θ(x) and the output injection21
β(y) must satisfy the first order partial differential equation22

( ) ( ) ( ) ( )x f x A x y
x

∂θ = θ −β
∂ . (132)23

We expand in a power series assuming without loss of generality that the linear part of θ(x) is the24
identity,25

( ) [ ] ( ) [ ] ( )2 3 ...x x x xθ = + θ + θ +
(133)26

( ) [ ] ( ) [ ] ( )2 3 ...y BHx y yβ = +β +β +
(134)27

The linear part of Eq. (132) is28

A F BH= + . (135)29

and if H, F is an observable pair the spectrum of A can be set arbitrarily by choice of B.30

The quadratic part of Eq. (132) is31

[ ]
( ) [ ] ( ) [ ] ( ) [ ] ( )

2
2 2 2x Fx A x f x y

x

∂θ − θ = − −β
∂

. (136)32

If there is no resonance, then this equation has a unique solution, [ ]2θ (x), for any right side33

equation. The unknown [ ] ( )2 yβ  can be chosen to keep [ ] ( )2 xθ  close to 0 so θ(x) remains a34

diffeomorphism over a wide region.35
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The degree d part of Eq. (132) is1

[ ]
( ) [ ] ( )

[ ]
( ) [ ] ( ) [ ] ( )

1

1

d id
d d i d

i

x Fx A x x f x y
x x

−
−

=

∂θ ∂θ− θ = − −β
∂ ∂∑ . (137)2

If there is no resonance, then this equation has a unique solution, [ ] ( )d xθ , for any right side. Again3

the unknown [ ] ( )d yβ  can be chosen to keep [ ] ( )d xθ  close to 0 so θ(x) remains a diffeomorphism4

over a wide region.5

If we stop at degree d6

( ) [ ] ( ) [ ] ( )2 ... dx x x xθ = + θ + + θ
(138)7

( ) [ ] ( ) [ ] ( )2 ... dy BHx y yβ = +β + +β
(139)8

the observer Eq. (128) - (129) has approximately linear error dynamics9

( ) 1d
z Az O z

+= +&% %
. (140)10

5. High Gain Observers11

A high gain observer can be constructed for a system in uniformly observable form Eqs. (48) - (51)12
which satisfies certain Lipschitz conditions. For scalar output systems, it takes the form13

( )0
ˆŷ g u1= ξ +

(141)14

( ) ( )1 2 1 1 1
ˆ ˆ ˆ ˆg u L y yξ = ξ + ξ , + −&

M (142)15

( ) ( )1 2 1
ˆ ˆ ˆ ˆ ˆ,i i i ig u L y y+ξ = ξ + ξ ,...,ξ + −&

M (143)16

( ) ( ) ( )1
ˆ ˆ ˆ ˆ ˆ,n n n nf g u L y yξ = ξ + ξ ,...,ξ + −&

. (144)17

The gain is chosen as18

i
i

n
L

i

 
= θ 
  (145)19

where θ �is a constant that depends on the Lipschitz constant of the system. It has been proven that20
if θ �is sufficiently large, then the observer estimate is globally asymptotically convergent to the21
system state. Of course, this assumes that there is no noise in the dynamics nor the observations.22
High gain observers converge to differentiators as the gain increases and therefore become very23
sensitive to noise. If one uses a high gain observer, then even small noise can lead to substantial24
degradation in the performance of the observer. In most of the examples in the literature, the gain25
parameter θ is chosen small without regard to global convergence. The resulting observers seem to26
perform well in simulations, but this is probably due to linear rather than nonlinear effects. There is27
no theoretical explanation of why this should happen. When the gain is set too low, there is no28
guarantee of convergence even if there is no noise.29
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6. Nonlinear Filtering1

The stochastic approach to nonlinear estimation is to assume that the nonlinear system is described2
by Ito’s stochastic differential equations3

( ) ( ),dx f x u dt g x dw= +
(146)4

( ),dy h x u dt dv= +
(147)5

( ) 00x x=
(148)6

corrupted by observation and driving noises. Here w(t) and v(t) are standard Wiener processes and7
the initial condition x0 is assumed to have density p0(x). It can be shown that the unnormalized8
density q(x, t) of x(t) conditioned on the past controls and observations satisfies a stochastic partial9
differential equation called the Zakai equation,10

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
2

1 , 1 1

, , , , , ,
pn n

i ij i i
i i j ii i j

dq x t f x u q x t a x q x t q x t h x u dy
x x x= = =

∂ ∂= − + +
∂ ∂ ∂∑ ∑ ∑

(149)11

( ) ( )0,0q x p x=
(150)12

where13

( ) ( ) ( )
1

n

ij il lj
l

a x g x g x
=

=∑
. (151)14

The conditional density p(x, t) is obtained by normalizing q(x, t)15

( ) ( )
( )

