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1. INTRODUCTION

In the last few vears there has been un increasing interest in nonlinear feed-
hack svstems, and a4 svstematic work of generalization of Wonham's geometric anproach
to lincar feedback systems i being set up (see  [1-0]).

Key tocls are those of f invariance and (f,g) invariance for distributions, in-
troduced in [7], [1] and [2]. In this paper, we compare nrevious definitions of'f in
variance" and introduce a new notion, based on Sussmann's results about the integra-
bility of C° distributions [7], which we term (Ad f, G) invariance. Then we also in-
troduce the concept of (Ad f, G) controllability subdistribution (a generalization

of the notion of an (A,B) controllability subspace).

2. MATHEMATICAL PRELIMINARIES

Throughout this paper we consider nonlinear systems described by differential
equations of the form

(2.1 a) %

£l = g () +

L g; 00y
1

I ~13
=

(2.1 b) y = h(x)

The state X belongs to an n-dimensional C” manifold M, u; €R, the vector fields
gb(x), gl(x),...;gm(x) are comnlete C© vector fields on M and h : M->RP is a C°
function. Occasionally, we shall make an explicit assumption of analyticity.

The following notions are standard. A C* distribution A is a mapping assigning

to cach x € M a linear subspace A(X) of T M, with the property that for all x €M

there exists a neghbourhood U of x and a set of C” vector fields {Xi}iEEI defined
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sl el that (a1 spanned by the set of vectors f\i(x)?i€i]. Avector field X
hodone 1o distribantions & 00 MxVYE AN Tor all x&MoA clist‘rilmtiwn‘.l contain-
aodistrabve o Co0 1e T A 3 oy for all ox M A distribution 4 oas 1”\QJlﬁjiﬁ.ii
A= imp]ics ,Y1E 0L A distribution 4 is nonsingular if the dimension of

SNt 1S constant over M. An inteoral submaniiold N of A is aconnected,immersed sub-

manitold o - M osuch that, for cuch x € N, T‘N = A{x). An Integral submanifold N of
Psomandme 1 every integral submanifold N' oof U with the pronerty that \! 2 N co-

incides with N. A distribution /. is integrable if its maximal integral submanifolds

detine a partition of M.

:*{x) denote the corresnonding

S

let » be a complete vector field on M and let

flow, i.c. the C” mapping R © M = M with the property that

P N S
L) = X8 (x)

e

.X
X)) =X

for each t, ?f

" defines a difteomorphism x - ??(x). Let Y be another vector field on
M.Tor all © © R, there exists a wnique vector field, denoted Ath(YJ, which is

‘?“ffij:;i tn Y, 1.e. that satisfies the condition
Y AdYX (YY) = Yoo
(it,)*:' ( ;= ov;t()()

for all x & M.

The following two Defintions clarify the concents of '"X invariance' for a distri

A

bution 2.

-

Definition 2.1. A distribution A is Ad X invariant (X-invariant in [7]) if for all
Y € A and for all t €R

AdNX(Y) € A
A distribution A is ad X invariant (X-invariant in [1]) if for all Y € A
[X,Y] € A

Remark 2.1. Clearly, a distribution is Ad X-invariant iff for all t EﬁR.(@i)*'maps
A(x) into A(@X(x)), for all x € M (see [71).

Remark 2.2. The vector field adt X(Y) can be given a Taylor series expansion via the

Campbell-Backer- Hausdorff formula

A X () = g T S a9

where

ad®X(Y) = Y and adX(Y) = [X,ad xm]



Tie, by didierentiation, we see that Ad X invariance innlies ad X invariance. The
converse Toocieariy true in O In €7, the two notions are cquivalent only under some
Sirrtuble oxtra assumption like, c¢.g., the nonsingularity ol 4.

Rercirh 2020 A distrihution is involutive 1f0 1t 1s ad N Invariant for all X=..

The basic integrability results are the following

Mhecrom (sucsmann [T1r. A distribution Sis integrable iff it is Ad X invariant for

Corollar: {lrobenius! A distribution /. is integrable only if it is involutive.

