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Summary

The concept of (A,B) invariance in linear sys-
tems theory generalizes to two concepts for nonlin-
ear systems, (f,g) invariance and local (f,g)invari-
ance, The former implies the latter and the latter
implies the former only locally. The topolegical ob-
struction to global (f,g) invariance are discussed

(A,B) Invariance

The fundamental geometric concept in the study
of decoupling of a linear system by feedback is
that of an(A,B) invariant subspace [1]. Recall
for the linear system

X=Ax+Bu x €R", u € B®

a linear subspace V¥ 1isan (A,B) invariant 1if
there exists mxn matrix F defining a feedback law
u = Fx + v such that the modified dynamics

% = (A4BF)x + Bv
leaves V¥V invariant, i.e., (A+BF) Y CvV. 1)

It is well known and easy to see that this is
equivalent to

AVC V+R(B) )

where R(B) denotes the subspace spanned by the
columns of B. For reasons that will soon be appar-
ent we refer to (1) and (2) as the global and local
characterizations of (A,B) invariance. The former
is useful for it directly relates to the system
dynamics but since (1) is nonlinear in the two un-
knowns F and Vv it is somewhat difficult to work
with. On the other hand (2) is linear in only one
unknown so is much easier to use. In particular it
shows that the class of (A,B) invariant subspaces
is a semilattice under inclusion and vector space
addition and this is extremely useful.

(f.g) Invariance

Similar concepts arise in the study of decoup-
ling of nonlinear systems of the form

% = £(x,u) = g0 (x) + g(x)u 3

m
=@+ gl (u,
3=1

where x are local coordinates of a smooth (eitheyx)
c” or C* n dimensional manifold M, u € Rm, go and
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the m columns of g are the local coordinate
descriptions of smooth vector fields on M. Of
course (3) is to be interperted locally, that is,
diffexing descriptions of this type are needed in
different coordinate charts. We do assume though
that the vector fields represented locally by
go and gl,..gm are globally defined on all of M.
The nonlinear generalization of a linear sub-
space is twofold, if we view the subspace as a
space of velocities then the nonlinear generaliza-
tion is a distribution. The space Z(M) of all
smooth vector fields on M 1is a vector space over
R and a module over the smooth functions F(M).
Under the lie bracket, Z(M) is a Lie algebra over
R. A distribution A 1is a submodule and hence a
subspace of Z(M). We denote by A(x) the linear
subspace of the target space at x obtained by
evaluating the vector fields of A at x. 1If the
dimension of A(x) is constant, say d,A is said to
be nonsingular and of dimension d. A linear sub-
space ¥ € Rcan be viewed as a nonsingular distri-
bution A onR® where each A(x) = ¥ canonically in-
bedded in Tan.

a Suppose V¥ 1is a d dimensional subspace of
R, then V¥V induces a canonical projection

mER" - R%/y. The level sets of this projection,
the cosets x+v, define a partition of R" into
affine d dimensional planes. The nonlinear genera-
lization of this is a foliation (We consider only
nonsingular foliations).

A d dimensional foliation & of M 1is a
collection & = {U%,n°:0 in some index set} The

{u°} ie an open cover of M and the r° are
submersions

o - Rn-d

such that the level sets of "c and «nT coincide when
both submersions are restricted u° N u‘r. A leaf
of the foliation is a maximal immersed submanifold
N with the property that each nc is constant on
NNU®. We frequently identify the foliation with
its collection of leaves & ={NP:p in some index
set}. The leaves partition M.

Every d dimensional foliation § defines a
d dimensional distribution A by letting

AMx) = Tpr where x € NP
and A be the space of vector fields X such that
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X(x) € A(x) for all x. Not every distribution
comes from a foliation, those that do are said to
be integrable. A classical result is

Frobenius Theorem A nonsingular distribution A

is integrable iff it is involutive. (A distribution
is said to be involutive if it closed under Lie
bracket or in other words if it is Lie subalgebra
of Z(M)).

A vector field X 1leaves a distribution A
invariant if Y € A implies [X,Y] € A. Therefore
A 1is involutive iff it is left invariant by each
of its vector fields. The smallest involutive dis-
tribution containing A 1is called its involutive
closure and denoted by TB.

