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1 Hamilton Jacobi Bellman PDEs

Consider the optimal control problem of minimizing the integral
∫ ∞

0

l(x, u) dt (1)

of a Lagrangianl(x, u) subject to the controlled dynamics

ẋ = f(x, u)
x(0) = x0 (2)

wheref, l are smooth andl is strictly convex inu ∈ IRm for all x ∈ IRn.
Suppose the dynamics and Lagrangian have Taylor series expansions aboutx =

0, u = 0 of the form

ẋ = Fx+Gu + f [2](x, u) + f [3](x, u) + . . . (3)

l(x, u) =
1

2
(x′Qx+ u′Ru) + l[3](x, u) + l[4](x, u) + . . . (4)

where [d] indicates terms of degreed in the power series. We shall say that the
optimal control problem is nice ifF,G is stabilizable andQ

1
2 , F is detectable.

A special case of this optimal control problem is the linear quadratic regulator
(LQR) where one seeks to minimize a quadratic cost

∫ ∞

0

1

2
(x′Qx+ u′Ru) dt
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subject to linear dynamics

ẋ = Fx+Gu

If this is nice then there is a unique nonnegative definite solution to the algebraic
Riccati equation

0 = F ′P + PF +Q− PGR−1G′P (5)

that gives the optimal cost

π(x0) =
1

2
(x0)′Px0 = min

∫ ∞

0

1

2
(x′Qx+ u′Ru) dt (6)

Furthermore the optimal control is given in feedback form

u(t) = κ(x(t)) = Kx(t)

where

K = −R−1G′P (7)

and the closed loop dynamics

ẋ = (F +GK)x (8)

is exponentially stable.
Returning to the nonlinear problem, it is well-known that ifit admits a smooth

optimal costπ(x) and a smooth optimal feedbacku = κ(x) locally aroundx = 0
then they must satisfy the Hamilton Jacobi Bellman (HJB) PDE

0 = min
u

∂π

∂x
(x)f(x, u) + l(x, u)

κ(x) = argmin
u

∂π

∂x
(x)f(x, u) + l(x, u)

We shall assume that∂π∂x (x)f(x, u) + l(x, u) is strictly convex inu locally around
x = 0, u = 0 then the HJB PDE can be rewritten as

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x.κ(x))

(9)

Al’brecht [1] has shown that for nice optimal control problems, the Hamilton
Jacobi Bellman PDE can be approximately solved by Taylor series methods locally
around the origin. Lukes [14] showed that under suitable conditions this series ex-
pansion converges to the true solution. The method has been implemented on ex-
amples by Garrard and Jordan [7], Yoshida and Loparo [22], Spencer, Timlin, Sain
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and Dyke [20] and others. We have implemented it in the Nonlinear Systems Tool-
box [11], a MATLAB based package.

Assume the dynamics and Lagrangian have power series expansions (3, 4). We
assume that the unknowns, the optimal cost and optimal feedback, have similar ex-
pansions.

π(x) = 1
2x

′Px+ π[3](x) + π[4](x) + . . .

κ(x) = Kx+ κ[2](x) + κ[3](x) + . . .
(10)

We plug these into the HJB PDE (9) and extract terms of lowest degree to obtain the
equations

0 = x′ (F ′P + PF +Q−K ′RK)x

0 = x′ (PG+K ′R)

Notice the first equation is quadraticx and the second is linear inx. More impor-
tantly the first equation is linear in the unknownP but quadratic in the unknownK
while the second is linear in both the unknowns. They lead to the familiar equations
(5, 7) .

Having foundP,K, we extract the next lowest terms from (9) and obtain

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx) + l[3](x,Kx)

0 =
∂π[3]

∂x
(x)G + x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx) +

(
κ[2](x)

)′
R

(11)

Notice several things. The first equation is cubic inx and the second is quadratic.
The equations involve the previously computedP,K. The unknownsπ[3](x); κ[2](x)
appear linearly in these equations. The equations are triangular,κ[2](x) does not
appear in the first one. If we can solve the first forπ[3](x) then clearly we can solve
the second forκ[2](x) asR is assumed to be invertible.

To decide the solvability of the first we study the linear operator

π[3](x) 7→ ∂π[3]

∂x
(x)(F +GK)x (12)

from cubic polynomials to cubic polynomials. Its eigenvalues are of the formλi +
λj + λk whereλi, λj , λk are eigenvalues ofF + GK. A cubic resonance occurs
when such a sum equals zero. But all the eigenvalues ofF + GK are in the open
left half plane so there are no cubic resonances. Hence the linear operator (12) is
invertible and (11) is solvable.

