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(Ady,), (ad;,) AND LOCALLY (ad,,) INVARIANT AND
CONTROLLABILITY DISTRIBUTIONS*

ARTHUR J. KRENERTt

Abstract. In the study of nonlinear control systems, the concepts of an invariant foliation and an
invariant distribution play important roles. In this paper we explore various forms of these concepts and
show how they occur in the study of controllability, observability and decoupling of nonlinear systems.
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L. Introduction. Through the work of many researchers over the past decade it
has become clear that concepts from differential topology such as foliation and invariant
distribution play a crucial roll in the study of nonlinear systems. These tools were first
used in the study of nonlinear controllability and later observability. More recently
they have arisen in the study of decoupling and linearization via feedback.

As their use has widened, a greater precision in their application has become
necessary. This paper is an attempt at that precision at least as far as my own joint
work with R. Hermann [12], A. Isidori, C. Gori-Giorgi and S. Monaco is concerned
[7]. These papers use differential topological tools to extend to nonlinear systems the
geometric approach to linear systems. Although they are quite successful, they do not
have the same logical simplicity and elegance of the corresponding linear theory. This
reflects a basic fact of mathematical life, nonlinearities are much messier to deal with,
one usually must make strong regularity assumptions and distinguish between a much
larger range of phenomena when in their presence.

In this paper we introduce the basic concepts needed for an understanding of
controllability, observability and decoupling of nonlinear systems. Some of the
theorems contained herein build on and are refinements of those appearing in [12]
and [7]. By slightly modifying some definitions we achieve a synthesis of the previous
work. From this firm platform we are able to treat controllability distributions in a
precise manner and prove several interesting results.

2. Mathematical preliminaries. Throughout this paper we consider nonlinear sys-
tems of the form

(2.1a) X =f(x,u)=g%x)+g(x)u,
(2.1b) y=h(x),
(2.1¢) x(0) = x°,

where x denotes local coordinates on a smooth n-dimensional Hausdorff, paracompact
connected manifold M, ueR™, yeR?, g° and g',- - -, g™, the m columns of g, are
local coordinate descriptions of smooth vector fields globally defined on M. Smooth
means either € or €“ (analytic). The definitions of differentiable manifold, etc. can
be found in Boothby [18] or Spivak [22].
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Of course (2.1) is a local description; different descriptions of this type are valid
in different coordinate neighborhoods of M. As far as possible we use local coordinate
notation; hopefully this will make the paper accessible to a wider audience.

We denote by T.M and T*M the tangent and cotangent spaces at x, and by TM
and T*M the tangent and cotangent bundles. The ring of smooth real valued functions
on M is denoted by (M), the space of smooth vector fields (sections of TM) by
Z(M) and the space of smooth one forms (sections of T*M) by Z*(M). (M) and
Z*(M) are real vector spaces and F(M) modules, and (M) is a Lie algebra under
the Lie (or Jacobi) bracket. Locally vector fields are represented by column n vectors
and one forms by row n vectors. The bilinear pairing between a one form w(x) and
a vector field X(x) is then the multiplication of 1 Xn and n X | matrices. It defines a
function denoted by (w, X)e F(M).

A vector field X defines a flow (s, x), the solution of the differential equation

a%q)(t, ) = X(®(1, x)),

(0, x) = x.

For each x, t > ®(t, x) is a curve defined for ¢ in some open interval depending on x.
For some x the curve may escape from the manifold in finite time and hence not be
definable for all t. We use the phrase “for all " to mean “for all ¢+ where defined”".
For each ¢ the map x » (¢, x) is a smooth diffeomorphism where defined.

A vector field X or its flow ®(¢, x) acts on functions ¢ € F(M), vector fields
Ye#&(M) and one forms we ¥*(M). The right side of the following are local
coordinate descriptions which can be taken as the definitions of the symbols to the left.

(222)  Adk(e)(x)=B(1)*p(x) = o(d(1 x)),
(22b)  La(e)(x)=(de, X)(x),
(2.3a) AdY(Y)Hx) = (CD(—t)* Y)(x)::%ﬁzt’z—)— Y{(d(1, x)),
z=®d(1, x)
(2.3b) adx (Y)(x)=LyY(x})=[X, Y](x)= g(x)X(x) —%(x) Y(x),
ox 3x
(2.4a) Ady(w)(x)= P 0 (D(1, x)) = w(fl)(t,x))a()ﬁitz’” S
(24b)  adx(w)(x)= Ly(w)(x) = ("—“’—'(x)X<x))'+w<x>a—’—((x>.
0x 0x

We use ' to denote transpose and 8/3x to denote partial differentiation. It is always
applied.to a column vector yielding a matrix with i the row and j the column index
as in

Xj
Y aY;
a—x( )= <5;C:(X)>’
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Equation (2.3b) defines the Lie bracket of vector fields. It is standard mathematical
notation to denote (2.2b) by X¢ or X (¢). We shall not employ these but instead use
X¢ for X multiplied by ¢.

The operator Ly of the above formulas is called Lie differentiation for

d
(2.52) Lx(sO)(X)=E . Adx(¢)(x),
(2.5b) Lx(Y)(x) =i‘ Ad%(Y)(x),
dt t=0
(250 Le(@)(x) =% Adk(V)().
dt t=0
The following Taylor series expansions are called Lie series:
(2.6a) AdL()()~ ¥ 1 Lile)(0),
o 4k
(2.60) AN = T adk(Y)(),
o 4k
(2.6¢) AdK(@)) = T L@,
where ad%(Y)=[X,ad% (V)]
Further identities are
(2.7a) Ad% (@, Y))(x) =(Ad% (@), AdXx(Y))(x),
(2.7b) Ly{w, Y)(x)=(Lx(w), Y)(x)+{w, Lx(Y))(x),
(2.8a) AdY(Y, ZD(x) =[Ad%(Y), Adx(Z))(x),
(2.8b) [X]Y, Z))(x) =[[X, YIZ}(x)+[ Y[ X, Z])(x) (Jacobi identity),
and
(2.92) Adi(de)(x) = d(Adx(¢))(x),
(2.9b) Ly (de)(x)=d(Lx(¢))(x).

A fundamental geometric concept in the study of nonlinear systems is the following.

DEFINITION. A distribution 9 is a submodule of #(M). We denote by D(x) the
subspace of T,M obtained by evaluating the elements of & at x. The union D=
U cem D(x) of these subspaces is called the singular subbundle of TM associated to
9. (By definition all singular subbundles of TM are associated to distributions.) If D
(or D) is nonsingular, i.e., the dimension of D(x) is constant over all x, then D is a
subbundle of TM (in the usual sense of the term).

A local frame for @ (or D) on-an open set U< M is a family of vector fields
(X', -, X"} such that for each x € U the vectors {(X'(x)," -, X(x)} are a basis
for D(x) (clearly D is nonsingular iff around each x € M it admits a local frame).
Given a singular subbundle D associated to a distribution @, we can define a second
distribution I'( D) as the set of all smooth vector fields X e %(M) such that X (x) € D(x),
Vxe M. A distribution @ is complete if @ =T(D). (After this section all distributions
will be assumed to be complete, and we shall use the term distribution to mean complete
distribution.)
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For nonsingular D, the distinction between D and & (or I'( D)) is not particularly
important and a certain amount of sloppiness is tolerable. However, one must be much
more careful when considering the singular case. For example, the collection of all
distributions on M forms a lattice partially ordered by inclusion under the operations
of submodule addition and submodule intersection. If @', @* are complete distribu-
tions, D', D’ their associated singular subbundles and D the singular subbundle
associated to @' N 2 then

D(x) = (D'(x)N D*(x))

but the inclusion can be proper for some x. For example, for M =R let @' be the
span of 3/3x, and @ be the span of 9/8x, + x, 3/3x, (span always means over F(M)).
Then @' N @? contains only the zero vector field so D(x) = {0}.

No such difficulty occurs with sums; if D is the singular subbundle associated to
2'+ 9? then D(x)= D'(x)+ D*x).

DEFINITION. An integral submanifold L of & is a connected, immersed submani-
fold L< M such that for each xe L, T.L= D(x). A distribution 9 is integrable if its
maximal integral manifolds define a partition of M. This partition is called a foliation
and the maximal integral submanifolds are its leaves.

DEeFINITION. A distribution & is Adx invariant if Y € 9 implies Ad%(Y)e D for
all t. A distribution @ is ady invariant if Y € @ implies adx(Y)e 9.