,
,

q x t
p x t

q t d
=
∫ ξ, ξ

(152)16

and the conditional mean is17

( ) ( )
( )

ˆ
q t d

x t
q t d

∫ ξ ξ, ξ
=

∫ ξ, ξ
. (153)18

One can also take the conditional mode as the estimate,19

( ) ( )ˆ arg max ,xx t q x t=
. (154)20

The Zakai equation is a stochastic parabolic partial differential equation in the Ito sense and its21
numerical integration is quite delicate. It is theoretically quite important but of limited practical use.22
It is driven by the observation process y(t), so it must be solved in real time. This is generally not23
possible when the state dimension is greater than 1 and is difficult even when it is 1 because the24
accuracy of the solution is dictated by the step sizes in x and t. Hence, the numerical integration of25
the Zakai equation is generally not a practical approach to estimating the state of a nonlinear26
system.27

Notice when thought of as an observer, the Zakai Eq. (149) and state estimate  Eqs. (153) or (154)28
is an expanded order observer Eqs. (18) - (19) with the state z(t) being q(·, t). The state of the29
observer is infinite dimensional.30
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7. Minimum Energy and H∞∞∞∞ Estimation1

An alternative to the stochastic approach is to assume that the noises w(t), v(t) are not stochastic but2
unknown L2 functions corrupting the system,3

( ) ( ),x f x u g x w= +&
(155)4

( ),y h x u v= +
(156)5

( ) 0 0ˆ0x x x= + %
(157)6

where 0x%  is an unknown error in the initial condition. We seek the initial state error 0x%  and noises7

( ) ( )( ){ }, : 0w v tτ τ ≤ τ ≤
(158)8

of “minimum energy”9

( ) ( )
22 20

0

1 1

2 2

t
x w v d+ τ + τ τ∫%

(159)10

which are consistent with the initial estimate 0x̂  and the past controls and observations11

( ) ( )( ){ }, : 0u y tτ τ ≤ τ ≤
(160)12

and the system Eqs. (155) - (157). This is an optimal control problem. We consider the optimal cost13

( )
( )

( ) ( ) ( ) ( )( )
0

2 220

0,

1 1
, inf ,

2 2

t

x w
Q x t x w y h x u d

⋅

 = + τ + τ − τ τ τ  ∫%
%

(161)14

subject to  Eqs. (155) - (157) and x(t) = x. The optimal estimate is then given by15

( ) ( )ˆ arg min ,xx t Q x t=
. (162)16

The dynamic programming approach yields a partial differential equation for Q(x, t),17

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2

1 , 1

1 1
0 , , , , , ,

2 2

n n

i ij
i i ji i j

Q Q Q Q
x t x t f x u x t a x x t y t h x u

t x x x= =

∂ ∂ ∂ ∂= + + − −
∂ ∂ ∂ ∂∑ ∑

(163)18

It is of the Hamilton-Jacobian type, first order, nonlinear and again driven by the observations. As19
with the Zakai equation, it is very difficult to compute an accurate solution in real time. Moreover,20
it may not admit a smooth solution so the  Eq. (163) must be interpreted in the viscosity sense. This21
is an infinite dimensional observer with state Q(·,t) evolving according to Eq. (163) with the state22
estimate given by Eq. (162). Hence it is of limited practical use. In some sense, it is the larger23
deviations limit of the Zakai observer.24

The H∞ approach to nonlinear estimation is an extension of this. If there were no noise and the25
initial conditions were known exactly, then the estimation of x(t) would be relatively easy, just26
integrate the differential equation. If there are disturbances, i.e., driving and observation noises and27
an unknown initial condition, we would like the gain from these to the estimation error to be as28

small as possible. Hence, our estimate ( )ẑ τ  should satisfy the29

( ) ( ) ( ) ( )
2 22 22 0

0 0
ˆ

t t
x x x w v d

 τ − τ ≤ γ + τ + τ τ  ∫ ∫%
(164)30
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for as small γ as possible. Finding the minimal γ �is a difficult problem to solve directly, so instead,1
we choose a gain level γ, �and see if we can construct an observer that achieves it. If this is2
possible, then we try to do it for a smaller γ, if not we try a larger γ, etc.3

We seek an estimator such that if4

( )
( )

( ) ( ) ( ) ( )( ) ( ) ( )
0

2 2 2 2220

0 0,

1
ˆ, inf ,

2 2 2

t t

x w
Q x t x w y h x u d x x d

⋅

 γ γ= + τ + τ − τ τ τ − τ − τ τ 
 

∫ ∫%
%

(165)5

subject to Eqs. (155) - (157) and x(t) = x then Q(x, t) ≥ 0. If such a Q(x, t) exists then our estimate is6
given by Eq. (162) and Q satisfies in the viscosity sense7

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 , 1

2
2 2

1
0 , , , , ,

2

1
ˆ, .