The higher degree terms are found in a similar fashion. Suppose thatπ(x) and
κ(x) are the expansions of the optimal cost and optimal feedback through degreesd
andd − 1 respectively. We wish to find the next termsπ[d+1](x) andκ[d](x). We
plugπ(x) + π[d+1](x) andκ(x) + κ[d](x) into the HJB PDEs (9) and extract terms
of degreesd+ 1 andd respectively to obtain
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0 =
∂π[d+1]

∂x
(x) (F +GK)x+

(
∂π

∂x
(x)f(x, κ(x))

)[d+1]

+ x′PGκ[d](x)

+ (l(x, κ(x)))
[d+1]

+ x′K ′Rκ[d](x)

0 =
∂π[d+1]

∂x
(x)G+

(
∂π

∂x
(x)

∂f

∂u
(x, κ(x))

)[d]

+

(
∂l

∂u
(x, κ(x))

)[d]

+
(
κ[d](x)

)′
R

where(·)[d] is the degreed part of the enclosed.
Because of (7)κ[d](x) drops out of the first of these equations yielding

0 =
∂π[d+1]

∂x
(x) (F +GK)x+

(
∂π

∂x
(x)f(x, κ(x))

)[d+1]

+ (l(x, κ(x)))[d+1]

(13)

Consider the linear operator from degreed+ 1 polynomials to degreed+ 1 polyno-
mials

π[d+1](x) 7→ ∂π[d+1]

∂x
(x) (F +GK)x

Its eigenvalues are of the formλi1 + . . . + λid+1
whereλj is an eigenvalue ofF +

GK. A resonance of degreed + 1 occurs when such a sum equals zero. But all the
eigenvalues ofF +GK are in the open left half plane so there are no resonances of
degreed + 1 and we can solve (13) forπ[d+1](x). Then the second equation can be
solved forκ[d](x)

κ[d](x) = −R−1

(
∂π[d+1]

∂x (x)G+
(
∂π
∂x (x)∂f∂u (x, κ(x))

)[d]

+
(
∂l
∂u (x, κ(x))

)[d]
)′

(14)
We have developed MATLAB based software to compute the series solutions to

the HJB PDE [11]. In principle the computation can be carriedout to any degree
in any number of variables but there are practical limitations in execution time and
memory. This is the familiar curse of dimensionality. Therearen+ d− 1 choosed
monomials of degreed in n variables. Still the software is quite fast. For example
we are able to solve an HJB PDE in six states and one control to degree six in the
optimal cost and degree five in optimal feedback in less than 30 seconds on a five year
old laptop (500 MHz) with limited memory (512 MB). There are 462 monomials of
degree6 in 6 variables.

The main problem with the power series approach is that is local in nature. The
power series solution to the HJB PDE is very close to the true solution in some
neighborhood of the origin. Increasing the degree of the approximation may in-
crease the accuracy but does not necessarily yield a larger domain of validity of the
approximation. Complicating this is the fact that in general HJB PDEs do not have
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globally smooth solutions. The underlying optimal controlproblem may have con-
jugate points or focal points. It is for this reason that the theory of viscosity solutions
was developed [4], [5].

2 Other Approaches

There are several other approaches to solving HJB PDEs, and alarge literature, for
example see [3], [6], [13], [9], [10], [16], [18], [19], [21]and their references. One
approach is to discretize the underlying optimal control problem and convert it into a
nonlinear program in discrete time and space. But the curse of dimensionality rears
its ugly head. Consider the optimal control problem generating the above mentioned
HJB PDE. If each of the six states is discretized into 10 levels then there would
1,000,000 discrete states.

Other approaches involve discretizing the HJB PDE with subtle tricks so that
the algorithm converges to its viscosity solution. This also suffers from the curse of
dimensionality. The fast sweeping and marching method (Tsitsiklis [21], Osher et
al. [16], [9], [10] and Sethian [19]) are ways to lessen this curse. It takes advantage of
the fact that an HJB PDE has characteristics. These are the closed loop optimal state
trajectories that converge to the origin astθ0∞. The fast marching method grows
the solution out from the origin discrete state by discrete state in reverse time by
computing the solution at new discrete states that are on theboundary of the already
computed solution.

3 New Approach

The new approach that we are proposing is a extension of the power series method
of Al’brecht [1], the Cauchy-Kovalevskaya technique [8], the fast marching method
[21], [19] and the patchy technique of Ancona and Bressan [2]. It is similar to that
of Navasca and Krener [15]. Suppose we have computed a power series solution to
some degreed+ 1 of an HJB PDE in a neighborhood of the origin by the method of
Al’brecht. We verify that this power series solution is valid in some sublevel set of
the computed optimal cost function by checking how well it satisfies the HJB PDE
on the level set that is its boundary. At the very least it should be a valid Lyapunov
function for the dynamics with the computed optimal feedback on the sublevel set.
Also the computed closed loop dynamics should point inward on the boundary of the
sublevel set, in other words, the computed backward characteristics of the HJB PDE
should radiate outward. This sublevel set is called the zeroth patch.

Then we pick a point on the boundary of the zeroth patch and assume the optimal
cost and optimal feedback have a power series expansion around that point. We
already know the partial derivatives of these in directionstangent to the boundary
of the patch. Using a technique similar to that of Cauchy-Kovalevskaya, we can
compute the other partial derivatives from the HJB PDE because we have assumed
that the computed closed loop dynamics is not tangent to the level set, it points
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inward. In this way we compute the solution in a patch that overlaps the zeroth
patch. Call this the first patch. Again we can estimate the size of this patch by how
well the computed solution satisfies the HJB PDE.

