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Abstract. (f,g)—invariant distributions have begun to play a role in
nonlinear control similar to the role played by (A,B)-invariant sub-
spaces in the theory of linear systems. The importance of (A,B)-
invariant subspaces lies in their connection with the existence of
feedback laws possessing various special, desirable properties and in
this regard the generalization of this connection to the nonlinear
theory, i.e. the existence of globally (f,g)-invariant distributions,
remains open.. We give an example of a locally (f,g)-invariant dis-
tribution, with simply-connected leaves, which is not globally (f,g)-
invariant. An intermediate kind of distribution - the "input-
insensitive" distributions introduced by Hirschorn - are studied. We
show that a stronger form of the Bott Vanishing Theory must hold if a
locally (f,g)-invariant distribution can be rendered "input-insensitive"
by feedback, yielding topological obstructions to input-insensitivity.
Next, for input-insensitive distributions we derive explicit, complete
topological obstructions in HiR(M) to global (f,g)-invariance. This
generalizes the local sufficiency criterion given by Hirschorn's Lemma
to the global setting as well as various assertions in the literature

concerning the sufficiency of the l-connectedness of M.

1. Introduction

A basic problem in control theory, which illustrates one of the
many uses of feedback, is the problem of disturbance decoupling.
Suppose, for simplicity, that we consider a nonlinear control system

of the form:
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m r
s - iy
x = f(x) + izlui(t)gi(x) + jil wj(t)pj(x) (1.1a)
y = h(x) (1.1b)
z = k(x) (1.1c)

with state xeM, where M is a smooth n-manifold on which is defined

smooth vector fields

and smooth vector-valued functions
h:M-> R, k:M R . (1.3)

Taking the pj's and k to be zero, we recover a nonlinear control
system, with control functions ui(t):

m
k= f(x)+ ) u (g ), y=hx . (1.4)
i=1

In the present situation, the input w models a disturbance entering
the system through the 'channels" Pys--sPy and the output z represents
a vector quantity which we wish to insulate from the disturbance

channels by use of (static) feedback:

m
u=ox) +v=oax + ) g; (B, (x) . (1.5)
i=1

Thus, the (static) disturbance decoupling problem is solvable locally
provided after implementing the feedback (1.5,1.la-c) becomes, in local

coordinates,

P

= £ (%) + 5 (x)V
11 1 11 (1.12)"
kz = fz(xl,xz) + éz(xl,xz)v + p2(x1’X2)W
z = k(xl) (1.c)!
where
£(x) = £(x) + g(x)a(x), 8(x) = g(x)B(x) (1.6)

In the linear case, the solution {(in closed form) of the dis-
turbance decoupling problem was one of the elegant applications of the
theory of (A,B)-invariant subspaces, initiated by Basile and Marro [ 1],
[ 2] and fashioned into a powerful tool by Wonham and Morse [11], [14],
and [15]. There has recently been a development of the nonlinear

generalization, (f,g)-invariant distributions - of this theory



(independently in [5] and in [7], [8]), which wunder certain
regularity assumptions gives a local solution to problems such as the
disturbance decoupling stated above. In this paper, we aim to

initiate the study of the global aspects of this theory.

More precisely, suppose M is a connected n-manifold and A < TM is
a distribution on M of constant rank d, i.e. the subspace AX c TxM

satisfies
d = dim(AX), ¥Vxe M

Following [ 7] we define, with respect to the control system (1.4),

Definition 1.1. A is a locally (f,g)-invariant distribution provided

(1) [f(x),Ax] EiAX + span{gl(x),...,gn(x)}, ¥xeM

(i1) [gi(x),AX] < AX + span _ {gl(x),...,gn(x)}, ¥xeM
c (M)

There is another, stronger, definition of local (f,g)-invariance -
due to R. Hirschorn - which we will discuss in Section 3. As in the
linear case, (f,g) - invariant distributions are of interest because of
their intimate connection with feedback laws satisfying certain

desirable properties.