Clearly from (2.5b), Ad x invariance implies adx invariance but the converse need
not hold. If everything is €“ then Lie series arguments (2.6b) imply the converse. If
9 is nonsingular then an argument of Hermann [16] also implies the converse.

DEeFINITION. A distribution @ is involutive if 9 is adx invariant for every X € 9.

The basic integrability result is next.

THeOREM 2.1 (Sussmann [10]). A distribution & is integrable iff 9 is Adx invariant
for every X € 9.

This feads to the following corollaries.

CoRroLLARY 2.2 (Frobenius [18]). For nonsingular distributions integrability and
involutiveness are equivalent.

CoroLLARY 2.3. (Hermann [16], Nagano [17]). For C* distributions integrability
and involutiveness are equivalent.

DEFINITION. A point x° is a regular point of the distribution 9 if the dimension
of D(x) is constant in a neighborhood of x° otherwise it is a singular point.

It is casy to see that the regular points of @ form an open and dense submanifold
of M.

COROLLARY 2.4. An integrable distribution 9 is involutive. An involutive distribution
9@ restricted to the submanifold of its regular points is integrable.

The Adx and ady invariant distributions form lattices, while the integrable and
involutive distributions form semilattices (closed under intersections but not sums).
There exist minimal integrable and involutive distributions containing a given distribu-
tion 9, called the integrable and involutive closures of @. From (2.8a,b) it follows that
if @ is Adx or ady invariant then so is its involutive closure.

DEFINITION. A codiStribution € is a submodule of Z*(M). (Classically codistribu-
tions are called Pfaffian systems.) Associated to each codistribution € is a family of
subspaces E(x)< T*M obtained by evaluating the one forms of & at x. The union
E = U E(x) is a singular subbundle of T* M. Nonsingularity, local frame, completeness,
etc. are all defined analogously.

There is a duality between distribution and codistributions. To each distribution
9 (codistribution &) there is a codistribution 2* (distribution €*) called its annihilator
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defined by
Pt ={we F*(M): {(w, X)=0,VX € D},
(& ={XeZ (M):{w, X)=0,YVwe &}).
One has the inclusion
@C@LL (gCgLL),
which may be proper unless (%) is nonsingular and complete. Moreover
(@l+92)l:@lLﬂ@2L ((gl+g2)L=glLU gZL),
91L+@2LC(91092)L ($1L+82Lc(glngZ)L)'
If 2', 9* and 2'NP? (€', €* and €' &) are complete and nonsingular then the
last inclusion is an identity.
DEFINITION. A codistribution € is Adx (ady ) invariant if w € € implies Adx(w) €
€ Vit (adx(w)e &).
LEMMA 2.5. If the distribution D is Adx(adx) invariant then the codistribution @+

is also. If the codistribution € is Adx (ady) invariant then the distribution € is also.

Proof. Suppose @ is Ady invariant, w € 9* and Y € 9; then Adx' (Y)e @. Using
(2.7a) gives

(Adx(w), Y)=(Adx(@), Adk (AdX(Y))) = Adx({w, AdX (Y))) =0,

so Ad%(w)e @* and @* is Adx invariant. Suppose @ is adx invariant, w € 2* and
Ye®; then Ly(Y)e 9. Using (2.7b)

(Lx(®), Y= Lx(w, Y)—(w, Lx(Y))= Lx(0)-0=0

50 Ly(w)€ @* and @* is ady invariant. The other assertion is proved similarly. QED

DEFINITION. A codistribution & is integrable if the distribution €* is integrable.

Let h: M - RP? be smooth. We denote by R(dh) the codistribution spanned by the
one forms dh, i=1,---,p. We denote by ¥#(dh) the distribution which annihilates
R(dh), F(dh) = R(dh)*.

LemMa 2.6. R(dh) is integrable.

Proof. By definition we must show that the distribution #(dh) is integrable. By
Sussmann’s theorem this amounts to showing that #(dh) is Adx invariant for every
X € ¥(dh). By Lemma 2.6 this is equivalent to showing that R(dh) is Ady invariant
for every X € #(dh).

From the definition
AdY (dh;) = Adx(Adx(dh;))

50

ds dt =0 (=0
By (2.5¢) and (2.9b) this becomes

d d d
“CAdi(dh)=—|  AdY(dh)=Ad% | Adi(dh).

d
75 Adx(dh) = Adx Lx(dh;) = Adxd(Lx (h;)).

But X e #(dh) implies Lx(h;) =0 hence

Ad%(dh,) = dh.. QED
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3. Ad, and ad; invariance. In the study of linear systems of the form

(3.1a) x=Ax+ Bu,
(3.1b) y=Cx,
(3.1¢c) x(0) = x°,

the invariant subspaces of the matrix A play an important role. Suppose VSR" is
such a subspace, i.e., AV< V. Then V is spanned by the real and imaginary parts of
a subset of eigenvectors and generalized eigenvectors of A. The invariant subspaces
are the modal subspaces of A.

The nonlinear generalizations of this are several.

DEFINITION. A distribution or codistribution is Ad; invariant (ad, invariant) if it
is Ad. ., invariant (ady.,, invariant) for each constant control u € R"

Clearly Ad, invariance implies ad, invariance but not the converse unless the
distribution or codistribution is nonsingular or €“. It is easy to see that ad, invariance
is equivalent to ad,s invariance for j=0, - - -, m. What is not so obvious, but follows
from Lemmas 3.2 and 3.3, is that Ad, invariance is equivalent to Ad,/ invariance for
j=0,-- -, m As one expects from the results of § 2, the sum and intersection of Ad,
or ad, invariant (co) distributions is also, the involutive closure of an Ad, or ady
invariant distribution is also and the annihilator of an Ad, or ad, invariant (co)
distribution is also.

Before we go any further let us relate these concepts to that of an invariant
subspace of a linear system (3.1). Let V be an invariant subspace, and define 9 as
the set of vector fields on R” which take values in V. (We are using the canonical
identification of R" with each of its tangent spaces T,R") The associated subbundle
D is nonsingular with D(x) = V (thought of as a subspace of T.R"). For each constant
control ueR™ we obtain the vector field f(x, u) = Ax+ Bu and corresponding flow
®(1,x) = e™(x+[, e Buds).

We claim that @ is Ad, and ad, invariant. By the above remarks it suffices to
verify that @ is Ad, and ad, invariant for j =0, - - -, m. But g’(x) = B’ (the jth column
of B), a constant vector field, and any basis for V considered as constant vector fields
defines a global frame for 9. Let ve V considered as a constant vector field in & then

(3.2a) ado(v)=—Av,  Adi(v)=e v,
(3.2b) adg/(v):O, Ad;a(u)zv, j=1,--,m

Since a frame for @ is invariant, it follows that all of & is.

We refer to such a 9@ as a constant distribution on R" because it has a global
frame of constant vector fields but of course @ contains nonconstant vector fields. If
g’ is a constant vector field (such as B’) and @ is a constant distribution then @ is
always Ad,s and ady invariant. Therefore one need only check the Ad,o and ad,
invariance of constant distributions. This fact frequently leads to differences between
the formulation of a linear result and its nonlinear generalization as we shall see
throughout this paper.

We have just noted that for a linear system the constant distributions which are
Ad, or ad, invariant are precisely the invariant subspaces of A. One might ask whether
there are any nonconstant distributions which are invariant. If one restricts to nonsin-
gular distributions the answer is essentially no.

PrOPOSITION 3.1. Suppose the linear system (3.1) is controllable and 9 is a nonsin-
gular Ad; (equivalently ad,) invariant distribution for (3.1). Then P is a constant
distribution, hence corresponds to an invariant subspace of A.

e
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Proof. Let the dimension of & be d and let X',-- -, X be a local frame. By
assumption for j=0,--- mand k=1,---,d

[g’, X e 2.
Using the Jacobi identity (2.7b)
[[g', ¢’), X*1=[g'le’, X 1I-[g'[g", X e D,
so @ is invariant under any bracket [g', g’ By repeating this argument it follows that

@ is invariant under any multiple bracket [g/ - - - (g, g"1 -1
Now g°= Ax, g/ = B/(jth column of B) and

adj(g’)=(=1)"A"B,
(g’ ade(g)]=0,

where i,j=1,-- -, m and r=0. The controllability assumption implies that there are
n linearly independent vectors of the form A"B’. View these as constant vector fields
and denote them by Y' - -+ Y".