It is not essential that the dynamicsf and Lagrangianl be smooth at the boundary
of zeroth patch (or other patches). If they are not smooth at the boundary we use their
derivatives to the outside of the zeroth patch. This is a formof upwind differentiation
We do assume that they are smooth at the origin but they can have discontinuities
or corners elsewhere. If they do, we choose the patches so that these occur at patch
boundaries. In this way it is an upwinding scheme because theclosed loop dynamics,
the characteristic curves of the PDE point inward on the boundary of the zeroth patch.
When computing the solution on the second patch we use the derivative information
in the backward characteristic direction.

Then we choose another point that is on the boundary of the zeroth patch but not
in the first patch and repeat the process. In this way we grow a series of patches
encircling the sublevel set. The validity of the computed solution on each patch is
verified via how well it solves the HJB PDE. On the boundary between adjacent
patches we may have two possible closed loop vector fields. Ifthe angle between
them is obtuse, the two trajectories are diverging, then there is no problem and we
can choose either when on the boundary between the patches. If the angle is acute
then there may be a sliding regime and another patch in between may be needed.
Another possibility is to blend the computed costs across the patch boundary. This
will cause a blending of the computed feedback. (These are research questions.)

After the original sublevel set has been completely encircled by new patches we
have piecewise smooth approximations to the optimal cost and optimal feedback.
We choose a higher sublevel set of the computed cost that is valid for all the patches
and repeat the process.

The patches are ordered and the approximate solution to the problem atx is
defined to be the approximate solution in the lowest ordered patch containingx.

The patches can also be defined a priori, this would simplify the method but
might lead to unsatisfactory solutions if they are chosen too large or long computa-
tion times if they are chosen too small.

Of course there is the problem of shocks caused by conjugate or focal points. The
assumptions that we make ensure that these do occur at the origin, the true solution
is smooth around there. But that does not mean they will not occur elsewhere. When
possible we will choose the patches so that they occur at patch boundaries. Not
a lot is known about the types of singularities that can occurand how they affect
the optimal feedback. One of the goals of our future researchproject is to better
understand these issues.

We expect most of the time to compute the expansions to degreefour for the
optimal cost and degree three for the optimal feedback. But if the dynamics and/or
Lagrangian is not sufficiently smooth we might compute to degrees two and one
respectively.

As we noted before in many engineering problems stability ofthe closed loop
dynamics is the principle goal. There may be considerable freedom in choosing the
Lagrangian and so a smooth Lagrangian may be chosen. In many problems there
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are state and/or control constraints. Then the Lagrangian can be chosen so that the
solution does not violate the constraints.

In the following sections we discuss the method in more detail.

4 One Dimensional HJB PDEs

For simplicity we consider an optimal control problem (1, 2)where the state dimen-
sionn = 1 and the control dimensionm = 1. Occasionally to simplify the calcula-
tions we shall assume that the dynamics is affine in the control and the Lagrangian is
quadratic in the control

f(x, u) = f(x) + g(x)u
l(x, u) = q(x) + s(x)u + 1

2r(x)u
2 (1)

with r(x) > 0. The method works for more generalf, l but it is more complicated.
In any case we shall assume thatl(x, u) = 0 iff x = 0, u = 0

We assume that the degreed + 1 polynomialπ0(x) and the degreed polyno-
mial κ0(x), computed by the power series method of Al’brecht describedabove,
approximately solves this problem in a neighborhood ofx = 0. We plug the power
series expansions ofπ0, κ0 into the right side of the first HJB equation with the exact
dynamicsf and exact Lagrangianl and compute the local error

ρ0(x) =
∂π0

∂x
(x)f(x, κ0(x)) + l(x.κ0(x)) (2)

or relative local error

ρ0
r(x) =

ρ0(x)

π0(x)
(3)

Of course the local error and some of its derivative will (nearly) vanish atx = 0
but it will generally be nonzero forx 6= 0. Supposeρ0

r(x) is small on some interval
[0, x1] then we accept the power series solutionπ0(x), κ0(x), on this interval. We
would like to continue the solution to the right ofx1. Let π1(x), κ1(x) denote this
continued solution. We have an approximation to the optimalcostπ0(x1) and op-
timal feedbackκ0(x1) atx1, we accept the former by settingπ1(x1) = π0(x1) but
not the latter. We shall computeu1 = κ1(x1).

We evaluate the HJB PDE (9) atx1 using the assumption (1) to obtain

0 =
∂π1

∂x
(x1)f(x1, u1) + q(x1) + s(x1)u1 +

1

2
r(x1)

(
u1
)2

(4)

0 =
∂π1

∂x
(x1)g(x1) + s(x1) + r(x1)u1 (5)

We can solve the second equation foru1 and plug it into the first to obtain a quadratic
in ∂π1

∂x (x1). We setu1 to be the root nearer toκ0(x1). In this way we find∂π
1

∂x (x1)
andu1.
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If assumption (1) does not hold then we must solve a coupled pair of nonlinear
equations for the unknowns∂π

1

∂x (x1) andu1. This can be done by a couple of iter-

ations of Newton’s method as we already have good starting guesses,∂π
0

∂x (x1) and
κ0(x1).

