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1 Hamilton Jacobi Bellman PDEs

Consider the optimal control problem of minimizing the ozl

/ l(z,u) dt 1)
0
of a Lagrangiari(x, u) subject to the controlled dynamics

T = f(xa U)

wheref, [ are smooth andlis strictly convex inu € IR™ for all z € IR".
Suppose the dynamics and Lagrangian have Taylor seriesgnpa about: =
0,u = 0 of the form

i = Fz+ Gu+ fPx,u) + fPlz,u)+ ... (3)
1
l(z,u) = 3 (2'Qx + v Ru) + 1P (&, u) + 1 (2, u) + ... 4)
wherel¥ indicates terms of degreéin the power series. We shall say that the
optimal control problem is nice if, G is stabilizable and)z, F is detectable.

A special case of this optimal control problem is the lineaadyatic regulator
(LQR) where one seeks to minimize a quadratic cost

/ %(IC/Q:C +u'Ru) dt

0
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subject to linear dynamics
T =Fx+ Gu

If this is nice then there is a unique nonnegative definitetem to the algebraic
Riccati equation

0=FP+PF+Q—-PGR'G'P (5)
that gives the optimal cost
m(zY) = %(xo)'P:cO = min /000 % (2'Qz + v Ru) dt (6)
Furthermore the optimal control is given in feedback form
u(t) = k(z(t)) = Ka(t)
where
K=-R'G'P 7
and the closed loop dynamics
t=F+GK)x (8)

is exponentially stable.

Returning to the nonlinear problem, it is well-known thaitifddmits a smooth
optimal costr(z) and a smooth optimal feedbaek= «(x) locally aroundz = 0
then they must satisfy the Hamilton Jacobi Bellman (HIJB) PDE

0= m&n g—:;(x)f(m,u) +(z,u)

k(z) = argmin ?(x)f(:c, u) + Uz, w)
u xXr

We shall assume th& (z) f (z, u) + I(z, u) is strictly convex inu locally around

x = 0,u = 0 then the HIB PDE can be rewritten as

_ Om
- Oz

m
= ST @) 5L (o n(a) + (@)

Al'brecht [1] has shown that for nice optimal control proinlg, the Hamilton
Jacobi Bellman PDE can be approximately solved by Tayldesenethods locally
around the origin. Lukes [14] showed that under suitabledit@ms this series ex-
pansion converges to the true solution. The method has beglermented on ex-
amples by Garrard and Jordan [7], Yoshida and Loparo [22n&gr, Timlin, Sain

0 (@) f (2, w(x)) + 1z, K(x))

9)
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and Dyke [20] and others. We have implemented it in the Ne@irSystems Tool-
box [11], a MATLAB based package.

Assume the dynamics and Lagrangian have power series eégparf8, 4). We
assume that the unknowns, the optimal cost and optimal &edlinave similar ex-
pansions.

m(z) = 32’ Pr + 7nll(z) + 7l (z) + . ..
(10)
k(z) = Kz + sPl(x) + kBl(z) 4 ...

We plug these into the HIB PDE (9) and extract terms of lowegtek to obtain the
equations

0=2a2'(FFP+PF+Q - K'RK)x
0=2'(PG+ K'R)

Notice the first equation is quadraticand the second is linear in More impor-
tantly the first equation is linear in the unknovmbut quadratic in the unknowR
while the second is linear in both the unknowns. They leatiédamiliar equations
(5,7).

Having foundP, K, we extract the next lowest terms from (9) and obtain

(3]
0= agx (2)(F + GK)z + 2’ PfP(x, Kz) + 1®) (2, K2)
(11)
o3l ,of o113 /
= - 2]
0 o ()G +2'P 5 (x, Kx) + 9 (x, Kx) + (/{ (:c)) R

Notice several things. The first equation is cubicciand the second is quadratic.
The equations involve the previously computeds’. The unknowns®!(z); k2 (z)
appear linearly in these equations. The equations aregtrian % (x) does not
appear in the first one. If we can solve the first46# () then clearly we can solve
the second for!?!(x) asR is assumed to be invertible.

