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Background

L. Because linear differential equations and linear control systems are
so much simpler than their nonlinear counterparts, a natural question to ask
is when one of the latter is equivalent to one of the former under some group
of transformations such as change of state coordinates.

The earliest work in this area goes back to Poincaré [1] who gave a
sufficient condition for linearizeability of a single vector field around
a critical point by change of state coordinates. Later Hermann [2] gave a
formal argument for the linearizability of a finite dimensional semisimple
Lie algebra of vector fields around a common critical point by change of state
coordinates. Guillemin and Stermberg [3] gave a rigorous proof of this result.
Sedwick and Elliott [4] considered the same question and showed that the
assumption of semisimplicity could be replaced by that of transitivity.

Krener [5] discussed the question of when a nonlinear system of the form
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(1.1) E=fE€)+ I g (&), £ ER
=1 j
J
can be transformed locally into a linear system

(1.2) x = Ax + Bu

by a change of state coordinates,

(1.3) X = x(g).

A necessary and sufficient condition for the existence such a transformation is
that the set of vector fields {ad%f)gJ : k>0, j=1,...,m} spans an n dimensional
abelian Lie algebra. It is not hard to see that if this hypothesis is

. e . 1 m .
satisfied then after reordering g ,...,g if necessary there exists integers



el >
ny > Mo > Zn

v

o 0, nq + L+ no = 1, such that the set

{adk(f)gj: 0< k< nj,j=l,...,nﬂ is a basis for the Lie algebra. If the
(%l,...,mm) is smallest such m-tuple with respect to the lexographic
ordering, then these are called the controllability indices (or Kronecker
indices) of (1.2).

Brockett [6] introduced a wider class of transformations, allowing not
only change of state cooridnates but also certain forms of state feedback.
The full state feedback problem was considered independently by Hunt and Su
[7] and Jakubczyk and Respondek [8]. They gave equivalent necessary and

sufficient conditions for there to exist locally a transformation of the

form (1.3) and a state feedback of the form

(1.4) u = u(g,v) = alg) + BE)v

carrying (1) into the linear system

(1.5) x = Ax + Bv

The Hunt and Su conditions are a bit easier to state. There must exist
controllability indices ny LTI R R ny + ...+ ny, = 0 such that

1 m
(after reordering g ,---,8 ).

(a) the vector fields {adk(f)gj: 0<k< nj,j=1,...,n& are linearly
independent at each x.

(b) for each j=1,...,m, the vector fields {adk(f)gj: 0<k< %j-l}
are involutive.

(c) for each j=1,...,m, the vector field ad J(f)gd is linear
combination (over the ﬁ”functions) of {adk(f)gi: k,i) < (nj,j)} (this is the

lexographic ordering, i.e., k < nj or (k = nj and i < j)).



Meyer and Cicolani [9] have used this result and related work of their
own to design advanced flight control systems for high performance aircraft.
Isidori and Krener [10] considered the problems of partial linearization

of the dynamics, using transformations of the form (1.3) and (1.4).

2. Observers and Output Injection

Consider a uncontrolled dynamics

(2.1) x = Ax x € R"
with observations
(2.2) y = Cx y € ®

The dual problem to that of control is that of approximation or estimation.
From y(s), s < t we would like to obtain an estimate of x(t). In a stochastic
setting the well-known Kalman-Bucy filter supplies the answer. In a
deterministic setting the Luenberger observer is the appropriate tool. One

chooses an n x p matrix G and sets up a differential equation for an

approximation z(t) of =x(t),

(2.3) z = Az - G(y-Cz).

If e = x-z then
(2.4) e = (A+GC)e.

If G 1is choosen so that the spectrum of A+GC is in the left half
plane then e(t) + 0. The farther left the spectrum is, the faster the
convergence. It is well-known that a necessary and sufficient condition to
be able to arbitrarily fix the spectrum (up to invariance under complex

conjugation) of A+GC is that (C,A) be an observable pair, i.e., the



(p.n) x n matrix

(2.5)

be of full rank n.

This introduces the concept of linear output injection which is the dual

of linear state feedback.