Since we assumed thatl(x, u) = 0 iff x = 0, u = 0 we conclude from (4) that
f(x1, u1) 6= 0.

To find ∂2π1

∂x2 (x1) and ∂κ1

∂x (x1) we proceed as follows. Differentiate the HJB
PDEs (9) with respect tox atx1 to obtain

0 =
∂2π1

∂x2
(x1)f(x1, u1) +

∂π1

∂x
(x1)

(
∂f

∂x
(x1, u1) +

∂f

∂u
(x1, u1)

∂κ

∂x
(x1)

)

+
∂l

∂x
(x1, u1) +

∂l

∂u
(x1, u1)

∂κ

∂x
(x1) (6)

0 =
∂2π1

∂x2
(x1)

∂f

∂u
(x1, u1) +

∂π1

∂x
(x1)

∂2f

∂x∂u
(x1, u1) +

∂2l

∂x∂u
(x1, u1)

+

(
∂π1

∂x
(x1)

∂2f

∂u2
(x1, u1) +

∂2l

∂u2
(x1, u1)

)
∂κ1

∂x
(x1) (7)

Because of (4), the first equation (6) reduces to

0 =
∂2π1

∂x2
(x1)f(x1, u1) +

∂π1

∂x
(x1)

∂f

∂x
(x1, u1) +

∂l

∂x
(x1, u1) (8)

Notice the unknown∂κ
1

∂x (x1) does not appear in this equation so we can easily solve

for the unknown∂
2π1

∂x2 (x1) sincef(x1, u1) 6= 0. Because of the assumptions (1) the
second equation reduces to

0 =
∂2π1

∂x2
(x1)g(x1) +

∂π1

∂x
(x1)

∂g

∂x
(x1)

+
∂s

∂x
(x1) +

∂r

∂x
(x1)u1 + r(x1)

∂κ1

∂x
(x1)

By assumptionr(x1) > 0 so we can solve the second equation for other unknown
∂κ1

∂x (x1).

To find the next unknowns∂
3π1

∂x3 (x1) and ∂
2κ1

∂x2 (x1) we proceed in a similar fash-
ion. We differentiate HJB PDEs (9) twice with respect tox and evaluate atx1 as-
suming (1) to obtain two equations,



Patchy Solutions 285

0 =
∂3π1

∂x3
(x1)f(x1, u1) + 2

∂2π1

∂x2
(x1)

∂f

∂x
(x1, u1)

+
∂π1

∂x
(x1)

∂2f

∂x2
(x1, u1) +

∂2l

∂x2
(x1, u1)

+

(
∂2π1

∂x2
(x1)

∂f

∂u
(x1, u1) +

∂π1

∂x
(x1)

∂2f

∂x∂u
(x1, u1) +

∂2l

∂x∂u
(x1, u1)

)
∂κ1

∂x
(x1)

0 =
∂3π1

∂x3
(x1)

∂f

∂u
(x1, u1) + 2

∂2π1

∂x2
(x1)

∂2f

∂x∂u
(x1, u1)

+
∂π1

∂x
(x1)

∂3f

∂x2∂u
(x1, u1) +

∂3l

∂x2∂u
(x1, u1)

+2

(
∂2π1

∂x2
(x1)

∂2f

∂u2
(x1, u1) +

∂π1

∂x
(x1)

∂3f

∂x∂u2
(x1, u1) +

∂3l

∂x∂u2
(x1, u1)

)
∂κ1

∂x
(x1)

+

(
∂π1

∂x
(x1)

∂3f

∂u3
(x1, u1) +

∂3l

∂u3
(x1, u1)

)(
∂κ1

∂x
(x1)

)2

+

(
∂π1

∂x
(x1)

∂2f

∂u2
(x1, u1) +

∂2l

∂u2
(x1, u1)

)
∂2κ1

∂x2
(x1)

The unknown∂
2κ1

∂x2 (x1) does not appear in the first equation because of (4). Since

f(x1, u1) 6= 0 we can solve this equation for the unknown∂
3π1

∂x3 (x1) The second is
linear in both unknowns. Under the assumptions (1) the second equation reduces to

0 =
∂3π1

∂x3
(x1)g(x1) + 2

∂2π1

∂x2
(x1)

∂g

∂x
(x1)

+
∂π1

∂x
(x1)

∂2g

∂x2
(x1) +

∂2s

∂x2
(x1) +

∂2r

∂x2
(x1)u1

+2
∂r

∂x
(x1)

∂κ1

∂x
(x1) + r(x1)

∂2κ1

∂x2
(x1)

and becauser(x1) > 0 it is readily solvable for the other unknown∂
2κ1

∂x2 (x1).