Since each Y* is a bracket of g’’s, it leaves @ invariant, hence there exist functions
'Y such that

d
[YY X 1= Y X'TY.
i=1
Let I'* denote the d X d matrix (['¥) and X the n xd matrix (X' - - - X¢); we abbreviate
the above as
(Y5 X]=XT"

We make a change of local frame for @ by choosing a d xd invertible matrix

valued function v, the new basis is the set of columns )Z", cee X? of X = X,. We
seek a basis which commutes with Y i.e.

0=[Y* X]=[Y* Xy]=[Y* X1y +XLy*(y) = X(T*y+ Ly<(¥)).
Hence y should satisfy the linear partial differential equation
Ly (y)=-T"y.

There is a local solution to this equation if the integrability (mixed partial)
conditions are satisfied. Since [ Y*, Y']=0 these are

Ly<Ly!(7y) = Ly'Ly(y)
which reduce to
Lyx(T'y) = Ly(T*y)
or
(Ly*(F") =T'T*)y = (Ly!(T*) = T*T")y.

But these follow from the Jacobi identit;/ (2.8b) and the linear independence of the
columns of X for

(Y'Y, XT-(YTYS X=[Y" Y'IX]=0,
[Y* XT-[Y XT¥]=0,
X(T*T'+ Ly«(I'") =T'T* - L (I'*)) =0.
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Hence we can find y such that the vector fields )2', s, X of the new local
frame for & commute with the constant vector fields Y', - - -, Y" which span R". From
this one can conclude that )?', s X are constant vector fields so locally & has a
constant frame. On the common domain of definition of two such constant frames,
the change of frame matrix must be constant so any such constant local frame extends
to a constant global frame for 9. QED

The statement that AV< V can be interpreted as the dynamics (3.1a)
infinitesimally leaves the directions of V invariant. The statement that e*V< V can
be interpreted as the flow of (3.1a) leaves the directions of V invariant. Both these
statements have direct nonlinear generalizations. If @ is ad, invariant then the dynamics
(2.1a) infinitesimally leaves the directions of @ invariant. If @ is Ad; invariant then
the flow of (2.1a) leaves the directions of & invariant.

The constant distribution & on R" associated to any subspace V of R" is integrable,
the leaves of the foliation that it induces are the cosets x+ V for xeR" If V is an
invariant subspace of A then the flow of (3.1a) for any fixed control u(t) carries cosets
into cosets. A concrete way of seeing this is to choose local coordinates x = (%) such
that

V={x:x,=0}L

In these coordinates the dynamics (3.1a) takes a block triangular form.

6 (=G )+ (Be
X5 Ay An/\x, B,
The coset space R"/V is coordinatized by x, and since x, evolves independently of
X,, the dynamics passes to this space.
In the nonlinear context a similar thing happens. Suppose @ is a nonsingular,
involutive Ad, (equivalently ad,) invariant distribution. Then locally one can choose

coordinates x =(;!) so that the leaves of the foliation induced by @ are given by
X, = constant. In these coordinates the dynamics again assumes a triangular form

(3.4) X :fl(xl,u)zg?(xl)+gl(x1)U,
Xy = fo(xy, Xy, u) = gg_(xl, X5)+ g2(x1, X5)u,

and the flow for any fixed control u(t) carries leaves into leaves. If the foliation induced
by 9 is regular, i.e., the space of leaves can be given a manifold structure, then this
space is locally coordinatized by x, and the dynamics passes to it. See [1] for details.
We close with some technical results regarding Adx invariance which we referred to
in the beginning of this section and which will be used later on.

LEMMA 3.2. Suppose @ is an Ady invariant distribution and c € R: then D is Ad.x,
invariant. Suppose 9 is an Ady invariant distribution, X € @ and o€ F(M); then @ is
Ad,x, invariant. .

Proof. The first statement follows immediately from the identity Ad(.x,=Ad%.
As for the second let 7(1, x) be the solution of

(%r(r, x) = @(®(=(1, x), x),

(0, x) =0,
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where ®(1, x) is the flow of X. Define ¥(1, x) = ®(7(1, x), x); then WY (r, x} is the flow
of X for

d ad ar
(;‘y(ta x) _a—T(T(Ia x)a x)g;(Ty x)

= X(®(7(1, x), x))p(P(7(1, x), x))

=X(¥(t, x))e(¥(t, x))
and

¥(0, x) =P(7(0, x), x) =d(0, x) = x.
Now if Y e @ then by (2.3a)

v
Ao, (Y)(x) =‘2—2(—t, 2 Y(¥(1, x))
=22, V()

laz

= Ad%(Y)(x) —%?(—r, 22 v

where z=W¥(t, x) =®(r(t, x), x) and 7= 7(t, x).

Since 0®/37(—1, z) = X(x) e D(x) it follows that Ad(,x,Ye9. QED

LemmAa 3.3. Suppose @ is Ad invariant fori=1,2. Then @ is Ad ', x?, invariant.

Proof. Let u(t)=(u,(t), u,(t)) be a bounded measurable function. Let ®, (¢, 15, x°)
be the time dependent flow of the time dependent vector field X,(t, x)=
X' u, () + X (x)uq(1), ie.

d
(3.5a) A x%) = X, (1, D, (1, 1o, x°)),
(B.Sb) ¢u(t09 [0, X0)=x0<

By standard results from differential equations, for each 1,, the map Xx,—
b, (1, t,, x°) is a local diffeomorphism. If u*(-) converges to u(-) in the weak L™
topology on [¢, ;] then ®,«(t,, t,,°) converges to P,(t, ty,°) uniformly as small
compact subsets. Moreover each of the derivatives does also.

9 is Ady: invariant iff the flow & of X' carries the vector field of 9 back into
9, i.e. if Ye P then d)‘(t)*Ye 9D. Let u*(-) be equal to (2,0) and (0, 2) on intervals
of length 1/k: then u* converges weakly to u(¢) = (1, 1). By assumption ¢ (1, ) Ye
P forall 1, t; and Y € 9. By continuity D, (1, ), Y € D, hence D is Ad ', x?, invariant.

Remark. One could define Ad and ad invariance with respect to time dependent
vector fields such as X, (¢, x). By modifying the proofs of the above lemmas one can
show that & is Adx, (or ady,) invariant for any bounded measurable u(t) it @ is
Ady (or ady') invariant for all i.

LemmMmA 3.4, Suppose D is Ad invariant for i =1, 2. Then @ is Ad invariant where
Z =Adx(X?) for any .

Proof. Let ®'(¢, x) denote the flow of X' and define

(3.6) W(t, x)=®' (-7, d*(r d'(7, x))).
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Since
1—‘?(!,x):CD'(~T)*XZ(<D2(t,CD'(t,x)))
=@'(—7) X (D'(r, ¥(1, x)))
= Z(¥(t, x)),
Y0, x)=x,
it follows that ¥ is the flow of Z. But then
V(1) Y =0'(—71), (1), P (1), Y,
hence Y e @ implies ¥(7),Ye 2. QED ‘

4. Nonlinear controllability and observability. In this section we review the basic
concepts of nonlinear controllability and observability because they are needed in the
study of disturbance decoupling and noninteracting control and they are nowhere
treated in an appropriate form. The closest reference is our joint work with Hermann
[12] but we must apologize for the somewhat confusing terminology that we introduced
there. We hope this section rectifies the situation.

The main difficulty in passing from liriear to nonlinear is that typically there are
several reasonable nonlinear generalizations of a single linear concept. The appropriate
choice depends on the context.

Let U be an open connected subset of M and T a nonnegative real number.

DEFINITION. A point x is U accessible from x° at time T if there exists a bounded
measurable control u(r) generating a trajectory of (2.1) x(t)e U for [0, T] such
that x(0) = x and x(T) = x". The set of all sets x", U accessible from x° at time T, is
denoted by «(x°, T, U). If U is suppressed, M is to be understood as in A (x", T) =
A(xy, T, U). If T is suppressed, the union over all T = 0is understood as in A(x°, U) =
Uz d(x° T ). ‘

DerINITION. The system (2.1) is controllable if s{(x°)= M for every x’e M. The
system (2.1) is locally controllable if restricted to every open connected subset U of
M, (2.1} is controllable, i.e., o(x,, U) =AU for every x"e U = M.