Definition 1.2. A is globally (f,g)-invariant provided there exists a

globally defined feedback law (1.5) such that the closed-loop system

(1.6) satisfies

(1) (£,0.]1c<hA ' (1.7a)
X bl X
(ii) [gi’Ax] c AX, for i = 1,...,m. (1.7b)
¥ x £ M.

Clearly, from the form of the feedback (1.5), any globally (f,g)-

invariant distribution is locally (f,g)-invariant.

Moreover, one has a local converse (see Section 3, for Hirschorn's

converse for the stronger definition).

Lemma 1.3. ({71, {871, [12]) Suppose A is a locally (f,g)-invariant
distribution, A its involutive closure, and the dimensions of Z}

span{gl(x),...,gm(x)}, and A N sp{gl(x),...,gm(x)} are constant.



Then locally around each x there exists ®(x) and an invertible B(x)

satisfying (1.7a-b) in a neighborhood of x.

In this language then, the conditions for local disturbance
decoupling are (roughly) that there should exist an (f,g)-invariant A

such that
span{(pl(x),...,pr(x)} < Ax < Ker dk(x)

(Compare (l.la-c)' and Lemma 1.3.)

In section 2, we give an example of a distribution A on a 3-
manifold which is locally, but not globally, (f,g)-invariant. In fact,
we give necessary and sufficient conditions for global (f,g)-invariance
of an integrable, regular, codimension 1 locally (f,g)-invariant
distribution on a compact manifold. As a consequence, we derive
necessary conditions on the Stiefel-Whitney numbers of the manifold
and distribution for global (f,g)-invariance, yielding our counter-
example as a corollary. An example of a codimension 2, globally (f,g)-

invariant distribution on SL(2, R) is also given.

In section 3, 23 consider the "input-insensitive" distributions,
introduced by Hirschorn [ 5] in his study of the disturbance decoupling
problem. A generalized form of the Bott Vanishing Theorem is derived
as a necessary condition that a locally (f,g)-invariant distribution be
input-insensitive after feedback. In the simplest case compatible with
generalized Bott Vanishing, we describe the complete obstructions to
global (f,g)-invariance of an input-insensitive distribution,
generalizing the local assertions given by Hirschorn's Lemma. These
obstructions lie in Hik(M) and therefore, as a special case, one

knows the global form of Hirschorn's Lemma - in our setting - for all

input-insensitive distributions when M is simply - connected.

Finally, in section 4 we study a particular disturbance decoupling
problem, following the algorithm given in [ 7] for finding a globally
(f,g)-invariant distribution. We find that the algorithm breaks down
on a submanifold which is Poincaré dual to the obstructions uncovered
in Section 2, giving another interpretation to the topological

obstructions uncovered here.



2. Global (f,g)-Invariance

We begin this section with 2 examples which give the flavor of the

general problem. All manifolds, distributions, fields and functions

are C .

Example 2.1. Let M = SLL(2, IR) and consider the system
x = f(x) + ug(x)

where f = H, and g = X, in the standard Cartan basis for

SQZ(IR) < T'(M,TM). Setting

A= sp o {u}
cC (M)

one sees that A is locally (f,g)-invariant, since
(1) [f(X),Ax] - {o}
(1)  [g(x),8 ] = splg(x)}

Moreover, A = A and the hypotheses of Lemma 1.3 are satisfied for all
x € M. On the other hand, (f,g)-invariance will follow provided we

can find a function R(x) such that
[B(x)g(x),AX] < AX, for all x ¢ M | (2.1)
Expanding (2.1) we have
[B(x)g(x),H(x)] = -28(x)g(x)-H(8) (x) g(x)
Since X+ and H are everywhere independent, (2.1) implies
H(B) = 2B ; (2.2)

that is, B is an eigenfunction for the differential operator H with
eigenvalue 2. Thus, A is globally {f,g} invariant if, and only if,

the eigenvalue problem (2.2) has a solution. That (2.2) can be solved,
for a smooth function on SL(2, R), follows from the classical

representation theory of SQZ(IR).