To find the next unknowns∂
4π1

∂x4 (x1) and ∂3κ1

∂x3 (x1) we differentiate HJB PDE
(9) three times with respect tox and evaluate atx1 assuming (1) to obtain the two
equations,
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0 =
∂4π1

∂x4
(x1)f(x1, u1)) + 3

∂3π1

∂x3
(x1)

∂f

∂x
(x1, u1) + 3

∂2π1

∂x2
(x1)

∂2f

∂x2
(x1, u1)

+
∂π1

∂x
(x1)

∂3f

∂x3
(x1, u1) +

∂3l

∂x3
(x1, u1)

+2

(
∂3π1

∂x3
(x1)

∂f

∂u
(x1, u1) + 2

∂2π1

∂x2
(x1)

∂2f

∂x∂u
(x1, u1)

+
∂π1

∂x
(x1)

∂3f

∂x2∂u
(x1, u1) +

∂3l

∂x2∂u
(x1, u1)

)
∂κ1

∂x
(x1)

+

(
∂2π1

∂x2
(x1)

∂2f

∂u2
(x1, u1) +

∂π1

∂x
(x1)

∂3f

∂x∂u2
(x1, u1)

+
∂3l

∂x∂u2
(x1, u1)

)(
∂κ1

∂x
(x1)

)2

+

(
∂2π1

∂x2
(x1)

∂f

∂u
(x1, u1) +

∂π1

∂x
(x1)

∂2f

∂x∂u
(x1, u1)

+
∂2l

∂x∂u
(x1, u1)

)
∂2κ1

∂x2
(x1)

0 =
∂4π1

∂x4
(x1)

∂f

∂u
(x1, u1) + 3

∂3π1

∂x3
(x1)

∂2f

∂x∂u
(x1, u1) + 3

∂2π1

∂x2
(x1)

∂3f

∂x2∂u
(x1, u1)

+
∂π1

∂x
(x1)

∂4f

∂x3∂u
(x1, u1) +

∂4l

∂x3∂u
(x1, u1)

+3

(
∂3π1

∂x3
(x1)

∂2f

∂u2
(x1, u1) + 2

∂2π1

∂x2
(x1)

∂3f

∂x∂u2
(x1, u1)

+
∂π1

∂x
(x1)

∂4f

∂x2∂u2
(x1, u1) +

∂4l

∂x2∂u2
(x1, u1)

)
∂κ1

∂x
(x1)

+3

(
∂2π1

∂x2
(x1)

∂2f

∂u2
(x1, u1) +

∂π1

∂x
(x1)

∂3f

∂x∂u2
(x1, u1) +

∂3l

∂x∂u2
(x1, u1)

)
∂2κ1

∂x2
(x1)

+3

(
∂2π1

∂x2
(x1)

∂3f

∂u3
(x1, u1) +

∂π1

∂x
(x1)

∂4f

∂x∂u3
(x1, u1) +

∂4l

∂x∂u3
(x1, u1)

)(
∂κ1

∂x
(x1)

)2

+3

(
∂π1

∂x
(x1)

∂3f

∂u3
(x1, u1) +

∂3l

∂u3
(x1, u1)

)
∂κ1

∂x
(x1)

∂2κ1

∂x2
(x1)

+

(
∂π1

∂x
(x1)

∂4f

∂u4
(x1, u1) +

∂4l

∂u4
(x1, u1)

)(
∂κ1

∂x
(x1)

)3

+

(
∂π1

∂x
(x1)

∂2f

∂u2
(x1, u1) +

∂2l

∂u2
(x1, u1)

)
∂3κ1

∂x3
(x1)

We expect to stop at degree four most of the time, The assumptions (1) greatly
simplify the last equation,
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0 =
∂4π1

∂x4
(x1)g(x1) + 3

∂3π1

∂x3
(x1)

∂g

∂x
(x1) + 3

∂2π1

∂x2
(x1)

∂2g

∂x2
(x1)

+
∂π1

∂x
(x1)

∂3g

∂x3
(x1) +

∂3s

∂x3
(x1) +

∂3r

∂x3
(x1)u1 + r(x1)

∂3κ1

∂x3
(x1)

Notice the similarities with Al’brecht’s method. We successively solve for
∂d+1π
∂xd+1 (x1) and ∂dκ1

∂xd (x1) for d = 0, 1, 2, . . .. At the lowest level the equations are
coupled and if (1) holds we must solve a quadratic equation similar to a Riccati equa-
tion. At the higher levels the equations are linear and triangular in the unknowns.

Once we have computed a satisfactory approximate solution on the interval
[x1, x2] we can repeat the process and find an approximate solution to the right of
x2.

5 One Dimensional Example

Consider the simple LQR of minimizing

1

2

∫ ∞

0

z2 + u2 dt

subject to
ż = z + u

Here bothz andu are one dimensional.
The Riccati equation (5) is

0 = 2P + 1− P 2

and its unique nonnegative solution isP = 1 +
√

2. Therefore the optimal cost and
optimal feedback are

π(z) =
1 +
√

2

2
z2

κ(z) = −(1 +
√

2)z

The optimal closed loop dynamics is

ż = −
√

2z

After the change of coordinates

z = sinx

then the LQR become the nonlinear optimal control problem ofminimizing

1

2

∫ ∞

0

sin2 x+ u2 dt
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subject to

ẋ =
sinx+ u

cosx

We know that the optimal cost and optimal feedback is

π(x) =
1 +
√

2

2
sin2 x

κ(z) = −(1 +
√

2) sinx

Notice that the optimal cost is even and the optimal feedbackis odd. We can compare
it with the solution computed by the method described above.