2 2

n n

i ij
i i ji i j

Q Q Q Q
x t x t f x u x t a x x t

t x x x

y t h x u x z

= =

∂ ∂ ∂ ∂= + +
∂ ∂ γ ∂ ∂

γ− − + − τ

∑ ∑
(166)8

Again this is an infinite dimensional observer and hence of limited practical use. There is a9
stochastic version of the H∞ observer, but it too is infinite dimensional.10

From a theoretical point of view there are two additional problems with the minimum energy and11
H∞ observers. The first is that the criteria weights the distant past as much as the present, and the12
other is that Q(x, t) tends to grow. These don’t arise in the Zakai estimator because the second order13
terms in the Zakai partial differential equation tend to diffuse away the past, and the solution can14
always be renormalized Eq. (152), and the partial differential equation restarted. One way around15
these difficulties is to introduce a forgetting factor α �≥ 0. For the H∞ observer it takes the form16

( )
( )

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )

0

2 2
22 20

0

2,

0

,
2 2, inf
1

ˆ
2

t tt

x w t t

e x e w y h x u d
Q x t

e x x d

−α −τ−α

⋅ −α −τ

 γ γ+ τ + τ − τ τ τ 
 =
 − τ − τ τ  

∫

∫
%

%

(167)17

and the partial differential equation becomes18

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 , 1

2
2 2

1
0 , , , , , ,

2

1
ˆ, .

2 2

n n

i ij
i i ji i j

Q Q Q Q
Q x t x t x t f x u x t a x x t

t x x x

y t h x u x z

= =

∂ ∂ ∂ ∂= α + + +
∂ ∂ γ ∂ ∂

γ− − + − τ

∑ ∑

(168)19

In H∞ estimation one tries to find an observer that minimizes the induced L2 gain from disturbances20
to estimation error. An alternate is to use a different Lp norm on the disturbances and errors.21
Probably the most useful norm from a practical point view is the L∞ norm, so that bounded22
disturbances produce bounded estimation errors. Unfortunately, the mathematics is not so nice and23
the resulting partial differential equation is even more difficult to state and solve. And it is still an24
infinite dimensional observer.25

As the reader may surmise, it is not hard, theoretically to construct infinite dimensional observers26
for finite dimensional nonlinear systems. In fact every nonlinear observer has an infinite27
dimensional realization as we shall show in a moment. The hard part is finding a finite dimensional28
realization. Considerable effort has been expended on this topic for the Zakai observer with only29
limited success.30

Recall that an observer is a causal functional31
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( )
( )

( )
0ˆ

ˆ , 0

x

u x t t

y

 
 τ ≤ τ ≤ 
 τ 

a

(169)1

from the initial state estimate, 0x̂  and the past control and observation, ( ) ( ), ,0u y tτ τ ≤ τ ≤ , to the2

current state estimate, ( )x̂ t  such that ( ) ( )ˆ 0x t x t− →  as t → ∞.3

For such an observer ( )x̂ t , there exists a function Q(x, t) which is a causal functional of the initial4

state estimate 0x̂  and the past controls and observations, ( ) ( ){ }, ,0u y tτ τ ≤ τ ≤  such that Q(x, t)5

has a minimum at x = ( )x̂ t  and along any state trajectory x(t), input u(t), observation y(t) and6

noises w(t), v(t) are consistent with the system7

( )( ) ( )( ) ( ) ( )2

1

2 2

2 2 1 1, ,
t

t
Q x t t Q x t t w v d≤ + τ + τ τ∫

(170)8

Define Q(x, t) as9

( ) ( ) ( ) ( ) ( )
22 2

ˆ, inf 0
t

Q x t z x w v d t
1

1 1 1τ

 = τ − τ + τ + τ τ : ≤ τ ≤ 
 ∫

(171)10

where the infimum is over all z(τ), w(τ), v(τ) satisfying11

( ) ( ) ( )( ) ( )( ) ( ),
d

z f z u g z w
d

τ = τ τ + τ τ
τ (172)12

( ) ( )( ) ( )y h z vτ = τ + τ
(173)13

( )z t x=
. (174)14

and u(τ), y(τ) are the control and observation. This can be viewed as an infinite dimensional15
observer with state Q(·, t) and output Eq. (162).16