To decide the solvability of the first we study the linear @er

o3l
—(@)(F + GK)x (12)

73] () —

from cubic polynomials to cubic polynomials. Its eigenwsiare of the form\; +
Aj + A where);, A\j, A, are eigenvalues of' + GK. A cubic resonance occurs
when such a sum equals zero. But all the eigenvaluds #fGK are in the open
left half plane so there are no cubic resonances. Hencertbarloperator (12) is
invertible and (11) is solvable.

The higher degree terms are found in a similar fashion. Ssepwatr(x) and
%(z) are the expansions of the optimal cost and optimal feedibaokigh degrees
andd — 1 respectively. We wish to find the next term&*1(z) and ¥ (z). We
plug7@(z) + w4+ (z) andr(z) 4 x4 (z) into the HIB PDEs (9) and extract terms
of degreesl + 1 andd respectively to obtain
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rld+1] 7 [d+1]
2 oz () (F+GK)x + (%(m)f(x,%(m))) +2' PGK ()

+ (U, 7w (@) + 2 KRl ()
L) 7 “
0= 2w+ (S0 )

0:

Ox ou
+ (%(x,%(x))) ! + (,i[d] (m))/R

where(-)[ is the degred part of the enclosed.
Because of (7):“(z) drops out of the first of these equations yielding

rld+1] or B [d+1]
@) (P4 GR) o+ (G w2

(U(z, R (2))) Y

0=

+

Consider the linear operator from degre¢ 1 polynomials to degreé + 1 polyno-
mials

aﬂ.[d-',-l]
ox

Its eigenvalues are of the form, + ... 4+ \;,,, where); is an eigenvalue of" +

GK. A resonance of degrek+ 1 occurs when such a sum equals zero. But all the
eigenvalues of' + GK are in the open left half plane so there are no resonances of
degreel + 1 and we can solve (13) forl?t1l(z). Then the second equation can be
solved forx! ()

d+1](

7l x) () (F+GK)x

/
kld(z) = —R™ <%@:)G + (g—j(x)%(x,z(x)))[d] + (%@,z(@))“”)
(14)

We have developed MATLAB based software to compute the seakitions to
the HIB PDE [11]. In principle the computation can be carpetito any degree
in any number of variables but there are practical limitadicn execution time and
memory. This is the familiar curse of dimensionality. Tharen + d — 1 choosel
monomials of degreé in n variables. Still the software is quite fast. For example
we are able to solve an HIB PDE in six states and one contradoed six in the
optimal cost and degree five in optimal feedback in less tldse8onds on a five year
old laptop (500 MHz) with limited memory (512 MB). There ar@2monomials of
degrees in 6 variables.

The main problem with the power series approach is that &l iocnature. The
power series solution to the HIB PDE is very close to the toletisn in some
neighborhood of the origin. Increasing the degree of the@pmation may in-
crease the accuracy but does not necessarily yield a laogesid of validity of the
approximation. Complicating this is the fact that in gehétdB PDEs do not have
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globally smooth solutions. The underlying optimal confsadblem may have con-
jugate points or focal points. Itis for this reason that tieotry of viscosity solutions
was developed [4], [5].

2 Other Approaches

There are several other approaches to solving HIB PDEs, kmndealiterature, for
example see [3], [6], [13], [9], [10], [16], [18], [19], [218nd their references. One
approachis to discretize the underlying optimal controbpem and convert it into a
nonlinear program in discrete time and space. But the curderensionality rears
its ugly head. Consider the optimal control problem gerregahe above mentioned
HJB PDE. If each of the six states is discretized into 10 kvtkén there would
1,000,000 discrete states.