Fig. 1.True cost (solid) and the computed cost (dash-dot).

The computed solution on the interval[0, 0.9] is the one of Al’brecht. As we com-
pute the solution for largerx, the size of the patches decreases because the change
of coordinates is becoming more nearly singular as we approach π

2 . There are15
patches. The relative error tolerance is0.5.

6 HJB PDEs in Higher Dimensions

In this section we generalize the proposed scheme to higher dimensional state spaces
n ≥ 1. For notational simplicity we shall assume that the controlis one dimensional
m = 1, generalizing to higher control dimensions causes no conceptual difficulty.
We also make the simplifying assumptions that the dynamics is affine in the control
and the cost is quadratic in the control of the form

ẋ = f(x) + g(x)u

l(x, u) = q(x) + r(x)u2/2
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Fig. 2. Relative error between true cost and the computed cost.

Fig. 3. True feedback (solid) and the computed feedback (dash-dot).

The method does not require these assumptions but they do greatly simplify it.
Suppose we have computed the Al’brecht solutionπ0(x), κ0(x) to the HJB PDE

(9) in some neighborhood of the origin. We check the local error ρ0(x) (2) or rel-
ative local error (3) and decide that it is a reasonable solution in some sublevel set{
x : π0(x) ≤ c

}
which we call the zeroth patchP0. We choosex1 on the level set

π(x1) = c and seek to extend the solution in a patch aroundx1. To do so we need to
estimate the low degree partial derivatives of the optimal cost and optimal feedback
atx1.

We assume that the Al’brecht closed loop dynamics is transverse to the boundary
of the sublevel set and points inward

∂π0

∂x
(x1)f(x1, κ0(x1)) < 0
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Fig. 4. Relative error between the true feedback and the computed feedback.

We accept thatπ1(x1) = π0(x1) but we will compute a newu1 = κ1(x1) probably
different fromκ0(x1).

The HJB equations become

0 =
∂π

∂xσ
(x) (fσ(x) + gσ(x)κ(x)) + q(x) + r(x) (κ(x))

2
/2 (1)

0 =
∂π

∂xσ
(x)gσ(x) + r(x)κ(x) (2)

We choose the indexk that maximizes

|fk(x1) + gk(x
1)κ0(x1)|

For notational convenience we assume thatk = n.
We assume that

π1(x1) = π0(x1)

∂π1

∂xσ
(x1) =

∂π0

∂xσ
(x1)

for 1 ≤ σ < n. Then we can solve the second HJB equation forκ(x1) and plug it
into the first to get a quadratic equation in the other unknown

0 = a

(
∂π1

∂xn
(x1)

)2

+ b
∂π1

∂xn
(x1) + c

where
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a =
1

2r(x1)
(gn(x

1))2

b =
1

r(x1)
gn(x

1)
n−1∑

σ=1

∂π1

∂xσ
(x1)gσ(x)− fn(x1)

c =
1

2r(x1)

n−1∑

σ=1

n−1∑

τ=1

∂π1

∂xσ
(x1)gσ(x

1)
∂π1

∂xτ
(x1)gτ (x

1)

−q(x1)−
n−1∑

σ=1

∂π1

∂xσ
(x1)fσ(x

1)

Assuming this equation has real roots, we set∂π1

∂xn
(x1) to be the root closest to

∂π0

∂xn
(x1) and we solve forκ(x1),

κ(x1) = − 1

r(x1)

n∑

σ=1

∂π1

∂xσ
(x1)gσ(x

1)

The next unknowns in a power series expansion of the optimal cost and feedback
aroundx1 are ∂2π1

∂xi∂xj
(x1) and ∂κ

1

∂xi
(x1) for 1 ≤ i ≤ j ≤ n. We assume that

∂2π1

∂xi∂xj
(x1) =

∂2π0

∂xi∂xj
(x1)

for 1 ≤ i ≤ j ≤ n− 1 and we take the partials of (1, 2) with respect toxi to obtain
2n equations

0 =
∂2π1

∂xi∂xσ
(x1)

(
fσ(x

1) + gσ(x
1)κ1(x1)

)
(3)

+
∂π1

∂xσ
(x1)

(
∂fσ
∂xi

(x1) +
∂gσ
∂xi

(x1)κ1(x1)

)

∂q

∂xi
(x1) +

1

2

∂r

∂xi
(x1)(κ1(x1))2

0 =
∂2π1

∂xi∂xσ
(x1)gσ(x

1) +
∂π1

∂xσ
(x1)

∂gσ
∂xi

(x1) (4)

+
∂r

∂xi
(x1)κ1(x1) + r(x1)

∂κ1

∂xi
(x1)

for the remaining2n unknowns. Because of the second HJB equation (2), the firstn

equations do not contain the unknowns∂κ1

∂xi
(x1) for 1 ≤ i ≤ n. Moreover the firstn

equations are decoupled and can be solved one by one
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∂2π1

∂xi∂xn
(x1) =

−1

fn(x1) + gn(x1)κ1(x1)

×
(
n−1∑

σ=1

∂2π1

∂xi∂xσ
(x1)

(
fσ(x

1) + gσ(x
1)κ1(x1)

)

+
∂π1

∂xσ
(x1)

(
∂fσ
∂xi

(x1) +
∂gσ
∂xi

(x1)κ1(x1)

)

∂q

∂xi
(x1) +

1

2

∂r

∂xi
(x1)(κ1(x1))2

)

We invoke the summation convention when the range of the sum is from 1 to n,
otherwise we explicitly show the sum.