[t is apparent that local controllability implies controlability but not vice versa.
We shall use the modifiers local and locally to mean that a property holds for (2.1)
restricted to every open connected subset of the state space and hence a local property
always implies that property. These definitions capture ourintuitive idea of controllabil-
ity and local controllability but unfortunately they are extremely difficult to work with.
Deciding when a nonlinear system is controllable or locally controllable is generally
a difficult task. We are more interested in controllability as one half of what constitutes

a minimal realization, therefore we introduce weaker notions. The time reversible version
of (2.1) is

(4.1a) % = f(x, uo, u) = g(x)uy+ g(x)u,
(4.1b) vy =h(x),
(4.1¢) < x(0) = x"

DeriniTiON. The system (2.1) is reversibly controllable if (4.1) is controliable. The
system (2.1) is locally reversibly controllable if (4.1) locally controllable. Let
RA(xo, T, U) be the set of points accessible in U from x° along trajectories of (4.1).
Equivalently the system (2.1) is (locally) reversibly controllable if for every x, (and
A, RA(x")y = M(RA(X", U) = U).
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Clearly (local) controllability implies (local) reversible controllability but not vice
versa. Throughout we use the modifiers reversible and reversibly to mean that a property
holds not for (2.1) itself but for its time reversible version (4.1), hence a property
generally implies the corresponding reversible property.

These definitions emphasize one aspect of what one expects in a controllable
system, the ability to steer from one point to another: but there is another: namely,
that there are no uncontrollable modes, no coordinates of the state space which are
unaffected by the control. The following are attempts to characterize this.

DeriniTION. The system (2.1) has the (local) accessibility property if A(x°)
(4(x°, 9)) has nonempty interior for every x”e M (and open neighborhood ). The
system (2.1) has the (local) reversible accessibility property if (4.1) has the (local)
accessibility property.

THEOREM 4.1. If the system (2.1) has the accessibility property then it is reversibly
controllable. The system has the (local) reversible accessibility property iff it is (locally)
reversibly controllable. The system has the local accessibility property iff it is reversibly
controllable.

Proof. Reversible accessibility is an equivalence relation which partitions M.
Suppose the system has the accessibility property so that &/(x°) has nonempty interior.
This implies that RA(x°) (the set of points reversibly accessible from x°) is an open
subset of the connected manifold M, hence Rsf(x°) =M. The proof of the second
assertion is straightforward and the proof of the third is found in Hermann-Krener
[12, Thm. 2.1]. QED

In summary the logical implications between various forms of controllability are

local controllability = controllability
4 4

local accessibility property = accessibility property
) Y

local reversible controllability = reversible controllability
¢ b

local reversible accessibility property = reversible accessibility property.

One would like a simple criterion to decide when a system is controllable or not.
Unfortunately none seems to exist. These are however relatively straightforward criteria
for some of the others. We denote by ®(f) the distribution spanned (over #(M)) by
{f(-, u): u constant}. Let (Ad,|%(f)) and (ad,|2(f)) denote the smallest Ad, and ad,
invariant distributions containing %(f). These are the Ad, and ad, controllability
distributions. '

By Lemmas 3.2 and 3.3 the former is spanned by terms of the form

(4.2a) Adfe- o Ad) f°

where k=0 and f(x)=/f(x, u') for v’ constant. The latter is spanned by terms of the
form

(4.2b) adpo---o ad‘,lf0

and by the Jacobi identity (2.8b) is involutive. Lemma 3.4 implies that the former is
integrable and is the integral closure of the latter. The next result is related to a theorem
of Chow [21].
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THEOREM 4.2 (Sussmann [11]). The system (2.1) is reversibly controllable iff
(4.3) (Ad/R(f))=2(M).

While this is very elegant, the Ad, controllability distribution is not always easy
to compute so the following can be more useful.

THeorem 4.3 (Hermann-Krener [12]). The system (2. 1) is locally reversibly control-
lable if

(4.4) (ad R ()= 2(M).

If (2.1) is locally reversibly controllable and D is the subbundle of TM associated to the
ady controllability distribution then on an open dense subset of M

(4.5) D(x)=TM.

Equation (4.5) is usually referred to as the controllability rank condition at x. For
a linear system (3.1) the Ad, and ad, controllability distributions both equal

R{AX, A'B’:r=0,--- n—1j=1,---, m)
For x =0 the controllability rank condition (4.5) reduces to the familiar
Rank (B, AB,---, A" 'B)=n.

Now we turn to observability where again we follow [12] in spirit but change
terminology considerably. In what follows % always denotes an open subset of M.

DeriNniTiON. Two points x° and x' are % distinguishable if there exists a bounded
measurable input u() generating solutions x°(¢) and x'(¢) of (2.1a) satisfying x'(0) = x
such that x'(1) e U for all t€[0, T} and h(x'(1)) # h(x*(t)) for some t€[0, T]. We let
F(x°, U) denote all the points x' € % which are not U distinguishable from x° If %
is suppressed, M is understood as in $(x°) = $(x°, M).

DeFINITION. The system (2.1) is observable if #(x") = {x"} for every x°. The system
(2.1) is locally observable if for every open neighborhood % of x°, #(x° %)= {x°}.
The system (2.1) is (locally) reversibly observable if {(4.1) is (locally) observable.

All these definitions require that x° be distinguishable from every other point of
M. The local ones require that x° and x' be distinguishable by local experiments.
Frequently it may suffice that one be able to distinguish a point from its neighbors
either by local or global experiments. Therefore we introduce additional terminology
which was referred to as (local) weak observability in [12].

DEerFiNITION. The system (2.1) has the distinguishability property if every x° has
an open neighborhood %" such that #(x°) N ¥ ={x°. The system (2.1) has the local
distinguishability property if every x° has an open neighborhood " such that for every
open % neighborhood of x°, #(x°, )N ¥ ={x°. The system (2.1) has the (local)
reversible distinguishability property if (4.1) has the (local) distinguishability property.

The basic implications between these definitions are as follows.

local observability —> observability

4 4

4 - loc rev. =’ J  rev. observability
observability

loc. dist. prop. || = dist. prop. U

U 4§

loc. rev. dist. prop. = rev. dist. prop.
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If one makes a controllability assumption more implications follow; perhaps the most
interesting is

TueoreM 4.4. If (2.1) is locally reversibly controllable then the local distinguishabil-
ity property and the local reversible distinguishability property are equivalent.

We defer the proof to the end of this section.

Let R(dh) denote the codistribution spanned by dh, i=1,---,p and let
(Ad,|R(dh))and (ad,»]gi (dh)) denote the smallest Ad, and ad, invariant codistributions
containing % (dh). We refer to these as the Ad, and ad, observability codistributions.
They are the spans (over #(M)) of terms of the form

i a0 h .
(4.6a) Adfk o Adf. dh,
and
(4.6b) adyo- - -oad,dh;

respectively. By (2.9a, b) the exterior differential operator d can be pulled to the front
in (4.6) so that by Lemma 2.6 these codistributions are integrable.

TueoreM 4.5 (Goncalves [13]). The system (2.1) has reversible distinguishability
property iff

(4.7) (Ad/|R(dh))=Z*(M).

THeorREM 4.6 (Hermann-Krener [12]). The system (2.1) has the local distinguisha-
bility property if

(4.8) (ad/|R(dh)y=T*(M).

If (2.1) has the local distinguishability property and E is the subbundle of T* M associated
to the ad, observability codistribution then on an open dense subset of M

(4.9) E(x)=T*M.

Equation (4.9) is usually referred to as the observability rank condition of x. For
a linear system (3.1) the Ad, and ad, observability codistributions are the (M) span
of the rows of the familiar observability matrix,

C
CA

CAnfl

Proof of Theorem 4.4. Clearly the local distinguishability property implies the
local reversible distinguishability property. To see the converse notice that the ad,
observability codistribution for (2.1) and (4.1) are the same. Hence by Theorem 4.6,
the observability rank condition holds on some open dense subset ¥ of M. Therefore
(2.1) restricted to ¥ has the local distinguishability property, every x° and open
neighborhood % is such that ¢(x°, %) meets ¥. But this implies x° can be distinguished
from its neighbors. QED

5. (Adg, g), (ad/, g) and local (ad,, g) imvariance. In the geometric approach to
linear multivariable systems, as found in Wonham [15], the concept of an (A, B)
invariant subspace plays a crucial role. Recall a subspace V< R" is (A, B) invariant
if one of two equivalent conditions is satisfied,

(5.1 AVc V+R(B)
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(R(B) denotes the subspace spanned by the columns of B) or there exists an m X n
matrix F such that

(5.2) (A+BF)Vc V.