Corollarm (Frobenius) A nonsineular distribution & is integrable iff it is involutive.
——— L - v

Corcliary (Hermann-Nagano) A C° distribution & is integrable iff it is involutive.

when referred to a collection of vector fields, like the ones appearing on the
right-hand-side of (2.1a), Definition 2.1. is extended as follows (again, see [7]
ar. [1], where the same notinns are used, with different notation).
Definition 2...A distribution 4 is Ad f invariant (resp. ad f invariant) if for every

n

ucRr

, . is Ad f(-,u) invariant (resp. ad f(-,u) invariant).

If _ is a given distribution, there 1s a smallest C° distribution which contains

A
L

. and is Ad f invariant. This distribution will be denoted with the symbol
(Ad £]4)

It is easy to see [7] that the subspace (Ad £l2 ) (x) ofiTXM is the linear hull of
all the vectors of the form (g_l)*x oo(x), where X is a vector field in A and g is a
v . . . (- . -
diffeomophism of the form @f( ’ul)oéf( ,UZ)O e o@f( ,un)’ withn €Z, t. €R,

~ 1 n
; =R

The symbol

(ad f|A)

chall denote the smallest distribution which contains & and is ad f invariant. The
subspace ¢ad £ ) (x) of TXN is the linear hull of all vectors of the form [f(-,ul),
[£(,uy)0e -0y £050),X]...11(x), where X €4, n €Z, uy eRr™.

Let R(F) denote the distribution spanned by the set of vector fields
{gi}i=0,1,...,n and R(G) the distribution spanned by the set of vector fields
{gi}i=1,...,n' The following distributions are of paramount importance in the study
of accessibility properties of control systems =

’[\,l

.2) (Ad £ R(F)? (resp. ¢ ad f|R(F) )

9]
(3]
—

(2. (Ad £{R(G) (resp. ¢ ad £]R(G) )

et e S e A N P
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S0 L INVARTANCE

I1: this and the following section we assume the dynamics (2.1la; be modified by
feedback, 1.¢. that there exists a pailr a(x),8(x) of m<1 and mxm matrix valued c*

functions ol x such that

m
= - A" + SN 4,: J.
u xl(\) _% lj(xjxl
j=l

with vy € R. The new dvnamics shall be written as

B (xvy

i
[—
]
|
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Ho~—13

F. = row(go,gl,...,gm)

(o)

<
f

and write

g 00 = g () + 6(0ax)

G(x) = G(x)B(x)
F(x) = F)v(x)

e say that a distribution A separates the controls if there exists a feedback

v with invertible 8 and a partition of g = (81 82) such that

A N R(G)

H

R(G))
AN R(&z) = {0}

where &i(x) = G(x)Bi(x), i = 1,2. Such feedback y is said to be separgting.

The following definitions provide nonlinear generalizations of the notion of an

(A,B) invariant subspace.

Definition 3.1. A distribution A is (Ad f,G) invariant (resp. (ad f,G) invariant) if

v}
there exists a feedback y such that A is Ad f invariant (resp. ad ¥ invariant).

Definition 3.2. A distribution A is locally (ad f,G) invariant if for every constant
e . o
u€R




D Detween the two betfintions is oiven by the tollowing Lenma.

i< nonsingular, involutive and separates the controls then the follow

e are counvalont

Doy fad £,6) invariant,
(hothere .St an open cover {Uj} of M and separating feedbacks T defined on ui
such thoar D1l fad f,ﬁ} imvariant on Ui under s ) )
(C) there ©x1sts an open Cover {ui} and separating feedbacks Y, on Ui such that & 13

(Ad 1,0 invariant on uj under ier

Proof. The equivalence of (b) and (c) follows from the nonsingularity of A. It 1s

trivial to verify that (b) impliés (a). In [4] it is shown that (a) implies (b) using

the strongs: hmwpethesis that A N R(G) and R(GY are nensingular. But the proof only
uses this to show that 4 separates the controls. Moreover the feedback so constructed
is eusilv seen to be senarating. Similar results are found in [5]. <

3. CONTROLLABILITY DISTRIBUTIONS

In this section we introduce various nonlinear generalizations of the notion of

an (A,B; controllability subspace (see also [6]).

Definition 4.1. A distribution & is (Ad £,G) controllable (resp. (ad f,G) control-

lable) if separates the controls and, for some separating feedback v,

1}

5 = CAd £[R(G))

(tesp. A& ={ad f]R(&l)>)

The local version of this definition is based on a generalization of the con-

trollability subspace algorithm, introduced by Wonham [9].