Other approaches involve discretizing the HIB PDE with Isubicks so that
the algorithm converges to its viscosity solution. Thi®asffers from the curse of
dimensionality. The fast sweeping and marching methodgikéis [21], Osher et
al. [16],[9], [10] and Sethian [19]) are ways to lessen thisse. It takes advantage of
the fact that an HIB PDE has characteristics. These aredbedcloop optimal state
trajectories that converge to the origini#goc. The fast marching method grows
the solution out from the origin discrete state by discreéstesin reverse time by
computing the solution at new discrete states that are obdbiedary of the already
computed solution.

3 New Approach

The new approach that we are proposing is a extension of tiverns®eries method
of Al’brecht [1], the Cauchy-Kovalevskaya technique [8igetfast marching method
[21], [19] and the patchy technique of Ancona and Bressanl{a$ similar to that
of Navasca and Krener [15]. Suppose we have computed a pewes solution to
some degreé + 1 of an HIB PDE in a neighborhood of the origin by the method of
Al'brecht. We verify that this power series solution is el some sublevel set of
the computed optimal cost function by checking how well tis$ees the HIB PDE
on the level set that is its boundary. At the very least it &thde a valid Lyapunov
function for the dynamics with the computed optimal feedbae the sublevel set.
Also the computed closed loop dynamics should point inwarthe boundary of the
sublevel set, in other words, the computed backward chexistits of the HIB PDE
should radiate outward. This sublevel set is called thethgyatch.

Then we pick a point on the boundary of the zeroth patch anthaesshe optimal
cost and optimal feedback have a power series expansiomatbat point. We
already know the partial derivatives of these in directitarggent to the boundary
of the patch. Using a technique similar to that of Cauchy-devskaya, we can
compute the other partial derivatives from the HIB PDE bseave have assumed
that the computed closed loop dynamics is not tangent toethe ket, it points
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inward. In this way we compute the solution in a patch thatrieps the zeroth
patch. Call this the first patch. Again we can estimate the sfzhis patch by how
well the computed solution satisfies the HIB PDE.

Itis not essential that the dynamigsnd Lagrangiahbe smooth at the boundary
of zeroth patch (or other patches). If they are not smootheslbbundary we use their
derivatives to the outside of the zeroth patch. This is a fofapwind differentiation
We do assume that they are smooth at the origin but they cam disgontinuities
or corners elsewhere. If they do, we choose the patches sth#s® occur at patch
boundaries. In this way it is an upwinding scheme becausgalsed loop dynamics,
the characteristic curves of the PDE pointinward on the dawnof the zeroth patch.
When computing the solution on the second patch we use thatiee information
in the backward characteristic direction.

Then we choose another point that is on the boundary of tlattzpatch but not
in the first patch and repeat the process. In this way we groeriassof patches
encircling the sublevel set. The validity of the computelliSon on each patch is
verified via how well it solves the HIB PDE. On the boundarynestn adjacent
patches we may have two possible closed loop vector fieldhelfingle between
them is obtuse, the two trajectories are diverging, theretieeno problem and we
can choose either when on the boundary between the patdhbs. dngle is acute
then there may be a sliding regime and another patch in batwey be needed.
Another possibility is to blend the computed costs acroegtitch boundary. This
will cause a blending of the computed feedback. (These asareh questions.)

After the original sublevel set has been completely eneitdy new patches we
have piecewise smooth approximations to the optimal codtogatimal feedback.
We choose a higher sublevel set of the computed cost thalidgsfoaall the patches
and repeat the process.

The patches are ordered and the approximate solution tortigem atx is
defined to be the approximate solution in the lowest ordeag¢chpcontaining:.

The patches can also be defined a priori, this would simptig/ method but
might lead to unsatisfactory solutions if they are chosenaoge or long computa-
tion times if they are chosen too small.

Of course there is the problem of shocks caused by conjugéteal points. The
assumptions that we make ensure that these do occur at gie, dhie true solution
is smooth around there. But that does not mean they will natioglsewhere. When
possible we will choose the patches so that they occur ahgdaiandaries. Not
a lot is known about the types of singularities that can oead how they affect
the optimal feedback. One of the goals of our future reseprofect is to better
understand these issues.