For reasons that will become apparent later we refer to these as the local and
global characterizations of (A, B) invariance. The global characterization (5.2) can be
interpreted as modifying the dynamics (3.1a) by linear state feedback

(5.3) u=Fx+vo
SO as to obtain the new system
(5.4) X =Ax+ Bv

where A= A+ BF. The subspace V is an invariant subspace of the new dynamics.

When working with linear systems it is convenient to restrict oneself to constant
distributions and linear feedback laws (5.3). We could allow a slightly more general
form, say

(5.5) u=Fx+Gv

but as far as (A, B) invariance is concerned it is not needed because every constant
vector field leaves every constant distribution invariant. When dealing with (A, B)
controllability subspaces, feedback laws such as (5.5) naturally arise.

A nonlinear feedback (or feedback) is a pair of matrix valued functions « and 8
on M; a(x) and B(x) are m X1 and m X m matrices smoothly varying in x. They are
used to define the feedback law

(5.6) u=a(x)+B(x)v
which results in the modified system .
(5.7) x = f(x, 0) = §°%x) + g(x)v

where ¢'(x) = g"(x) +g(x)a(x), §(x) = g(x)B(x) and §'(x) = g(x)B’(x) where B'(x)
is the jth column of B(x). It is convenient to combine these into an (m+1)x(m+1)
matrix

; 1 0
58 T (a B)
and reexpress this as
(5.9) JOx) =£(x)y(x)
where f(x) and f(x) are n x(m+ 1) matrices
(5.10) J(x)=(g°(x), g(x)),  f(x)=(£°(x), §(x)).

Hopefully this second use of the symbols f and f will cause no confusion. If there is
no drift term g°, then the feedback y reduces to B.

DerINiTION. A distribution 9 is (Adg, g) invariant ((adj, g) invariant) if there
exists a feedback y such that @ is Ad f invariant (adf~ invariant). If y is invertible
then the distribution is invariant with full control otherwise it is invariant with partial
control.

Unless otherwise stated “invariance” means “invariance with full control”. This
issue does not arise in the linear theory, because for reasons mentioned above,
invariance always means with full control.
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DerFINITION. A distribution @ is locally (ady, g) invariant with full control if and
for every constant u and for every X € &

ad, (-, ul(X)e D+ R(g)

where % (g) denotes the distribution spanned by the columns of g.

A distribution @ is locally (adj, g) invariant with partial control if there exists a
feedback y which is not necessarily invertible such that 9 is locally (adjy, £) invariant
where f = fy § = gB. Again unless otherwise stated “local (ad, g) invariance” assumes
“with full control”.

It is not hard to see that (Ad, g) invariance implies (adj; g) invariance which in
turn implies local (ad,, g) invariance. Before we delve further into this area we need
some additional terminology.

DEFINITION. A family of distribution @', - - -, @* separates the controls if there
exists locally an invertible feedback y where 8 has been partitioned into submatrices
B=(B',---,B""") such that

(5.11a) D' (x)NG(x)=G"(x), o=L--",p

(5.11b) ( 3 D”(x)) NG*'(x)={0},

where G, G“ and D are the subbundles of TM associated to the distributions 2(g),
R(g%) and D” respectively. A family of distributions completely separates the controls
if there exists an invertible feedback y with 8 =(8', - - -, B*) such that (5.11a) holds.
Such feedbacks y are said to be (completely) separating for the family of distributions
', .-, 9" A distribution @ separates the controls if considered as a one element
family of distributions it separates.

Notice a does not play a role in these definitions.

LemMma S.1. If @ is nonsingular, involutive and locally separates the controls then
the following are equivalent:

(a) D is locally (ady, g) invariant.

(b) There exist an open cover {U"} of M and separating feedbacks v* defined on
UP such that @ is ad f" invariant on U* where f° :fy" (in other words, locally & is
(ady, g) invariant).

(c) There exist an open cover {U”}.of M and separating feedbacks y” defined on
U* such that D is Ad f" invariant on U” (in other words, locally 9 is (Ady, g) invariant).

Proof. The equivalence of (b) and (c) follows from the nonsingularity of . It is
trivial to verify that (b) implies (a). In {3] it is shown that (a) implies (b) using the
stronger hypothesis that 2 N %(g) and %(g) are nonsingular. But the proof only uses
this to show that @ separates the controls. Moreover the feedback so constructed is
easily seen to be separating. Similar results are found in [4]. QED

This lemma explains our terminology, in particular why we refer to (5.1) and (5.2)
as the local and global characterizations of (A, B) invariance. For a discussion of the
topological obstructions to global invariance we refer the reader to [20].

Lemma 5.2. If @ is (Ad,, g) invariant or (ady, g) invariant then so is the involutive
closure of 9. If 9 is locally (ady, g) invariant then so is the involutive closure of 9. If
' and Z° are locally (adj, g) invariant then so is D'+ P2, hence the set of locally
(ad,, g) invariant distributions forms a semilattice under inclusion and. addition.

Proof. Since (Adj, g) or (ady, g) invariance is equivalent to Ad; or ad; invariance
for some feedback modified dynamics f, the first statement follows from (2.7). The
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second statement is proved in [3] and the third follows directly from the definition of
local (ady, g) invariance. QED

Remarks. The sum and intersection of (Ad g) (or (ad,, g)) invariant distributions
and the intersection of locally (ad g) invariant distributions need not be invariant in
the same sense. However the sum of locally (ad; g) invariant distributions is again
locally (adg g) invariant. This semilattice structure makes them convenient to work
with. In particular it implies that in any distribution 9 there exists a unique maximal
locally (ad; g) invariant distribution which we shall denote by 2*(2). If @ is involutive
then so is 2*(%). These remarks are predicated on the assumption of invariance with
full control. They must be modified when considering invariance with partial control.
In particular there may be distributions contained in 9 and properly containing 2*(9)
which are locally (ad; g) invariant with partial control.

Briefly we discuss the dual formulation of the above, for it is useful in computing
maximal locally (ad g) invariant distributions.

DEFINITION. A codistribution & is (Ad g) invariant ((ad, g) invariant) if there
exists a feedback y such that & is Ad; invariant (ad; invariant). A codistribution &
is locally (ady, g) invariant if for every constant u and every we €N #(g)

Lf'(,‘,,)(w) € g

Recall #(g) is the codistribution of one forms which annihilate the columns of g.

LEMMA 5.3. If the distribution D is (Ady, g) invariant ((ady, g) invariant) then the
codistribution 9" is (Ady, g) invariant ((ady, g) invariant). If the codistribution € is
(Ady, g) invariant ((adg g) invariant) then the distribution €* is (Ady g) invariant
((ady, g) invariant). If the distribution @ is locally (ad,, g) invariant then the codistribution
D* is locally (adg, g) invariant. If the codistribution € is locally (adj, g) invariant and
& and € ¥ (g) are nonsingular then the codistribution €* is locally (ad, g) invariant.

Proof. The first two assertions are almost immediate. As for the third let w e
D*NH(g)=(D+R(g))* and X € @', then

(5.12) 0= Ly.{w, X)=(Ly (), X)+ (o, ad ) (X)).

Since 9 is locally (adj g) invariant the second term on the right is zero hence
Ly (w)ye D,

The last assertion follows in a similar fashion. Let w € (€ + R(g))* = €N #(g)
(by the nonsingularity of &) and X € €*. Since % is locally (adj g) invariant the first
term on the right of (5.12) is zero hence ad f(-, u}(X)e (€*+R(g))* ' =&+ R(g)
by the nonsingularity of (*+ R(g))*=€N¥(g). QED

In disturbance decoupling and other problems one wishes to find 2*(¥(dh)), the
maximal locally (ad,, g) invariant distribution in %(dh). We now present an algorithm
from [1, p. 342] for the computation of 2*(@) for an arbitrary distribution @ which
works when all the distributions and codistributions involved in the calculations are
nonsingular. We then specialize to compute 2*(#(dh)). When there is no possibility
of confusion we shall abbreviate, 9* = D*(H(dh)).

Let & be an arbitrary distribution and €,(%) be the minimal locally (ady, g)
codistribution containing @*.

Define an increasing sequence of codistributions by

&=2" and €. =%+ L(ENH(g))

where the second term on the right denotes the (M) span of all one forms like Ly(w)
for j=0,---,m and we &N *(g).
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THEOREM 5.4 (invariant subdistribution algorithm (ISA)). If there exists a k, such
that & = &, ., then (D) =& . If in addition &, _and &, N H(g) are nonsingular then
DHD) = &,

Proof. By definition €,(2) contains €,=%" and is locally (ad g) invariant. A
simple induction shows that €,(%) contains &, for all k. If & =% ., then & is
locally (ady g) invariant and clearly minimal.