We can now define the nonlinear generaliza-
tion of an (A,B) invariant subspace [2]. Actually
there are two generalizations since the local and
global characterizations differ in the presence of
npnlinearity. A nonlinear feedback y 1is (mtl)
x(m+l) matrix valued function of the form

(1 0 )
v =
o g
where o is mxl and B is m xm. If u=a(x)+B(x)v
we have the modified dynamics
= Fx,v) = 82 + g
Ekx,v) f(x,u(x,v)).
2200 = %0 + g@ax) Fx) = gIB ).

A distribution A 1is (f,g) invariant if
there exists a feedback vy such that A is f(.,v)
invariant for each constant control v. This is

equivalent to A being gd invariant for j=0,..,m.
We use the notation

where

%)

and

[T,a ca (5)
to mean the bracket of the vector field f(.,v) for

any constant v with a vector field of A is again
a vector field of A.

Let R(g) denote the distribution spanned by
g (x),..,gm(x). A distribution A {s locally
(£,g) invariant if the bracket of any vector field
f(-,u))u constant, with a vector field of A is
back in A+R(g). We denote this by

[£,8] © A+ R(8). 6)

Clearly (5) and (6) are the nonlinear genera-
lizations of (1) and (2) however they are not equi-
valent. It is easy to see the (f,g) invariance im-
plies local (f,g) invariance and in [3] the follow
ing was proved.

Lemma Suppose A is an involutive, nonsingular
locally (f,g) invariant distribution and R(g),
R(g) NAare nonsingular. Then locally there exists

an invertible +(x) such that (5) is locally
satisfied.

Topological Obstructions

From the above lemma it is clear why local
(f,g) invariance is so called. Now we turn to a
discussion of the topological obstructions to glo-
bal (f,g) invariance

From the hypothesis of local (f,g) invariance
one can arrive at a partial differential equation

which a feedback vy must satisfy so that the
modified dynamics leaves A invariant. In effect
the partial derivatives of +y in the directions A
are specified by (6).

The integrability (or mixed partial) condition
for the solvability of this PDE follows immediately
from the Jacobi identity for Lie brackets and the
PDE is locally solvable once initial conditions are
set.

Since A 1is nonsingular and involutive it de-
fines a foliation & = {NP} of M. The PDE for vy
restricts to each leaf so that specifying
initial conditions at one point on a leaf allows
one to solve for y 1in a neighborhood of that
point on the leaf. If the leaf is simply connected
then the solution can be continued to the whole leaf.
Hence the simplest obstructions to global (f,g) in-
variance lie in the first fundamental groups of the
leaves of &. If each of these groups is trivial
then there is no problem.

Let's assume that this is so, and turn to the
problem of setting initial conditions on each of
the leaves. Assume that the foliation & 1is
regular, i.e., there exists a smooth manifold
structure on & in such a way that the canonical
projection w:M ~+ & is a submersion. Suppose there
exists a smooth section of @, that is, a smooth
wmap c: & - M such that mo o= id: & — &. This
section can be used to set initial conditions for
the PDE by specifying that « be the (urtl)x(mtl)
identity matrix on the image of o.

From the above discussions we see that the
regularity of & and the existence of a section
of n are important for the question of global
(f,g) invariance. In the next sections we relate
this to certain topological invariants of M.

Basic Connections and Bott Vanishing

We follow closely the treatment of Bott [5]
and refer the reader there for further details.
Suppose A 1is a d dimensional nonsingular distri-
bution on M, the A can be viewed as a vector
bundle over M. (Loosely speaking, a vector bundle
over M 1is a rule which attaches to each x € M, a
linear subspace of some fixed dimension in a smooth
fashion. The most important example of this in the
tangent bundle TM which attaches to each x, the
tangent space of M at x denoted by TXM. A 1is
a subbundle of TM).

The normal bundle Q to A 1is the quotient
bundle TM/A which attaches to each X, theq=n-d di-
mensional quotient space T_M/A(x). A connection on
Q 1is a rule for the direcgional differentiation of
sections of Q 1in the directions of M. Let T(Q)
denote the space of sections of Q and suppose
Z €T(Q) and X € T(TM) = %Z(M). We denote by ¥, (Z)
the derivative of Z in the direction X as
defined by the connection. The mapping X,2 -VX(Z)
is R bilinear and satisfies the axioms

(1) %(hZ) = X(h)Z = h v (2)

i) 9.(Z) =hn ez



where h € F(M).