We expect most of the time to compute the expansions to déguedor the
optimal cost and degree three for the optimal feedback. Bheidynamics and/or
Lagrangian is not sufficiently smooth we might compute tordeg two and one
respectively.

As we noted before in many engineering problems stabilitthefclosed loop
dynamics is the principle goal. There may be considerabledom in choosing the
Lagrangian and so a smooth Lagrangian may be chosen. In mahiems there
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are state and/or control constraints. Then the Lagrangiarbe chosen so that the
solution does not violate the constraints.
In the following sections we discuss the method in more detai

4 One Dimensional HIJB PDEs

For simplicity we consider an optimal control problem (1y&jere the state dimen-
sionn = 1 and the control dimensiom = 1. Occasionally to simplify the calcula-
tions we shall assume that the dynamics is affine in the cbarticbthe Lagrangian is
quadratic in the control

f(z,u) = f(2) + g(x)u

l(z,u) = q(x) + s(x)u + %T‘(Qj)uQ 1)

with (x) > 0. The method works for more general ! but it is more complicated.
In any case we shall assume that, u) = 0iff z = 0,u =0

We assume that the degrée+ 1 polynomial7°(z) and the degre€ polyno-
mial k°(x), computed by the power series method of Al'brecht descriieave,
approximately solves this problem in a neighborhood ef 0. We plug the power
series expansions af , k° into the right side of the first HIB equation with the exact
dynamicsf and exact Lagrangianand compute the local error

0 or° 0 0
p () = E(m)f(xw () + (x5 () (2)
or relative local error
0
Pz) = 7’;08 3)

Of course the local error and some of its derivative will {igavanish atr = 0
but it will generally be nonzero far # 0. Suppose?(z) is small on some interval
[0, 1] then we accept the power series solutidiiz), x°(x), on this interval. We
would like to continue the solution to the right of. Let7!(x), x!(z) denote this
continued solution. We have an approximation to the opticoat7’(z!) and op-
timal feedback:(z!) atx!, we accept the former by setting (') = 7°(2!) but
not the latter. We shall computé = x!(z!).

We evaluate the HIB PDE (9) at using the assumption (1) to obtain

0= %(ml)f(x%ul) + (@) + s(@)u’ + %T(xl) (u')’ (4)
a’frl ) ) X .
0= 5 g(eh) + () +r(ahu ©)

We can solve the second equationddrand plug it into the first to obtain a quadratic
in %i%(xl). We setu! to be the root nearer te° (x!). In this way we find%’f(ml)
andu'.
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If assumption (1) does not hold then we must solve a coupleadpaonlinear
equations for the unknowr%“m—1 (z') andu!. This can be done by a couple of iter-
ations of Newton’s method as we already have good startimagsys%o(xl) and
KO(xh).

(Si%ce we assumed thHte, u) = 0 iff = 0,u = 0 we conclude from (4) that
flat,ut) #0.

To find 8;;21 (') and 2= (') we proceed as follows. Differentiate the HIB

PDEs (9) with respect to atz! to obtain

0= st + I (et + S )

0x? ox ox ou
0 ol 0
L) + oo ) o o) ©
0! of ort 0% f 0%l
- 5‘12 (l‘ )au( )+%( 1)8 a ( ! ul) a a (xl ul)
0 0% f 0%l 0
(et + S a) S )
Because of (4), the first equation (6) reduces to
0?rt 1. Of ol
0= >3 (') f(a! )+%( )&( )+8_( Lt (8)

Notice the unknowr%% (x') does not appear in this equation so we can easily solve

for the unknown"f,;Tﬁ,1 (x') sincef(x!,ut) # 0. Because of the assumptions (1) the
second equation reduces to

= I gl + I @) X )
0s or, 1. 1 1ORY
P2 )+ Ot () O ()

By assumption(z') > 0 so we can solve the second equation for other unknown
%—’i(ml)
To find the next unknown%;i;(:cl) and %ngl (') we proceed in a similar fash-

ion. We differentiate HJB PDEs (9) twice with respectit@nd evaluate at' as-
suming (1) to obtain two equations,
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ot 0? ot o° 0°l Okt
+2( @) 5Lt ut) + I (@) 5o (@ ) + 5o (xl,w)) & (o)
or' . 0 0% oK’ ’
+ (—<x1>—f<x1,u1> + ﬁw,ul)) (%w))

n (87T (xl)ﬂ(x17u1) n 8—ul(xl,ul)> 0k ()

Or Ox?