Two systems (2.1,2) and

(2.6) % = Ax

(2.7) y

1
o
»

are equivalent under linear output injection if C = E and there exists

G such that A = A+GC. If (2.1,2) models a physical plant then in general
output injection is not physically realizable on the plant. But this is not
important because we can realize output injection on the error dynamics
(2.3) of our approximation (2.4).

Now suppose we are trying to observe the state of a nonlinear system,

(2.8) £(€)

v .
]

(2.9) h(),

DS
I

in general this is a difficult task. However, it is conceivable that (2.8,9)

is the result of applying nonlinear output injection to a linear system

(2.1,2) yielding the system

(2.10) X

i

Ax + @(y)



(2.11) y = Cx

followed by a nonlinear change of coordinates £ = E(x).
If this is the case and we can find ®(y) and € (x) then we can construct
an observer for (2.10,11) almost as easily as for (2.1,2). Let the

approximation z satisfy

(2.12) z = Az - G(y-Cz) + ¢ (y)

then the error e = x-z satisfies

(2.13) e = (A+ GO)e

as before. Therefore we would like to solve the following.

Problem Given (2.8,9) when does there exist a change of coordinates
g€ = £(x) which carries (2.8,9) into (2.10,11).

In the next section we shall answer this question locally for the scalar
case, y € R, a complete answer will appear elsewhere.

The localness of the solution is not a problem at least theoretically for
once can always choose the gain G so that the error e goes to zero arbitrarily
fast and hence before € leaves the locality.

Notice that we only apply output injection (whether linear or nonlinear)
to a linear system. 1In particular nonlinear output injection is not a group

of transformations.



3. Linearization by Nonlinear Output Injection.

system (2.8,9) satisfies the following in some neighborhood U

of interest.

We assume that the nonlinear

of go,.the point

Observability Assumption. The one forms L? (dh)(€), k=0,...,n-1 are

linearly independent for £ €U.

Notation. Lf(dh) denotes Lie differentiation of the one form dh by

the vector field £, and dh is the gradient of h,.

- (8h_ oh
an(e) = <3€1 €« - agn(g))
CEC , o
ey 2@, BhE) 2
e A 3

Lie differentiation by f also acts on functions h

L (h) () = dh(g)ECE)

and these are related by

Proposition 1.

L @h) () = d(Le () @)-

The nonlinear system (2.8,9) is locally equivalent to

a linear system of the form (2.1,2) under a change of state coordinates

 x = x(§) where x(g°) = 0 iff £(€°) = 0, h(g®) = 0 and L (dh) is a

Proof.

coordinates

L?(dh) = CAk.
By the Cayley Hamilton theorem there exists al,...,an € R so that
n -
ca = ¥ akCAk 1

R-linear combinafioﬁ.of L?idh) for k = 0,...,n-1;

. .

Suppose the change of coordinates exists, then in the

k=1

X



hence

n k-1
(3.1) Lc(dh) = % a, L "(dh).

On the other hand suppose (3.1) is satisfied, define new coordinates

(3.2) % €)= 1 (h) (@)

By the observability assumption this is a valid change of coordinates and xk(§0)==0.

Then

X, = L (L?—l(h)) ={ x

Kk £ if k<n

k+1

a.LJ_1

n
-7 J

h) =¥a.x, if k =
(h) ZaJxJ i n

=1

y =X

So (3.2) transforms (2.8,9) into (2.1,2) where

0 C=(0...0)




One can recast the above result in a way that is reminiscent of the work

of Guillemin and Sternberg [3].

Proposition 2. The nonlinear system (2.8,9) is locally equivalent to

a linear system (2.1,2) under change of state coordinates x = x(E) where

x(€°) = 0 iff £(€%) = 0, h(€®) = 0 and the vector field g(€) defined by

k 0: O_<_k< n-1
(3.3) L Lo(h) =
& 1 k = n-1
satisfies
k
(3.4) [g,ad (f)g] = 0 k=1,3,...,2n-1.

Proof. Suppose such a g exists. By (3.3) and the observability
assumption it follows that g€),[f,8]lE€), ...,adn-l(f)g(g) spans Rr™.