The remainingn equations are also solvable one by one,

∂κ1

∂xi
(x1) =

−1

r(x1)

(
∂2π1

∂xi∂xσ
(x1)gσ(x

1) +
∂π1

∂xσ
(x1)

∂gσ
∂xi

(x1) +
∂r

∂xi
(x1)κ1(x1)

)

Next we find the third partials ofπ1 atx1. We assume that

∂3π1

∂xi∂xj∂xk
(x1) =

∂3π0

∂xi∂xj∂xk
(x1)

for 1 ≤ i ≤ j ≤ k ≤ n − 1. Equations for the other third partials are obtained by
differentiating the first HJB equation (1) with respect toxi andxj for 1 ≤ i ≤ j ≤ n
and evaluating atx1 yielding

0 =
∂3π1

∂xi∂xj∂xσ
(x1)

(
fσ(x

1) + gσ(x
1)κ1(x1)

)
(5)

+
∂2π1

∂xi∂xσ
(x1)

(
∂fσ
∂xj

(x1) +
∂gσ
∂xj

(x1)κ1(x1)

)

+
∂2π1

∂xj∂xσ
(x1)

(
∂fσ
∂xi

(x1) +
∂gσ
∂xi

(x1)κ1(x1)

)

+
∂π1

∂xσ
(x1)

(
∂2fσ
∂xi∂xj

(x1) +
∂2gσ
∂xi∂xj

(x1)κ1(x1)

)

+
∂2q

∂xi∂xj
(x1) +

1

2

∂2r

∂xi∂xj
(x1)(κ1(x1))2

−r(x1)
∂κ1

∂xi
(x1)

∂κ1

∂xj
(x1)

These are(n + 1)n/2 equations in the(n + 1)n/2 unknowns ∂3π1

∂xi∂xj∂xn
(x1) for

1 ≤ i ≤ j ≤ n. They can be solved one by one in lexographic order. The unknowns
∂2κ1

∂xi∂xj
(x1) do not appear because of (2) and they are simplified by (4).

Then we differentiate the second HJB equation (3) with respect toxi andxj for
1 ≤ i ≤ j ≤ n to obtain the(n+ 1)n/2 equations
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0 =
∂3π1

∂xi∂xj∂xσ
(x1)gσ(x

1) +
∂2π1

∂xi∂xσ
(x1)

∂gσ
∂xj

(x1) (6)

+
∂2π1

∂xj∂xσ
(x1)

∂gσ
∂xi

(x1) +
∂π1

∂xσ
(x1)

∂2gσ
∂xi∂xj

(x1)

+
∂2r

∂xi∂xj
(x1)κ1(x1) +

∂r

∂xi
(x1)

∂κ1

∂xj
(x1)

+
∂r

∂xj
(x1)

∂κ1

∂xi
(x1) + r(x1)

∂2κ1

∂xi∂xj
(x1)

which can be solved one by one for the(n+ 1)n/2 unknowns ∂2κ1

∂xi∂xj
(x1), 1 ≤ i ≤

j ≤ n.
To find the fourth partials ofπ1 atx1, we assume that

∂4π1

∂xi∂xj∂xk∂xl
(x1) =

∂4π0

∂xi∂xj∂xk∂xl
(x1)

for 1 ≤ i ≤ j ≤ k ≤ l ≤ n − 1. We differentiate the first HJB equation (1) with
respect toxi, xj , xk to obtain
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0 =
∂4π1

∂xi∂xj∂xk∂xσ
(x1)

(
fσ(x

1) + gσ(x
1)κ1(x1)

)
(7)

+
∂3π1

∂xi∂xj∂xσ
(x1)

(
∂fσ
∂xk

(x1) +
∂gσ
∂xk

(x1)κ1(x1)

)

+
∂3π1

∂xi∂xk∂xσ
(x1)

(
∂fσ
∂xj

(x1) +
∂gσ
∂xj

(x1)κ1(x1)

)

+
∂3π1

∂xj∂xk∂xσ
(x1)

(
∂fσ
∂xi

(x1) +
∂gσ
∂xi

(x1)κ1(x1)

)

+
∂2π1

∂xi∂xσ
(x1)

(
∂2fσ
∂xj∂xk

(x1) +
∂2gσ
∂xj∂xk

(x1)κ1(x1)

)

+
∂2π1

∂xj∂xσ
(x1)

(
∂2fσ
∂xi∂xk

(x1) +
∂2gσ
∂xi∂xk

(x1)κ1(x1)

)

+
∂2π1

∂xk∂xσ
(x1)

(
∂2fσ
∂xi∂xj

(x1) +
∂2gσ
∂xi∂xj

(x1)κ1(x1)

)

+
∂π1

∂xσ
(x1)