The unknown‘ZfT'i,1 (') does not appear in the first equation because of (4). Since

f(x',u') # 0 we can solve this equation for the unknO\iﬁzg,?lgbg—1 (') The second is
linear in both unknowns. Under the assumptions (1) the steqoation reduces to

A RN oP?rt 1 09,
= 55 (@)9(@7) + 275 (27) 57 (27)
ort 1 0%, 4 D%s, . 0%, 4 4
or, 1 0k WOk
22 @) 01 4 ) TE o)

and because(z') > 0 it is readily solvable for the other unknO\/\qufT1 (z1).

To find the next unknown%f(xl) and %(:pl) we differentiate HIJB PDE
(9) three times with respect to and evaluate at' assuming (1) to obtain the two
equations,
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0= Sttt + a5 @ E ) 98 e T
Lo 1>6_J;<m1 Yt Tt
v2 (G P ) 2 e )
+%—7;1( 1)ai3£ (@' u') + %(‘”1’“1)) %_j(x )
+(882;1(m1)%( )-1-88%( 1)%(351,111)
931 - Ok’ ’
Fr A )) (W(xl))
+ (%2::21 (ml)g(wl7ul) + %_i(ml)afgu(ml’ul)
0= oS ) s @ L ) 1S )
+%<wl>£§£u< L) 8:?:éu(ml7UI)
+3 (%23;21 (x )221;(5” )+ %_i(xl)ai?(;i?( b+ af;iﬁ( 1’u1)> 832;1
- (639” 5+ S et )+ 5T ’> (aa_
n (88_7;1( )%(ml,ul) + 8—4{1(301,1;1)) (88—’;1(1’1))3
¥ (%—?azl)%(w%ul) + S—Zw%w) 6;;1 (=)

We expect to stop at degree four most of the time, The assangfil) greatly

simplify the last equation,
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otrt 1 Brt 09, 4 Prt 0%
0= Gpr )9 ) 435 (@), @) + 3 (W) ™)
ort, . 9% »?Bs Pr L3R
%(30 )@(ﬂf )+@(ﬂf )+@($ Ju' +r(z) 73 ()
Notice the similarities with Al'brecht's method. We sucseely solve for
%(xl) and %d;; (x!) ford = 0,1,2,.... Atthe lowest level the equations are

coupled and if (1) holds we must solve a quadratic equatioiiai to a Riccati equa-
tion. At the higher levels the equations are linear and tyigar in the unknowns.

Once we have computed a satisfactory approximate solutiothe interval
[#1,2%] we can repeat the process and find an approximate solutidre taght of
z2.

5 One Dimensional Example

Consider the simple LQR of minimizing
1 oo
- / 22+ u? dt
2.Jo

z=z4+u

subject to

Here bothz andu are one dimensional.
The Riccati equation (5) is
0=2P+1-P?

and its unique nonnegative solutionf’s= 1 + /2. Therefore the optimal cost and
optimal feedback are

m(z) = 1+72\/522

k(z) = —(14+V2)z
The optimal closed loop dynamics is
2=—2z
After the change of coordinates
z =sinx

then the LQR become the nonlinear optimal control problemioimizing

L[> 2
— sin® x + u” dt
2 Jo
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subject to
_ sinz +u
N COS T
We know that the optimal cost and optimal feedback is
1 2
m(x) = +2\/_ sin?

k(z) = —(14+V2)sinz

Notice that the optimal cost is even and the optimal feedsao#td. We can compare
it with the solution computed by the method described above.

True (blue, solid) and computed (green, dash-dot) optimal costs

Fig. 1. True cost (solid) and the computed cost (dash-dot).