If €., and &, (1 %(g) are nonsingular then &i, is a locally (adg g) invariant
distribution by Lemma 5.3. By duality it is the maximal such distribution contained
in 9. QED

Computation of 2% = @*(¥(dh)) by 1SA.

&= H(dh)* = R(dh) = R(dh,, - - -, dh,)

where p, = p. Let Ay(x) be the p, X m matrix whose ith, jth element is (dh; g} (x). Let
Bo(x) be the p, X 1 vector whose ith element is (dh;, g°)(x). Assume the rank of Ay(x)
is constant and equal to r,. By rearranging hy, - - -, h,, if necessary we assume that the
first r, rows of Ag(x) are linearly independent at each x. Choose m xlay(x) and
invertible m xm By(x) such that

(5.13a) Ao(x)atg(x) + Bo(x) = (;) )
I"OXVO 0
(5.13b) AO(X)BO(X):< o 0>,

where ¢, and y, are arbitrary 1 X(po— ry) and ( po—ro) X ro matrix valued functions.
Define §5=g°+ gao, o= 8Bo= (g0, g5) where g, is the first ro vector fields of g,
and g3 the last m — r,. From the functions which are the entries of ¢ and ¢, if (5.13a, b),
choose a maximal set whose differentials are linearly independent at each x mod &,,.
Call these h, ., -+, h,. We claim that &, = R{dh,,- - -, dh,}.
By definition &, = &,+ L (%,N #(g)), but a straightforward calculation shows
that this is the same as &,+ L; (%, #(g)) where

1 0
fozfyoa ')’o:( >

ay  Bo
because v, is invertible. From (5.13b) we see that
(5.14a) dh; & ¥(g), i=1,--+,r,
(5.14b) dh;— 3 W, dh € H(g), i=rot+1,- -, po,
k=1

so &, is the sum of &, and the Lie derivatives of (5.14b) by L;, i.e.
Lj,(dh, ~Sygidhy) = Ly(dh) =% (Ly(do) dhic+ o Lz (dh).
But dh, € €, and
L;(dh)=dL;(h)=d(0or1)=0

for k=1, -+, r,. Therefore &, is spanned by &, and the entries of Lj;(dh;) for
i=ro+1, -+, p,. But the latter are either zero or the differentials of the components
of @, and ¢,.

&, is constructed in a similar fashion. Let A(x) be the p;xXm matrix
{dh;, g"¥(x)B,(x) be the p, xm vector (dh, g)(x). Assume A, (x) is of rank r, and
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rearrange h, ., -+ -, h, so that the first r, rows of A,(x) are linearly independent at
each x. Choose «, 8, etc.

Notice that at each stage of this algorithm we obtain codistributions &, spanned
by exact one-forms, hence they are integrable. The new feedbacks a,.,, Bi.; can be
obtained by suitably updating «, and 8,. Moreover a,, and B, are feedbacks which
leave 92* invariant. If r,, <m then we can partition g'k*:gB,gk=(g7L*, g'i*) where
R(gk,) = 2*¢R(g). We shall make use of this later on.

6. Disturbance decoupling. Consider the nonlinear system

(6.1a) X =f(x, u)+p(x)w=g(x)+g(x)u+p(x)w,
(6.1b) y = h(x),
(6.1¢) x(0) = x°.

The additional input w(¢) represents a disturbance which can be neither controlled
nor predicted. We assume it is a bounded measurable function taking values in R'.
The way it affects the dynamics is described by the [ vector fields which in local
coordinates are the ! columns of p(x).

DEerINITION. In the system (6.1) the disturbance is decoupled from the output if
for each bounded measurable u(t), the output y(t) does not depend on the disturbance
w(t). The disturbance decoupling problem (DDP) is solvable if there exists a feedback
y such that the disturbance is decoupled from the output for the feedback modified
system

X =f(x, 0)+p(x)w=g°(x) + §(x)v+p(x)w
=g°(x) +g(x)(a(x)+ B(x)v) + p(x)w.

The reversible disturbance decoupling problem (RDDP) is solvable if there exists
a feedback y such that the disturbance is decoupled from the output for the time
reversible version of the feedback modified system

(6.2)

X = f(x, vy, V) + p(x)w = §Ax)vo+ §(x)v + p(x)w

6.3)
( =g (x)vo+ g(x)(a(x)vo+ B(x)v) + p(x)w.

Notice that in contrast with controllability and observability, reversible decoupling
implies decoupling rather than vice versa. Notice also that the solvability of the RDDP
for the original system implies the solvability of the DDP for the time reversible version
of the original system but is not equivalent to it. This is because in the former the
invertible feedback y must be of the form (4'%) while in the latter any invertible
feedback is allowed.

The solvability of the DDP and generalizations involving dynamic output feedback
are treated at considerable length in [1], see also [2]. We would like to review some
of this work using the terminology introduced in this paper and also discuss the
solvability of the RDDP. We consider only the solvability of the DDP and RDDP
with full control. If a partial control solution is acceptable it can be thought of as full
control solution for the System with the unneeded controls deleted.

We state the basic results and defer the proofs to the end of the section.

TueoreM 6.1. The RDDP is solvable iff there exists an (Ady, g) invariant distribu-
tion @ such that R(p) < D < ¥ (dh).

Every (Ady, g) invariant distribution is also (ad,, g) invariant so the above theorem
implies that if the RDDP is solvable then there must exist an (ad, g) invariant
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distribution 9 such that #(p) <= @ < ¥(dh). Since H(dh) is involutive we can conclude
that there must exist such a @ which is involutive. But one can make a stronger statement.

THEOREM 6.2. [fthe DDP is solvable then there exists an involutive (ad,, g) invariant
distribution @ such that R(p)< D < H#(dh).

The converse of this theorem is not true as is shown by Example 6.6. Recall that
the (Ady, g) or (ady, g) invariant distributions do not form a semilattice while the locally
(ady, g) invariant ones do. We denote by @* the maximal locally (ady, g) invariant
distribution in ¥(dh), @* = @2*(%(dh)). In § 5 an algorithm for the computation of
@* was presented.

DerinITION. The DDP (RDDP) is locally solvable if every x%e M has an open
neighborhood % and a feedback y defined on 9 which solves the DDP(RDDP)
restricted to U.

THEOREM 6.3. If the DDP is locally solvable then R(p)< 2*. If R(p)< P* and
@* is nonsingular and separates the controls then the RDDP is locally solvable.

The proofs of the above depend heavily upon the following lemmas. (These lemmas
describe basic properties of (Ad, g) and (adj, g) controllability distributions, concepts
which will be introduced in the next section.) Let (Adf‘,,)lgi(p)) denote the minimal
Ad; and Ad, invariant distribution which contains ®(p). By Lemmas 3.2, 3.3, 3.4 and
Sussmann’s Theorem 2.1, this distribution is integrable. Let (uo(¢), u(t)) be a bounded
measurable input defined on [0, T] for the time reversible version (6.4) of (6.1),

(6.4) X = f(x, ug, u)+p(x)w =g°(x)uo+ g(x)u=p(x)w.

Let RsL(x°, T, uy(t), u(t)) denote the set of points accessible from x° at time T
along trajectories of (6.4) with (uo(t), u(t)) fixed and w(t) varying over all bounded
measurable disturbances. Let x” be the endpoint of the trajectory for w(t)=0.

LEMMA 6.4. Let L be the leaf through x™ of the foliation induced by (Ad( | R (P));
then RsA(x°, T, uo(t), u(t))< L. Moreover for some piecewise constant control
(uo(1), u(1)), x*= xT and RA(x°, T, uo(t), u(t)) is a neighborhood of x° in the topology
of the leaf containing x°.

Let (ad, ,,)|#(p)) denote the minimal ad, and ad, invariant distribution containing
R(p). By the Jacobi identity (2.8b) this distribution is involutive. Let U be an open
neighborhood of x® and u(r) be a bounded measurable control defined on {0, T} which
generates a trajectory x(t) of (2.1) from x° which lies in U for ail t<[0, T]. Let
o(x°, T, U, u(t)) be set of points accessible under (6.1) from x° in U at time T with
u(t) fixed and w(t) varying over all bounded measurable disturbances.