2 hi
SL(2, R) acts transitively on IR -{0} by linear transformation;
2
thus, it suffices to solve (2.2) on R ~-{0} for the linear vector

field ﬁ induced on IRZ by H. Now, as a differential operator
i:(rH" > (rH”

inducing the action
i 2D - FrrD”

on homogeneous polynomials of degree k. Taking k = 2, it follows (| 61)



that
spec(ﬁ) = {2,0,-2}

as a differential operator on quadratic forms. Indeed,

H(xZ) = 2x% . (2.3)

Pulling back x2 to SL(2, IR) along the projection

T : SL(2, R) » IRZ-{O} >~ SL(2, m)/%[-(l) 113”

* oo
we obtain 8 = 7 x2 € C (SL(2, R)) satisfying

HE = 28 . ' (2.2)"

Remark. The solution in (2.2)' is, however, unsatisfactory from a

control theoretic perspective since the new control vector field
g(x) = g(x)B(x)

vanishes wherever B(x) vanishes. In general, i.e. for m > 1, we ask
that B(x) be invertible for all x € M, so that we can maintain "full

open-loop control', see [ 7].

Returning to our example, one knows that any R obtained from the
. 2 2. 0% . .
finite dimensional representations on & k(IR ) and satisfying (2.2)
must vanish on SL(2, IR). Note, however, that (2.2) is the infinitesimal

form of

B(hgo) = ™2%80) 2.2)"

for he € S0(2)c SL(2, IR). Consider, then, the representation pp in
L . . i2
the principal series of SL(2, IR) associated to the character e’
2
on S0(2). This representation space is the space of L -sections of the

line bundle L on the Poincare upper half plane P ([4])
SL(2, R) » SL(2, IR)/SO(2) =P (2.4)

i26 . e e 4.
associated to (2.4) by the character el . Since L -~ P is trivializable,

we can choose a nowhere vanishing section B : P - L giving rise to a
nowhere vanishing function
B : SL(Z, R) » R

satisfying (2.2)' and hence (2.2).

Therefore, A is globally (f,g)-invariant.



Example 2.2. Let M = U(2)/0(2) and consider the distribution A tangent
to the foliation of M by the fibering
2
det : M~ Sl . (2.53)

Now, (2.5) is a fiber bundle with fiber 2 copies of SU(2)/S0(2; R)
identified; that is, (2.5) is a fiber bundle over S1 with fiber 82

glued by the antipodal map. Thus,

(i) (detz)_l(e) is the leaf of a codimension 1 distribution on M,
with tangent bundle A <« TM;

*
(ii) (detz) d0 is a l1-form w on M, with ker w = A.

Choosing f € A and g = X, where X satisfies
~o<K,w> = 1
one obtains a control system
x = f(x) + u(t)g(x)
and a distribution A which is locally (f,g)-invariant, since
b+ splg(x)} = TM .

Moreover, all the hypothesis of Lemma 1.3 hold, so that, for all x,

locally a feedback law 8(x) exists satisfying
[B(y)g(y),Ay] < Ay for y in a neighborhood of x .

We claim, however, that no globally defined, nowhere zero, R(x) exists

such that

[BGg(x),8 ] < b

holds for all x € M. This claim follows from a stronger assertion for
codimension 1 integrable distribution on compact manifolds which are

regular, in the sense that the leaf space M/A 1is a smooth manifold

such that
T M-> M/A

is a smooth submersion. We may take the drift-term f to be zero.

Proposition 2.3. Suppose A is a regular integrable codimension 1

distribution on a compact manifold M and that g € I'(M,TM) is transverse

to the leaves of A. 1If there exists a nowhere vanishing B(x) satisfying

[Bg, 0] =« &, (2.6)



then the leaf-space map 7 : M » M/A is a trivial fiber bundle; 1i.e. in
particular M = Sl x L, for L a leaf of A. Conversely, if 7w is a trivial

fiber bundle and L is simply-connected, then such a B exists.

Proof. Since A is regular and M is compact, the leaf space is Sl,
and we have

T+ M- sl, with 7 X(8) = L

and g (or -g) satisfies
*
<t df,g> > 0 . . 2.7)

If 8 exists satisfying (2.6), then integrating x = B(x)g(x) at time T
with initial data x € w‘l(el) gives a diffeomorphism . such that

) £'n“1(el) g 1

T (62), for some 62 £ S

since 3(x)g(x) # 0. There exists a minimum time T > 0 such that

o v’l(el) ~ 1 1¢e.)