The computed solution on the intery@l 0.9] is the one of Al'brecht. As we com-
pute the solution for larget, the size of the patches decreases because the change
of coordinates is becoming more nearly singular as we apprga There arel5
patches. The relative error tolerancéis.

6 HJB PDEs in Higher Dimensions

In this section we generalize the proposed scheme to higmemngional state spaces
n > 1. For notational simplicity we shall assume that the corngroine dimensional
m = 1, generalizing to higher control dimensions causes no quoeédifficulty.
We also make the simplifying assumptions that the dynarsiefine in the control
and the cost is quadratic in the control of the form

&= f(z) +g(z)u
I(@,u) = q(2) +r(z)u?/2



Fig. 2.

Relative eror between true and computed optimal costs
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0.03 /
V.

0.02 /

0.01F

Relative error between true cost and the computed cost.

True (blue, solid) and computed (green, dash-dot] optimal feedbacks

Fig. 3. True feedback (solid) and the computed feedback (dash-dot)

The method does not require these assumptions but they dtygsanplify it.

289

Suppose we have computed the Al'brecht solutiBfr), x°(z) to the HIB PDE
(9) in some neighborhood of the origin. We check the locabresf (x) (2) or rel-
ative local error (3) and decide that it is a reasonable &wllih some sublevel set
{z : 7%(z) < ¢} which we call the zeroth patcR®. We chooser! on the level set
n(x!) = c and seek to extend the solution in a patch arathdlo do so we need to
estimate the low degree partial derivatives of the optinat @nd optimal feedback

atz!.

We assume that the Al'brecht closed loop dynamics is trassue the boundary
of the sublevel set and points inward

O @) ) <0
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Relative error between true and computed optimal feedbacks
0.01 ;

S
|- S

emor in feedback

Fig. 4. Relative error between the true feedback and the compugeithéek.

We accept that!(z') = 7°(x!) but we will compute a new! = x*(z!) probably
different fromx®(z!).
The HJIB equations become

or

0= 250) (falo) + g0 (0)n0)) + ) +1(0) (@) /2 (@)
0= 5 (2)go (2) + r(0)n(2) @)

We choose the indek that maximizes

[fre(z") + gr(a)r (@)

For notational convenience we assume fhat n.
We assume that

7T1(Zl) :’/TO(:Cl)
ort, . orY
2, ) = g, @)

for 1 < o < n. Then we can solve the second HJIB equationfar') and plug it
into the first to get a quadratic equation in the other unknown

ort (\*  ort |
Oa(amn(x )) +b8mn(x)+c

where
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Assuming this equation has real roots, weg@t ) to be the root closest to

97 (2! and we solve fok(z"),

1 &Kont,
1)25':c (=

k(') = —

The next unknowns in a power series expansion of the optiostland feedback
arounds! are 21 (z') and 25 (2!) for 1 < i < j < n. We assume that
0z, i

Prt 0?r

1

for1 <i < j <n —1andwe take the partials of (1, 2) with respect:tdo obtain
2n equations

0= 9200, axza% ') (fola') + go(at)rt (ah)) -
( o)+ Gyl )
af} z!) + % (@) (s (2h))?
_ %(:&)gg(ml” O )2 .
L @R ) + @) 9 ()

for the remainin@n unknowns. Because of the second HJB equation (2), thenfirst

equations do not contain the unknov@#fs ) for 1 < i < n. Moreover the first
equations are decoupled and can be solved one by one
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6271'1 -1
(z') =
Ox;0, fn(@l) + gn(2t)rt(2!)

) <z:1 81;50 (") (fo(z") + go(z")K (21))

N TR
aq 1 1 0r 1 1/ 12
GO P e IGRC) )

We invoke the summation convention when the range of the sufrom1 to n,
otherwise we explicitly show the sum.