LEMMA 6.5. Let U be an open neighborhood of x% on which {(ad;,|R(p)) is
nonsingular, hence integrable. Let L be the leaf through x 7 ; then A(x°, T, U, u(t)) < L.
Moreover there exists a piecewise constant control u(t) such that A(x°, T, U, u(t)) has
nonempty interior in the topology of this leaf.

Next we give the proofs of these results and a counterexample to the converse of
Theorem 6.2.

Proof of Lemma 6.4. Without loss of generality we can assume that
(Ad( ;| R(f, p)y=Z(M) or in other words, with u(r) and w(t) as controls, (6.1) is
reversibly controllable. For if not, (Ad(ﬁp)lgz(f, p)) is an integrable distribution and by
replacing the state space by the leaf of this distribution through x° we obtain a reversibly
controllable system. The assumption of reversible controllability insures that & =
(Ad, ;| ®( p))is nonsingular, for any x” and xT can be joined by a trajectory constructed
from the flows of g, j=0,-+-, m and p5 k=1,---,1 Butif D is the subbundle of
TM corresponding to & then the Jacobian of these composed flows is an isomorphism
between D(x%) and D(x").
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Now suppose (uy(t), u(t)) and w(t) are bounded measurable functions on [0, T1.
Let x(¢) be the solution (6.4) and ®(t, s, x) the time dependent flow of (6.4) with
w(t)=0, i.e.,

O (150 = (1,5, x)) )+ g (B(1, 5, ) 1),

d(t 1, x)=x.

The mapping x > ®(1, 5, x) is smooth and its Jacobian carries D(x) onto D(®(¢, s, x)).
Consider the trajectory X(s) defined by

X(s)=®(T, s, x(s)).

Clearly (0) = x (the endpoint of the solution of (6.4) with w(2)=0) and x(T) = x(T)
(the endpoint of the solution of (6.4) with w(t) as above). Moreover

2 25) = 22(T, 5, x(s) (p(x())w(5))
S ax

hence is an element of D(X(s)). The nonsingularity of & implies X(s) lies in the leaf
L of 9 through x". Therefore x(T)=%(T)e L and RA(x°, T, ug(t), u(t)) < L.

To prove the second assertion first we note that 9 is spanned by expressions of
the form

(6.5) Ad;kfk+pk) e Adflf'w‘)po

where f7(x) = g°(x)uh+ g(x)u’ and p’(x) = p(x)w’ for some constants uh, w', w’ and
si. By rescaling u), u/, w/ we can assume 5;<0 and fix the sum Z;;[ s; arbitrarily.
Choose an expression of the form (6.5) which is not zero at x°, and define piecewise
constant functions

(6.6) ut)=uh, u(t)y=v, w(t)=w’ fortelt 1)

where f, =T and t;_, — t; = 5. Assume that Y . 5=—T/2. Let x(¢) be the solution of
(6.4) satisfying the terminal condition x(7T) = x°. If we modify w(t) to w(t; &)

w'+w® iftelt, to+|e]) and £ >0,
(6.7) w(t;e)=4 w'—w® ifre(ty, to+]|e]) and e <0,

w(t) otherwise,

and let x(t, €) be the solution of (6.4) satisfying the initial condition x(t,, £) = x(t,)
then 9/9e (x(T;0)) is precisely (6.5) evaluated at x°.

By reversing the order and the signs of the inputs (6.6) we can get from x° to
x(to) in time T/2 and use the original sequence of inputs (6.6) to go back to x°.
Suppose we vary & only on the second half according to (6.7), x(t; €) is now the
endpoint of the total trajectory and it sweeps out a one-dimensional C' submanifold
containing x° in its interior which is contained in the integral manifold L of @
through x°.

If the dimension of @ is greater than one we repeat the process, this time at x(¢,)
instead of x°. We also choose a new expression (6.5) which is linearly independent of
the tangent to our one-dimensional submanifold pulled back to x(¢). This is always
possible since expressions of the form (6.5) span @ at x°.

In this way we generate a one parameter family of controls which generates a
one-dimensional manifold with x(t,) in its interior. When this is pulled on to x° along
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the original variation we get a two-dimensional submanifold of L with x? in its interior.
We repeat the construction until the dimension of @ is achieved. QED

Proof of Theorem 6.1. If the RDDP is solvable by a feedback, v, let f:fy and
let @ = (Ad(ﬁp)l%(p)). Clearly @ is Adjinvariant, hence (Ad;, g) invariant and contains
% (p). Suppose P is not contained in H(dh). Then at some x°, D(x%) ¢ dh(x°). By
Lemma 6.4 there exist T and a piecewise constant (uo(1), u(t)) such that
RA(x°, T, ug(t), u(t)) is a neighborhood of +° in the leaf N of @ through x°. This~
implies that RA(x°, T, uo(t), u(t)) is not contained in a level set of h, contradicting
the solvability of the RDDP.

On the other suppose such a @ exists. Let y be the feedback such that 9 is Ady
invariant for f = fy. The integrable closure of & must contain (Ad(;,p,|gi(p)) and since
%(dh) is integrable it must contain the integrable closure of 9. Hence

R(p) < (Ad G| R(p)) = H(dh).

Lemma 6.4 implies that for any fixed (uo(t), u(1)) and T, RA(X°, T, u’(t), u(t)) is
contained in a leaf of (Ad(ﬁp)lgi(p» which in turn is contained in a level set of h.
Therefore the RDDP is strongly solvable. QED

Proof of Lemma 6.5. The first assertion follows from an application of Lemma
6.4 to the system restricted to U, for the nonsingularity of (ad(ﬁp)l%(p)) implies it
equals (Ad;,|R(p)). '

The proof of the second is similar to that of [1, Lemma 3.5]. Suppose & =
(ad ;| R(p)) is of dimension d on AU @ is spanned by terms of the form

(6.8) ad 40 o adapp'
¢ is the involutive closure of (ad,|%(p)) which is spanned by terms of the form
(6.9) adgo---oadpp’

Choose an expression (6.9) which is not 0 at x° define u(t), w(t, £) for small
¢ 0 by ,
u(t):uja te[[i*ly tj]’

(i, ) :{w" if telty, to+e),

0 otherwise,

where 1,=0 and 1, - -, 1, are to be determined. We have to take care choosing W,
w®, and ¢ sufficiently small so that the trajectories x(¢t; &) of (6.1) from x° remain in
9 and t, < T. Henceforth we shall not mention this point.

Since (6.9) is not zero for some choice of £;, - - -, I, as We vary &, x{t;; €) sweeps
out a one-dimensional submanifold. Suppose that at some point on this submanifold
there is an expression of the form (6.9) which is not tangent to the submanifold. Then
we can repeat this process and construct a two-dimensional submanifold of points
accessible at some later time. We repeat the process until we obtain a d-dimensional
submanifold of accessible points such that every expression of the form (6.9) is tangent
to it. Since the vector fields tangent to a manifold are trivially involutive and & is the
involutive closure of (6.9), this manifold mustbe an integral manifold of %. This shows
that #(x°, T, %, u(t)) has nonempty interior in the leaf topology. QED

Proof of Theorem 6.2. Suppose the DDP is solvable using feedback v, let f:fy
and @ = {(ad | R(p)). Clearly & is involutive and contains (p), so all we need to
show is that @ < #(dh).

Recall that x° is a regular point of @ if P is nonsingular in a neighborhood of
x". The regular points of @ are open and dense in M hence by continuity it suffices
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to verify that at each regular point x° the subbundle D associated to 9 satisfies
D(x%) Ldh(x°).

Let x° be a regular point and % a neighborhood on which @ is nonsingular. By
Lemma 6.5, there exists x' € % such that .az(xo, T, U, v(1)) is a neighborhood of xT
in the leaf of @ containing x". (We use & and v(t) instead of & and u(t) to indicate
this is the % accessible set for fixed v(z) and variable w(t) of the feedback modified
dynamics (6.3).) Since the feedback decouples the output from the disturbance
we conclude that D(x7)Ldh(x"). But x7 is arbitrarily close to x° so
D(x°)1dh(x°). QED

The following example shows that the converse to Theorem 5.3 is not true. We
present it as a time varying linear system

(6.10a) Xx=A(t)x+B(t)u+ E(t)w,
(6.10b) y=C(1)x,
(6.10¢c) x(0)=x°,

which can easily be made into an autonomous nonlinear system (6.1) by letting time
be an extra state coordinate, say x, =t

Example 6.6. Let p(t) be a €™ function such that p(¢)=0 for t=0, p(t)=7/2
for t=1 and p(¢)>0 for t (0, 1). Define

—sin p(t) —cosp(t) O
A(t)=p(t)] cosp(t) —sinp(t) O

0 0 0
fort=1.5and for t=1.5
0 0 0
AD)=p(t-2){ 0 —sinp(t—2) —cos p(t—2)
0 cosp(t—2) —sin p(t—2)

The free dynamics (6.10a) for u =0 is constant except for t€(0, 1) (2,3). On the
time interval (0, 1) the x,-x, plane is rotated through an angle of #/2 and on (2, 3)
the x,-x; plane is similarly rotated. Let

0 1
B(t)={0], E(n)=]0], C(t)=(0 0 1).
0 0

Viewed as a nonlinear system {6.1) on the extended four-dimensional space
(x0=t, X;, X,, X;) the system is not disturbance decoupled. Disturbances at small positive
times affect the x; coordinate and are rotated to affect the x, coordinate. Later after
t =2 these disturbances are rotated to affect x; and hence the output. Since B(t)=0
the system cannot be disturbance decoupled.