T 1
1. . -1 1

and T : M > S is formed by gluing L = T (61) over S~ by ®T. Since

@T is homotopic to @0, it follows that ™ : M ~> Sl is trivial; in

particular, M = L X Sl.

The converse follows from the proof of Lemma 1.3 offered in 171,

where it is noted that if
T : M-~ M/A

is a smooth fiber bundle with local cross=-section Na’ then a solution
Ba(x) to (2.6) can be found in a neighborhood of Nd by specifying the
initial data Ba(xo)’ X, € Na’ to a Cauchy problem on this neighborhood.
If a global cross-section N exists and the leaves are simply-connected,
then a well-defined global solution B(x) can be defined by the monodromy

principle. Q.E.D.

Our claim now follows from

Lemma 2.4. U(2)/0(2) is not diffeomorphic to 52 X Sl.

Proof. We will show that U(2)/0(2) and 52 x S1 have different
DeRhan Cohomology spaces; in particular, we will prove that U(2)/0(2)

is not orientable. By the Kunneth formula,



* 2 1, _ .* 2 *
Hy (87 % 87) = Hy (S )@HdR(s

1
dk )

Thus,

2 1 .
Bi(S Xx 87y =1, fori=20,...,3

As for U(2)/0(2), by the Leray-Serre Theorem the fibration (2.5)
%
induces a spectral sequence converging to HdR(U(Z)/O(2)) and since

. . . . 2
the base is l-dimensional, this sequence abuts at the E~ term, where

2 9,1 p, 2
E =~ H*(S™; A
.4 ( H(s7))

In particular,

* N * 1
Hyp(U(2)/0(2)) = H, (S Y®r1

* 2
where I ¢ HdR(S ) is the subring invariant under the antipodal map q.

Since ¢ is orientation reversing,
I = HZR(SZ) ~ R
so that
* * 1
H, (U(2)/0(2)) = H (5 ,
yielding

B, (U(2)/0(2)) = 1, for.i = 0,1, B, (U(2)/0(2)) =0, 132.
Q.E.D.

Remark. From the long exact sequence of (2.5), it follows that
T (U(2)/0(2)) = T (U(2) = T (sY) i3 3
™, (U(2)/0(2)) = m (U(2)/0(2)) = 2z .

On the other hand

2 N 2 .
ﬂi(S X §) = ﬂi(s ) ix 2
2 1, 1
nl(s X §7) = ﬂl(S ) .
Thus, by the Hopf isomorphism, ﬂi(SB) = ni(Sz) i 2 3, it follows that

U(2)/0(2) and S2 X Sl have the same homotopy groups. This accounts

for our choice of proof, from which it also follows that

1

* *x 2
H (U(2)/0(2); Z%) = H (S7 x 8§87 Z%)

if, and only if, p = 2.

One can rephrase the necessary condition in Proposition 2.3 in terms

of Stiefel-Whitney classes. If R(x) exists, then

W02y = B (L32) @, 1 (5157, (2.8)
2



and via (2.8) the total Stiefel-Whitney class (see e.g. [10])
w(l) =1+ wl(TL) + ... + wn—l(TL)

*
sits in H (M;ZZ). In these terms,

Corollary 2.5. If A is an integrable codimension 1, regular dis-

tribution on a compact n-manifold M which is globally g-invariant,
then
w(M) - w(L) =0 .

In the example given above,
1 (U(2)/002)52,) = 7, [w w1/ (w2 ,ul)
>=2 271072 1’72
with deg w, = i and un elementary calculation gives
w(M) =1+ W,
On the other hand,
* 2
w(L) = 1 € B (5732
In this sense

W

L€ K (U(2)/0(2); 2,) (2.9)

is an obstruction to global {gl}-invariance.

Corollary 2.6. With A,f,g, and M = U(2)/0(2) as above, A is a

locally (f,g)-invariant distribution, satisfying the regularity

condition of Lemma 1.2, which is not globally (f,g)-invariant.