Let 1 :TM - Q denote the family of pointwise
projections ﬂ&:TxM - TxM/A(x) = Q(x). A connection

¢ on Q 1is called basic if for every X € A and

Z €T (WQ), ~
o 2= nlX,2] (7

where Z € X(M) such that n(Z) = Z . It is not
hard to see that if A 1is involutive hence inte-
grable then (7) can be used to define the connec-
tion v at least for X € A. It always is possible
to extend this definition to arbitrary X's hence
one has

Lemma [5]. If A is integrable then A admits a
basic connection (generally many basic connections.)

Given a connection ¢ on a vector bundle Q
there is an associated curvature tensor x defined
for X, Y€ Z(M) and Z € T(Q)

w(X,Y)Z =

vx(vY(Z)) - vY(vx(Z))

The curvature measures how much the mapping

X-nvx
fails to be a Lie algebra hemomorphism. It {is not
hard to see that x(X,Y)Z is F(M) multilinear.
Given a local basis of sections of Q, the curva-
ture can be represented as a qxq matrix s rela-
tive to this basis. Each entry of x is a two
form.

On any vector bundle Q over a paracompact
manifold M one can always construct a smoothly
varying metric on each of the fibers. Let (,)
denote such a metric on Q and let Z ,Z2 € T@Q).
A connection ¥V is compatible with t%e metric if

Vx 21025 = (%Z),2,) + @2, .

If the curvature matrix x for such a connection
is written relative to an orthonornal basis for Q
the x is skew-symmetric. It is not hard to show
that given & vector bundle Q with a metric there
exists a compatible connection. Moreover if

Q = TM/pA with A integrable then there exists a
basic connection compatible with this metric.

Consider the 4j form

trace (uzj)
2]

where ¥ is the 2j exterior power of the matrix
of two forms x» . It is not hard to see that trace

(nzj) is a cocycle. The jth Pontryagin c}ass p.(Q)
of Q 1is the cohomolgy class of trace (x Iy, 3
These classes for § = 1,..,[{q/2] along with the
constant function, 1, generate the Pontryagin ring
Pont*(Q) of Q. Pont*(Q) is a subring of the

de Rham cohomolgy ring H*(M). We denote by Pontk(Q)
the elements of degree k.

This construction can be shown to be indepen-
dent of the choice of connection v and correspond-
ing curvature ux, it only depends on Q up to
vector bundle isomorphism.

As an aside we don't congider the odd powers
of u because if u is compatible with a metric
then »~ = -x hence

trace (n2j+1) =0 for all j

A bundle Q with connection ¢ is flat if
the associated curvature 4 = 0. Suppose Q = TM/A
with A 1integrable. Let V¥ be a basic comnection
on Q then ¢ is defined by (7) in such a way
that the mapping X —+ Vyis a Lie algebra homomor-
phism for X € A. In other words if X, Y € A and
Z € T(Q) then » (X,Y)Z=0. Therefore we say that
Q is flat in the directions .of A.

This implies that every two form which is an
entry of x 1is an element of the,ideal J of one
forms which annihilate A. Let JF be the span of
products of k elements of J. There are only
q = n~d linearly independent .one forms annihilating

A hence Keofork> q. The generator pj(Q) of

Pont*(Q) is of degree 4j and is in J?j. From this
we conclude

Bott's Vanishing Theorem [5]. If Q is a vector
bundle isomorphic to TM/A with a A integrable

then Pontk(Q) = 0 for k > 2q.

Additional Vanishing

Suppose A 1is nonsingular, involutive and
globally (f,g) invariant, so there exists a suitable

feedback <y such that f- fy then

[f,A} c .
Now suppose there exists controls{vi:i=1,..,ﬂ

~1 ~
such that {f (x) = f(x,vi):i=1,..,j] are everywhere
linearly independent modulo A. Then it is possi-
ble using the same techniques as found in [5] to
construct a basic connection on Q = TM/A with the
additional property that if Z € I'(Q) and T exmn

with m(Z) = Z then

A~
V?d 2)=alf, 2]
for i=1,..,§. Therefore in addition to being
flat in the direigions of A, Q is also flat in

the directions {f :1=1,..,j}. Using Bott's argu-
ment we can show that

Pontk(Q) =0

for k > 2q -2j. This isa further obstruction to
global invariance.

Because of space limitations we have only
sketched out the beginnings of an obstruction
theory for (f,g) invariance. We do not mean to im-
ply that these are the only possible obstructions.
It is not hard to see that there are obstructions
which 1live in the Stiefel-Whitney classes. We will
go into this at a later date.
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