8. Multiple Extended Kalman Filters17

There is a hybrid approach to the nonlinear estimation. One can compute the solution of one of the18
partial differential equations described previously on a very coarse spatial and temporal grid. Of19
course, this will not lead to a very accurate estimate. But at each local maximum of the coarse20
solution to the Zakai equation one can initiate an extended Kalman filter, and this should quickly21
evolve to the true mode if it is nearby. For the minimum energy and H∞ partial differential22
equations, one initiates the extended Kalman filter at the local minima.23

The relative accuracy of the different Kalman filters can be assessed by how well they explain the24

most recent observations. If the observation is y(t) and an estimate is ( )x̂ t , then a measure of its25

recent accuracy is q(t) where26

( ) ( ) ( ) ( ) ( )( ) 21
ˆ ,

2
q t q t y t h x t u t= −α + −&

(175)27

where α ≥ 0 is a forgetting factor. The extended Kalman filter estimate ( )x̂ t  with the smallest28

current value of q(t) is taken as true. This leads to extremely fast transitions between estimates as29
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different q(t) cross. The bookkeeping of creating and merging extended Kalman filters is1
substantial, but the computation of their updates is relatively trivial.2

One can eliminate the step of solving the partial differential equation and instead continuously3
initiate extended Kalman filters at likely spots in the state space. The practicality of these4
approaches has yet to be demonstrated.5

9. Conclusion6

We have surveyed some but not all of the ways of constructing an observer for a nonlinear system.7
The high gain observer is a theoretical finite dimensional solution to a broad class of noise free8
problems, but performs poorly when noise is present. The Zakai, minimum energy, and H∞9
observers are theoretically infinite dimensional solutions to broad classes of noisy problems. But10
none of these are practically implementable. The linearization techniques give local and sometimes11
only approximate solutions for narrower classes of problems, and sometimes they are very hard to12
implement.13

The extended Kalman filter is probably still the most robust and practical approach for most14
problems. If there are substantial nonlinearities, e.g., multiple stable equilibria and/or stable limit15
cycles, then the use of multiple extended Kalman filters is probably the preferred approach.16

All these methods rely on the linear observability of the system to insure convergence. Other than17
the method of semi-diffeomorphisms, little is known about constructing observers around an18
equilibrium state where the system is not linearly observable. In summary, much is known about19
state reconstruction by observers but much remains to be done to find implementable solutions for20
broad classes of nonlinear systems.21

Glossary22

System: A system is a set of components, physical or otherwise, which are connected in23
such a manner as to form and act as an entire unit. Frequently, we use the term to24
describe a mathematical model of a physical system. A system has state variables25
which are its internal memory, input variables by which the external world26
affects the system, and output variables by which it affects the external world.27
The input variables that can be chosen or measured by the operator are called28
controls. Other input variables are frequently viewed as noise. The output29
variables that can be measured are called measurements.30

Observer: A system which accepts as inputs the measured inputs and outputs of another31
system and returns an estimate of the other system’s state. The observer is said to32
be of full, reduced, or expanded order when its state is of the same, smaller, or33
larger dimension than the other system.34

Autonomous35
system: A system whose behavior is independent of time.36

Causality: A property of systems, future inputs cannot affect past outputs.37

Controls: Those inputs that can be chosen by the operator.38

Detectable39
system: A system where the measurements eventually determine the state.40

Error41
linearization: A technique for constructing an observer which results in linear error dynamics42

in some coordinate system43
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Extended Kalman1
filter: An extension of the Kalman filter to nonlinear systems.2

H∞∞∞∞3
estimation: An approach to estimation that attempts to minimize the gain between the size of4

noise and the size of the estimation error.5

Hurwitz6
matrix: A square matrix with all its eigenvalues in the open left half plane.7

Kalman filter: A linear observer constructed using stochastic methods.8

Linear approximating9
system: The linear part of a nonlinear system around an equilibrium point.10

Linear system: A system described by linear equations.11

Linear12
observer: A linear system that is an observer for another system.13

Luenberger14
observer: A reduced order linear observer for a linear system.15

Minimum energy16
estimation: An approach to estimation that minimizes the size of the noise necessary to17

produce the observations18

Nonautonomous19
system: A system whose behavior varies with time.20

Nonlinear21
filter: An infinite dimensional, nonlinear observer constructed using stochastic methods22

described by a stochastic partial differential equation, called the Zakai equation.23

Nonlinear24
system: A system described by nonlinear equations.25

Nonlinear26
observer: A nonlinear system that is an observer for another nonlinear system.27

Observable28
form: A mathematical way of representing a system using the measurement function29

and its derivatives as state coordinates.30

Observable31
system: A system where the measurements and their time derivatives determine the state.32
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