3. Input Insensitive Distributions.

We now present a stronger version of Definition 1.1, originally
considered by Hirschorn in his analysis of the disturbance decoupling
problem { 5] and more recently dubbed "input insensitive distributions"

by Nijmeier and van der Schaft. The notation is as in §1.

Definition 3.1. ([ 5]) A distribution A is input insensitive provided

(i) [f(x),AX] S-Ax + span{gl(x),...,gm(x)} (3.1a)
(ii) [gi(x),AX] S-Ax’ fori=1,...,m (3.1b)

for all x &€ M.



One of the fundamental results in [ 5] is then:

Hirschorn's Lemma: 3.2. Suppose A is an involutive, input insensitive

distribution and that the dimensions of Ax’ span{gl(x),;..,gm(x)}, and
AN span{gl(x),..u,gm(x)} are constant over M. Then, in a
neighborhood of each x € M there exists ai(x) such that

m
(G + 121 g, ()0, (x),8 ] = A (3.2)

We investigate the following stra;egy.for proving that locally
(f,g)-invariant distribution is globally (f,g)-invariant: first, find
a feedback law rendering A input-insensitive and, second, to give
explicitly a complete obstruction to global invariance for input

insensitive distribution, generalizing Hirschorn's Lemma.

Remark. Note that Example 2.2 shows that not every locally (f,g)-

invariant distribution can be made input insensitive by feedback.

We now consider the question: For an involutive locally (f,g)-
invariant distribution A, does there exist (in§ertib1e) B(x) such
that A is input-insensitive with respect to g(x)B{(x)?

Set Vv = TM/A to be the normal bundle, of fiber dimension
r = n-d, of the distribution A and consider - under the regularity
conditions assumed in Lemmas 1.3 - 3.2 - the subbundle Q < v where Q

is defined as
Q=4+ span{gl,...,gm}/A .

Denote the fiber diemsnion of Q by q. Following Bott [3 ], we may

define a "basic connection"
v : TM,T™) x T(M,v) >~ T M,V (3.3)
as follows. If X e T(M,A), 2 g T(M,Vv)
V(X,2) = 7[X,Z] (3.4)

where

T TM >V
is the canonical projection and
m(Z) = Z.

Choosing a Riemannian metric on TM, we can extend (3.4) to a connection



defined for all X € ' (M,TM). Computing, as one may, the Pontrjagin
classes pAk(V) in terms of the curvature of such a basic connection V,
Bott proves that integrability of A implies that V is "flat" in the

direction A < TM, i.e.

Bott Vanishing Theorem, 3.3. A integrable implies

Ponti(v) =0 for 1 > 2r . (3.5)

This asserts the vanishing of all products of the classes

(V)yeessp
1 bk

Pun (V) of total degree > 2r.

Note, however, that if there exists an invertible B(x) such
that (2.1) is satisfied, then V may be defined - as a flat connection -
in the additional directions g(x)B(x), giving additional vanishing
in (3.3). More precisely, suppose Ax N span{g(x)B(x)} 1is constant

rank in x € M, and

q' = dim(A+ span{g(x)B(x) }/8,) - (3.6)

where
[g(X)B(X),Ax] SN

is satisfied. Then, we have

Theorem 3.4. If B(x) renders A input-insensitive, then
Pont (v) = {0} , for i > 2r-2q' (3.7)
In particular, if (x) has full rank, we have

Ponti(v) = {0} , for i > 2r-2q . (3.8)

Theorem 3.4 can, of course, be generalized to give obstructions to

global (f,g)-invariance, as was shown in [ 9].

In Example 2.2, v is trivial; thus, (3.8) is not the only

obstruction to input-insensitivity, or to global (f,g)-invariance.