The Jacobi identity for the Lie bracket of vector fields is
1.2 3.1 r 1 2 3] Co2.1 3.7
bl = bl + 2 .
[g[g 8 ll=1lgels |8 [8.871
From this it follows that (3.4) is equivalent to

(3.5) [ad®(£)g, ad® (f)g] =0 O<k+4< 2
[

By a standard result we can choose local coordinates x such that x(§°)==0 and

= D ad@)g .




By (3.3)
dh k ifk\_i. _k-i
—<L - (D <i>LfL ()
3 n-k i=0 g
0 0< k< n-1
1 k = n-1.

This implies that h 1s linear in the =x coordinates,

(3.6) y = Cx = (10...0) :

X
n

To compute the local coordinate description of the vector field £,
n

suppose f = 3 fi(X) g%- and 0< k < n-1. By definition of the coordinates
i=1 i
k #eeyp | k_ktl 3
(f, 'axa 1 = ff,(-l) ad (f)gJ = (-17ad (f)g = -
n-k- L 3 el

and in local coordinates

n-k i

SO

5fi 1 i = n-k-1
3 -

0 0 otherwise

,\
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|'(-1>kadk(f>g,(-1>‘ad‘+1(f)g] =0



and in local coordinates

SO

a a n .
,_ax [f, 3x ]—] =- 2 -
=Y n-k n-4 -

2%t
1

axn_kaxn_z

Since ﬁé§0)= 0, it is a linear function of X,

(3.8)

On the other hand suppose (2.8,9) is equivalent to a linear system

under change of state coordinates. Let B € REX 1 satisfy

Let

j 0 O§j<n—l
CA™B =

1 j=m-1

g be the vector field given in x coordinates by the vector B, then

it is straightforward to verify (3.3) and (3.4).

Q.E.D.

10
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The linear system (3.6,8) is said to be in observable companion form. By

linearly injecting the output into the dynamics, we replace A by A+GC.
The latter matrix has the same form as A but by appropriate choice of G

the first column can be set to zero (or anything else).

Proposition 3. The nonlinear system (2.8,9) is locally equivalent to a

linear system with nonlinear output injection (2.10,11) under change of state’

coordinates x = x(€) where x(§o).= 0 if'h(§°)==0 and the vector field g&)

defined by
K 0 0 <k<n-1
(3.9) L Lf(h) =
& 1 k = n-1
satisfies
a k
(3.10) [g, ad (f)g] = O k=1,3,...,2n-3.

Proof. As might be expected the proof is very similar to that of
Proposition 2. Suppose such a g exists, then (3.5) holds for
0 < kg < 2n-2. This allows us to set up coordinates as before with y given

by (3.6). Once again for 0 < k < n-1

1 i = n-k-1

0 otherwise .
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Therefore fi is the sum of a linear function of x2,...,xn and

and arbitrary function of X =y

£,() 01 0 X, 9, )
= Axtop(y) = T . + :
. 0. . .1 . .
fn(x) 00 0 X ¢n(y)

On the other hand suppose (2.8,9) is equivalent to a linear system with
nonlinear output injection (2.10,11) under change of state coordinates.
Let B € BQIX'L satisfy
0 0< j<n-1

cals =

If we define vy = L%-l(h) then it straightforward calculation

to see that

= cpad
yj+1 CA'x + ¢j(y1,...,yj)

for some function wj' Viewing B as a vector field,

Ly(h) = Ly(y;) = CB = 0

and by induction for j=1,...,n-1



. . j ov.
] _ = 3 —d
LpL; (h) LB(yj+l) CA“B + iil 5 LB(yi)
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This shows that if g 1is the vector given in x coordinates by B then
satisties (3.9).

Next we show by induction that in x coordinates
(-1)3akz k<n

add (£)g =
nyny L _
(-1)"A"B + dy k=n

Clearly this holds for j=0, suppose it holds for j-1. Then

add(£)g = [Ax + 9(y), (-1)3"1ad 1]
A dn L B g1
(-1) (AB+ayCA B)
(-1)3adp j<n
n,n A4 .
(-1)"A"B + 3y ki n

From this it follows that (3.10) holds.

13
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