Controllability subdistribution algorithm. Let A be a given distribution. It is pos

sible to prove that the class of all distributions A satisfying the condition
(+.1) =50 (L£,8] + R(G))

has a unique minimal element, denoted AC(A). To this end, define a non-decreasing

sequence of distributions 4, by A, = {0} and

(1.2) ' b= a0 (IE,8 41 + R(G))
Clearly, 4 C Al and, by induction, it follows that Ak_1§; Ay - For, if Ak—zgi Ak—l’
then by =4 N ([f’Ak—Z] + R(G)) €A N ([f,Ak_l] + R(G)) = By - Let

[
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Clonriy, thnos distribution satisties (4.0 for, iEoon some open subset Woof M

I} © Ly, then Ak+i =, on Lotor all icu. (n othe other hand, i 4 1s any distribu-
‘ Nl I

tion satisoving (.10, then trivially 5 2. and, by induction, it follows that
= 4 tor all k»0. Thus the richt-hand-side of (4.3) 1s the unique minimal clement

G the clas. of all distributions & satistyving the condition (4.1).

Detfinttion 4.2. A distribution . is locally (ad [,G) controllable if A 1s locally
fad 1,0 1nvariant and 250 =

In order to establish a link between the two defintions, we need the following
result , which generalizes a property of (A,B) controllability subspaces.

Lerma 4.1. Suppose £ is (ad £,G) invariant under invertible feedback v, then

(3.3 £y = Cad Tia NR(G) D

Proof. We observe, firstly, that trom the equality

[h.ﬂjﬁ]:[gNX]+[QXHw%ﬂ - G X(a+8v)

we can deduce, because of the nonsingularity of 8, that

(t,21 + R(G) = [£,A] + R(G)

Pammn
Ja
.
7

where 4 1s a given distribution.

Now we define a nondecreasing sequence of distributions gk, by

A N R(G)

1
[%,Ak_ll + A

k

> >
I

i

1

and we show, by induction, that Ek = A, with A, as defined by (4.2). Clearly,
A1 = A7. Assume now that By = Zk 1 and observe that, since A is ad ¥ invariant,
[%’Ak—1]<§ A. By (4.5) we have

A

i

L= A0 (IE,8 ]+ RG)) = a0 ((F,8 41 +REG)) = [F,4 4] + A 0RE) =

= [%,Ak_l] + 5= B

Since

(ad fla NR(GY) = Y &k

the proof 1s complete. <

At this point it is possible to prove a result analogous to Lemma 3.1.

lemma 4.2. Suppose A is nonsingular, involutive and separates the controls;then the

following are equivalent:



Tocallv (ad 1,0 controllable.
reoeatste an open cover s i oot M oand separating codback ¢ detimed on U i
!
conothat s tad o fonn ocontrollable on “i under 25 .
rCo there exlsats an open Cover {Uj} of M and écpnrntinﬁ feedbacks v, defined on U,

such tho s (Ad 00 controllable on U1 inder Ty
Prosc. o b, I8 0 iw locally (ad 1,6 controllable, then
(i (£,2] C¢o + R(G)
o o o2
(11 LTy =4
The Uirst, thanks to Lemma 3.1., implies that there exists an open cover {Uj} of M

and =onarating (thus nonsingular) feedbacks Y5 defined on Uj such that 4 is (ad f,G)

IMVariant on Ui under yj. Thus, by lLemma 1.1., we have that
2S(n) = Cad Fla NR(G) > = (ad ¥|R(E¥])>

on Y.. From this and (11), the assertion follows.

(b: = a). On ., under the separting feedback y., we have
] P g {J,

5= Cad FIR(E)) = Cad Fla N RO

A01s jad ?,G) invariant under invertible feedback and, thus, by lemma 4.1., & = NS
Moreover, bv lemma 3.1., A is locally (ad f,G) invariant. Thus, 4 is locally (ad £,G6)
controllable.

(b" = (c). It is a consequence of nonsingularity. <4

It is easy to show that the family of all locally (ad f,G) controllable distribu
tions is a semilattice with réspéct to inclusion and distribution addition. Thus the
qfamily of all locally (ad £f,G) controllable distributions contained in a given dis-
tribution A has a unique maximal element. Like in the case of linear systems (see
[91), this can be computed via the controllability subdistribution algorithm, applied

to the unique maxial locally (ad f,G) invariant distribution contained in A.
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