(
∂3fσ

∂xi∂xj∂xk
(x1) +

∂3gσ
∂xi∂xj∂xk

(x1)κ1(x1)

)

+
∂3q

∂xi∂xj∂xk
(x1) +

1

2

∂3r

∂xi∂xj∂xk
(x1)(κ1(x1))2

− ∂r

∂xi
(x1)

∂κ1

∂xj
(x1)

∂κ1

∂xk
(x1)

− ∂r

∂xj
(x1)

∂κ1

∂xi
(x1)

∂κ1

∂xk
(x1)

− ∂r

∂xk
(x1)

∂κ1

∂xi
(x1)

∂κ1

∂xj
(x1)

−r(x1)
∂2κ1

∂xi∂xj
(x1)

∂κ1

∂xk
(x1)

−r(x1)
∂2κ1

∂xi∂xk
(x1)

∂κ1

∂xj
(x1)

−r(x1)
∂2κ1

∂xj∂xk
(x1)

∂κ1

∂xi
(x1)

These(n+2)(n+1)n/6 equations can be solved one by one in lexograhic order for
the(n + 2)(n + 1)n/6 unknowns ∂4π1

∂xi∂xj∂xk∂xn
(x1) for 1 ≤ i ≤ j ≤ k ≤ n. The

unknowns ∂3κ1

∂xi∂xj∂xk
(x1) do not appear because of (2) and they are simplified by (4)

and (7).
Then we differentiate the second HJB equation (3) with respect toxi, xj , xk for

1 ≤ i ≤ j ≤ n to obtain the(n+ 2)(n+ 1)n/6 equations
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0 =
∂4π1

∂xi∂xj∂xk∂xσ
(x1)gσ(x

1) (8)

+
∂3π1

∂xi∂xj∂xσ
(x1)

∂gσ
∂xk

(x1)

+
∂3π1

∂xi∂xk∂xσ
(x1)

∂gσ
∂xj

(x1)

+
∂3π1

∂xj∂xk∂xσ
(x1)

∂gσ
∂xi

(x1)

+
∂2π1

∂xixσ
(x1)

∂2gσ
∂xj∂xk

(x1)

+
∂2π1

∂xjxσ
(x1)

∂2gσ
∂xi∂xk

(x1)

+
∂2π1

∂xkxσ
(x1)

∂2gσ
∂xi∂xj

(x1)

+
∂π1

∂xσ
(x1)

∂3gσ
∂xi∂xj∂xk

(x1)

+
∂3r

∂xi∂xj∂xk
(x1)κ1(x1)

+
∂2r

∂xi∂xj
(x1)

∂κ1

∂xk
(x1)

+
∂2r

∂xi∂xk
(x1)

∂κ1

∂xj
(x1)

+
∂2r

∂xj∂xk
(x1)

∂κ1

∂xi
(x1)

+
∂r

∂xi
(x1)

∂2κ1

∂xj∂xk
(x1)

+
∂r

∂xj
(x1)

∂2κ1

∂xi∂xk
(x1)

+
∂r

∂xk
(x1)

∂2κ1

∂xi∂xj
(x1)

+r(x1)
∂3κ1

∂xi∂xj∂xk
(x1)

which can be solved one by one for the(n+2)(n+1)n/6 unknowns ∂3κ1

∂xi∂xj∂xk
(x1),

1 ≤ i ≤ j ≤ k ≤ n.
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7 Two Dimensional Example

We consider the optimal control problem of driving a planar pendulum of length1
and mass1 to the upright condition by a torqueu at its pivot. The dynamics is

ẋ1 = x2

ẋ2 = sinx1 + u

We choose the Lagrangian

l(x, u) =
1

2

(
|x|2 + u2

)

We computed the Al’brecht solution around the origin to degree4 in the cost and
degree3 in the optimal feedback. We accepted it on the sublevel setπ0(x) ≤ 0.5.
Then using the method described above we computed the solution at four points in
the eigenspaces of the quadratic part of the cost whereπ0(x) = 0.5. There is one in
each quadrant. These outer solutions were also computed to degree4 in the cost and
degree3 in the feedback.

Fig. 5. Optimal cost computed on five patches. The outer patches are bounded in part by the
axes.

8 Conclusion

We have sketched out a patchy approach to solving Hamilton Jacobi Bellman equa-
tions for nice optimal control problems and applied it to oneand two dimensional
examples. We were deliberately vague about some aspects of the proposed algo-
rithm such as how to choose the boundary between outer patches. Further research
is needed to clarify these issues and this can come only with extensive computation.
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Fig. 6. Contour plot of five patch cost. The inner4 contours are within the central patch.
Notice that there is a slight mismatch of the outer contours when they meet at the axes.

References

1. E. G. Al’brecht,On the optimal stabilization of nonlinear systems, PMM-J. Appl. Math.
Mech., 25:1254-1266, 1961.

2. F. Ancona and A. Bressan,Nearly Time Optimal Stabilizing Patchy Feedbacks, preprint
available at http://cpde.iac.rm.cnr.it/preprint.php

3. M. Bardi and I. Capuzzo-DolcettaOptimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser, Boston, 1997.
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