We now turn to the simplest case compatible with the vanishing
conditions (3.8); viz. we assume that A is input-insensitive and
that

Q=040+ span{gl, ...,gm,/A

is a trivial q-bundle. We assume, by reordering, that



ﬂ(gl),...,ﬂ(gq)span Q, where

o A+span{gl,...,gm} > Q

is the canonical projection. Under these conditions:

Theorem 3.5. To £, gl,...,gq and & as above one can canonically
assign globally defined closed l-forms wl,...,wq on M such that
is globally (f,g)-invariant if, and only if, each w, is exact on M.
In particular, if Hl(M;Q) = {0} then each input-insensitive

distribution, with Q trivial, is globally (f,g)-invariant.

Thus, for simply-connected manifolds as well as for manifolds -
such as S0(3) or Graﬂs]R(m,m+p) - with Hl(M;Z) all torsion, input

insensitivity and Q trivial imply global (f,g)-invariance.

Proof. Our starting point will be analogous to the proof [ 5] of

Hirschorn's Lemma.

_ 3 3
LT X =

For x € M choose a local connecting frame X "
d axd
for A in a neighborhood of x - as we can by Frobenius' Theorem - and

consider the equation

d .
(£,Xx,1= ) hix, + % kg, (3.9)
i R I TSP

ji=1 j=1

which hold since A is locally (f,g)-invariant (compare [ 51). Note

([ 51, p- 6) that

ey _ i ’
Xi(kj) = Xg(kj) (3.10)
so that the locally defined l-forms
d , d .
Wy = E g1 dx 5 +°*> W_ = 2 gldxi (3.11)
i=1 1 a 4o ¢

are closed.

1f there exists locally defined functions al,...,am such that

m
[£(x) + )

& dj(x)gj (x),X;} = & (3.12)

then by equating coefficients mod A in (3.9) one has for each i=1,...,d

)

i
X.o0,-k)g.) =0 in
Jl(1J J)gJ) in Q



That is,
i . .
Xiaj = kj, i=1,...,d; 3 =1,...,9 . (3.13)
(3.10) is a necessary condition for (3.13), while a sufficient condition

1
by Poincaré's Lemma.

is that the forms w ,...,mq be exact:; which, of course, holds locally

Suppose we choose a different connecting frame

-~ B a .
Xi = ’ i=1,...,d

i

for A in a neighborhood of x. This leads, possibly, to a new choice

of l-forms

d .
G = VoELaR, (3.14)
i=1 7
If %X = f(x) and Jac(f) = [fij]’ then an elementary computation shows
that
- -1 ~d ~
(.Uk - [gk" ",gk] dxl
dx
_ 1 d t_ .~
L d§d
_ 1ot d -
- [gka ’gk] dxlT—wk .
dxd_
Therefore, the l—forms(ul,...;uq are independent of the choice of
connecting frame Xl,...,Xd for A; i.e., wl,...,wq are globally

defined closed 1-forms which are canonically associated for f,g, and
A and a choice of frame for Q. Moreover, a feedback law a(x) satisfying
(3.12) exists if, and only if, each(gi is exact - or if, and only if,

the classes

' (4 = 1 o~ 1 :
["'1]""’[‘)q] £ HdR(M) H™ (M; R)

vanish. Q.E.D.



4. A Distrubance Decoupling Problem.

As in Example 2.2, we take M = U(2)/0(2) and consider the control

system
% = £(x) + u(t)g(x) + ) w, (£)p, (x) (4.1a)
i=1
y = h(x) (4.1b)
z = k(x) (4.1c)

%
where f, q, p, h, and k are defined as follows. Setting W = (detz) d6

where

det? : u(2)/0(2) » st (4.2)

choose f € I'(M,TM) so that f € ker w; choose g so that <Ww,g> > 0;

choose py,.--,p, SO that span{pl,...,ph} = ker w; define
2
- k(x) = Re(det (x));

and let h € Cm(M) be arbitrary.

As in 82, A = ker w is locally (f,g)-invariant and, moreover,

satisfies

span{p(x)} = AX c ker dk(x) . : (4.3)

Therefore ([ 7]), the disturbance decoupling problem is solvable

locally on M.