The remaining: equations are also solvable one by one,

Okt 1 1 RIS 1 1 ot 1,090, 4 or , 1\ 1, 1
a—xi(fﬂ )= @) (m(fﬂ )90 (27) + a%(fﬂ )axi (z7) + axi(fﬂ )& (@ ))

Next we find the third partials of! atz!'. We assume that

837T1 837T0

1y _ 1
O0x;0x;0xy, z) = O0x;0x;0xy, v

for1 < i < j <k <n—1. Equations for the other third partials are obtained by
differentiating the first HIB equation (1) with respecticandz; for1 <i < j <mn
and evaluating at' yielding

0= aai(:cl)(fo(x1)+ga(xl)m1(xl)) (5)
;02,024

8ag . (gi() * %(x%(zl))

P

+277T:(:c1) (%g;j(xl) + aijg;j (ml)ml(x1))

+3§9qu () + %aiz;j (zY) (k! (a1))?

o g—zwl)

+

—r(xt)

These ardn + 1)n/2 equations in thén + 1)n/2 unknowns%(xl) for
i g n

1 <7 < j < n. They can be solved one by one in lexographic order. The umkao
82,25; (') do not appear because of (2) and they are simplified by (4).
Then we differentiate the second HIB equation (3) with ressfper; andz; for

1 <1 < j <ntoobtainthegn + 1)n/2 equations
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93l ot 1095, 4

o 020102+ 0r; 01, (@ )a—xj(m ) ()

o?rt 1. 095, 4. Omt | 0%, ,

+8xj8:cg (@ ox; () + Q—%(x )axiaxj =)

Pr 44,4 Or Or'
0z (z)r (z7) + oz, (z )%j(fc )
or , 4, 0r! 02kt

S (@)
6xj 8:5,- 81‘,58])]‘

0 (z")go (") +

+

(a') + r(a") 2

which can be solved one by one for the+ 1)n/2 unknowns%g;j(xl), 1< <
Jj<n.
To find the fourth partials of! at«!, we assume that

ot o0
(ah) = (z')
8:@8:@8%8:@ axiaxjalckaxl

forl1 <i<j <k <I<n-—1. We differentiate the first HIB equation (1) with
respect tac;, x;, x, to obtain
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These(n + 2)(n + 1)n/6 equations can be solved one by one in lexograhic order for
the (n + 2)(n + 1)n/6 unknownsm( zl)for1 <i<j<k<n. The

unknownsm( 1) do not appear because of (2) and they are simplified by (4)
and (7).
Then we differentiate the second HIB equation (3) with resgeer;, z;, x, for

1 <4 < j < ntoobtainthen + 2)(n + 1)n/6 equations
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which can be solved one by one for the+2)(n+1)n/6 unknowns—25

1<i<j<k<n.

Ox;0x;0x)

295

(8)

(z'),



296 Carmeliza Navasca and Arthur J. Krener
7 Two Dimensional Example

We consider the optimal control problem of driving a planangulum of lengthl
and massg to the upright condition by a torqueat its pivot. The dynamics is

T = X2

T9 =sinx; +u

We choose the Lagrangian
1
a,u) = 5 (2 +u?)

We computed the Al'brecht solution around the origin to @egr in the cost and
degrees in the optimal feedback. We accepted it on the sublevet$gt) < 0.5.
Then using the method described above we computed the@okitifour points in
the eigenspaces of the quadratic part of the cost whi&e) = 0.5. There is one in
each quadrant. These outer solutions were also computedjteel in the cost and
degrea3 in the feedback.

Fig. 5. Optimal cost computed on five patches. The outer patchesoarglbd in part by the
axes.

8 Conclusion

We have sketched out a patchy approach to solving Hamiltoohi®8ellman equa-
tions for nice optimal control problems and applied it to @mel two dimensional
examples. We were deliberately vague about some aspedie girdbposed algo-
rithm such as how to choose the boundary between outer gatEuether research
is needed to clarify these issues and this can come only widmsive computation.
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Fig. 6. Contour plot of five patch cost. The innércontours are within the central patch.
Notice that there is a slight mismatch of the outer contoutemthey meet at the axes.
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