Moreover (since ker dk(x) is the maximal (f,g)-invariant distri-
bution contained in ker dk{(x)), one can show from the result obtained
in §2 that there does not exist any nowhere vanishing B(x) which

decouples the output z from the disturbance channels pl""’pé'

One can also see this by following the algorithm in [ 77 for a
B(x) which solves the disturbance decoupling problem. Form the
"1x1 matrix"
a(x) = adg(k) , (4.4)
and consider the equation ([ 7], 4.14b)

a(x)B8(x) = constant # 0 (4.5)
Now (4.5) is solvable except for those x such that adg(k)(x) = 0
i.e. except for x lying on the submanifolds

Si = (detH7HW), sf = (det?)TH(-1) (4.6)

Alternatively, the algorithm (4.5) "Wreaks down'! on the submanifolds
(4.6), which also satisfy



2 2
04 (s3] = [s7] € HyU(D/0(D); Z) (4.7)

by the argument given in the proof of Lemma 2.4. 1Indeed, in light of
the fact that one cannot globally disturbance decouple the system
(4.1la-c) it is interesting to note that

(21" = 18217 = g < W U@/0@; )

That is, the submanifolds where the algorithm { 7] fails are Poincaré
dual to the topological obstructions given in Corollary 2.5. We expect

to have more to say about this in a later paper.

Acknowledgement. The theory and applications of (f,g)-invariant dis-

tributions has been more recently extended to include a wider class of
systems than (1.4), see e.g. (9] and [12], [13].
This research has been supported at Scientific Systems, Inc. by

the U.S. Department of Energy under Contract DE-AC01-80RA50421.
Bibliography

[1] G. Basile and G. Marro, "{,'invarianze respetto ai disturbi
studianta nello spazio deli stati,”" in Proc. 70th Ann. Meeting
Elec. Eng. Assoc. Italy, 1969, Paper 1.4.01.

[2] G. Basile and G. Marro, "Controlled and conditioned invariant
subspaces in linear system theory," J. Opt. Theory and Appl.
3 (1969) 306-315. '

[3] R. Bott, "On a topological obstruction to integrability," Proc.
Symp. Pure Math. 16 (1970) 127-131, Providence, R.I.

fa] J. Dieudonne’, Special Functions and Linear Representations of
Lie Groups, CBMS Regional Conf. Proc. No. 42, Providence, R.I.
1980.

[5] R. Hirschorn, "(A,B)-invariant distributions and disturbance
decoupling of nonlinear systems," SIAM J. Control and Opt. 19 (1981),
1-19.

[6] J. Humphreys, Introduction to Lie Algebras and Representation
Theory, Springer-Verlag, Berlin-Heidelberg - New York, 1972.

[7] A. Isidori, A.J. Krener, C. Gori~Giorgi and S. Monaco, "Nonlinear
decoupling via feedback: a differential geometric approach,”
IEEE Trans. Aut. Control AC-26 (1981) 331-345.

[8] A. Isidori, A.J. Krener, C. Gori-Giorgi and S. Monaco, 'Locally
(f,g) invariant distributions,” Systems and Control Letters 1
(1981) 12-15. '

[9] A.J. Krener, "(f,g)-invariant distributions, connections, and
Pontryagin classes,' Proc. of the 20th IEEE Conf. on Decision
and Control, San Diego, CA, 1981, 1322-1325.




(10]

f11)

(12]

[13]

[14]

[15]

J.W. Milnor and J.D. Stasheff, Characteristic Classes, Annals
of Math. Studies No. 76, Princeton, N.J. 1974.

A.S. Morse and W.M. Wonham, "Status of noninteracting control,”

IEEE Trans. Aut. Control 16 (1971) 568-581.

H. Nijmeijer, "Controlled invariance for affine control systems,"
Int. J. Control 34 (1981) 825-833.

H. Nijmeijer and A.J. van der Schaft, "Controlled invariance for
nonlinear control systems,' IEEE Trans. Aut. Control

W.M. Wonham, Linear Multivariable Control: A Geometric Approach

2nd Ed. Springer-Verlag, N.Y. 1979.

W.M. Wonham and A.S. Morse, Decoupling and pole-assignment in
linear multivariable systems: a geometric approach,’ SIAM J.
Control 8 (1970) 1-18.