However there is an (ad, g) invariant distribution 9 such that Z(p) < @ < ¥(dh).
Of course @ must be singular else it would be (Ady g) invariant and Theorem 6.1
would apply. Let a(t) be a 6™ function such that o(t)=1 for t=1 and o(¢) =0 for
1= 2. Let @ be spanned by the vector fields

0 0

1 0
X'= X*= .

o o(x,)

0 0



INVARIANT AND CONTROLLABILITY DISTRIBUTIONS 545

We leave it to the reader to verify that @ is (adg g) (in fact ad,) invariant, as a start
note that

0
g°=( ! ) g="
Alxo)x /)’ o/

0

Proof of Theorem 6.3. For given x° and %, let y be the feedback which solves the
DDP on %. By Theorem 6.2 on % there exists an (adg g) distribution @ such that
R(p)c D< H(dh). Let ¥ be an open neighborhood of x° whose closure is contained
in % and let ¢ be a € function 1 on ¥ and 0 off %. The distribution oD ={¢oX: X € 9}
is globally defined and satisfies ¢ < #(dh). Moreover 2 is (ad; g) invariant hence
locally (adj, g) invariant so ¢@ < @*, Therefore for each x° there exists neighborhood
¥ such that on ¥, R(p)c D = P < D*, hence R(p)= D*.

As for the second assertion, give x° Lemma 5.1 allows us to conclude that in some
neighborhood of % and x°, @* is (Adj g) invariant. Since R(p)< D* < ¥(dh),
Theorem 6.1 implies the RDDP is solvable on %. QED

7. Controllability distributions. We now define the nonlinear generalizations of
the concept of an (A, B) controllability subspace. These were introduced by Krener
and Isidori [6]}, see also [14]. '

DEerFINITION. A distribution € (with associated subbundle C < TM)is an (Ad; g)
controllability distribution ((ady, g) controllability distribution) if there exists an invertible
feedback y with g partitioned as (8'B7) such that € separates the controls (see (5.11)),
ie., if €7 =gB then for every x

(7.1a) Cx)INGx)=G(x)',  Clx)NG(x)*={0}
and
(7.1b) €=(AdfR("))  (€=(adj|R(§")).

It follows immediately from (7.1b) that any such € is (Ad, g) invariant ((ad, g)
invariant), that (Adg, g) controllability distributions are integrable and that (ad, g)
controllability distributions are involutive. Notice that (Adg g) controllability does not
necessarily imply (ad,, g) controllability because the inclusion

(adf|R(£")) < (AdjR(g"))

could be proper. However if € is (ad, g) controllable and nonsingular then the inclusion
is an identity, hence % is (Adj g) controllable.

We have already encountered several examples of such distributions. The Ad; and
ad, controllability distributions of § 4 are (Ad,, g) and (ady g) controllability distribu-
tions for the time reversible system (4.1). (Here u, is an additional control and
y=8"'=1) Other important examples are the Ad, and ad; exact time controllability
distributions <Adf\?/2(g)) and (adfl%(g)). These first appeared in the work of Sussmann
and Jurdjevic [18], who considered only analytic systems, so there was no need to
distinguish between the two. The first is integrable and for each x° and T there exists
a leaf which contains &¢(x% T). The second is involutive; if % is a neighborhood of
x" on which it is nonsingular then for each T sufficiently small, A (x°, T, U) is contained
in a leaf of(adfl%(g)) and has nonempty interior in the leaf topology. These statements
follow from Lemmas 6.4 and 6.5.
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These lemmas can be applied to arbitrary (Ad; g) or (adg g) controllability
distributions. The vector fields g°, §' and g° of the feedback modified dynamics for
the controllability distribution become g°, p and g respectively in the context of these
lemmas.

As one might expect there is a local version of the above concepts.

DEFINITION. Let @ be an arbitrary distribution; we denote by €*(%) the minimal
distribution 9 which satisfies

(7.2) %= DN (ad(D)+R(g)).

The notation adf(.?ﬁ) denotes the #(M) span of all vector fields {g’, X] when
j=0,---,mand Xe 9. Tt is not apparent that the set of distributions satisfying (7.2)
is closed under intersection, hence we do not know that €*(%) always exists. This
will be shown by the controllability subdistribution algorithm.

DEerINITION. A distribution € is locally (ady, g) controllable if € is locally (ad, g)
invariant and € = €*(%€).

CONTROLLABILITY SUBDISTRIBUTION ALGORITHM (CSA, compare with [15,

p. 110]).
Let @ be an arbitrary distribution, €°={0} and

(7.3) € =2 N(ad (€ )+ R(g)).
Clearly €°c %', by induction €*~' < €*. For if 4**>< €*”' then
(7.4) €' =D N(ad (€ )+ R(g))<= DN (ad (€ H+R(g)) = %~
We claim that U €* is the minimal distribution satisfying (7.2), i.e.
(7.5) €(2)= U %~

Clearly U €* satisfies (7.2). If 9 is any distribution satisfying (7.2) then €< 9
and an induction similar to (7.4) shows that €*c 9 for all k. Hence U%* is the
minimal distribution satisfying (7.2).

It is very important to note that for an arbitrary distribution 9, €*(9D) is not
invariant and hence not controllable in any of the above senses.

LEMMA 7.1. Let @ be locally (ady, g) invariant; then €*(D) is locally (ady, g)
invariant and in fact is the unique maximal locally (adg g) controllability distribution
contained in 9.

Proof. Suppose X € €*(9) as defined by (7.5). Since 9 is locally (ad,, g) invariant
there exists Y € Z&(g) such that

(7.6) ad/(X)+Ye®.

(A word of caution regarding notation is in order. By the above we mean that for
i=0,---,m there exists Y'€ R(g) such that

ad,i(X)+Y'e D.

In (7.6) Y is a matrix whose columns are Y?,-- -, Y™ Without mentioning it again
we will continue to abuse notation in this fashion.) Since €*(9) satisfies (7.2) it follows
that

ad(X)+ Ye €*(2)

so €*(9D) is locally (ad, g) invariant.
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Let € be defined (7.3). Then €*< €*(9) so
€* = %*(@) NE*=€*(P)N (adf((gk_l)+ R(g)),
€~ = €*(D)N(ad (€ )+ R(g)),

hence $*(9) is locally (ad;, g) controllable.

_ Suppose € is any other local (ad; g) controllability distribution in @, define
€°= {0} and

¢ =% N (ad (€ )+ R(g))-

Since <€ %° and G < €, a simple induction similar to (7.4) shows that @< ¢* and
hence €=U ¢*c U ¢* = €*(9D). Therefore €*(9) is maximal. QED

From this lemma we see that every distribution @ contains a unique maximal
locally (adj, g) controllable distribution. The argument proceeds in two steps. Since
the locally (adj g) invariant distributions form a semilattice under addition, every
distribution contains a unique maximal locally (ad g) invariant distribution 2*(9).
By the above lemma this distribution contains an unique maximal locally (ad, g)
controllability distribution €*(2*(9)). Note that €*(2*(2)) = €*(2) but generally
this is a proper inclusion. Frequently we shall wish to compute €*(2*(%(dh))) which
we shall abbreviate €* when there is no possibility of confusion. At the end of this
section we discuss the computation of €* by extending the algorithm for 2* of § 5.

The above remarks are predicted on the assumption of full control. There may
exist distributions 9 which are locally (ad, g) invariant with partial control such that
D¥(D) = @ < %. On the other hand from the CSA we see that if 9 is any locally
(ady g) controllability distribution with partial control that is contained in & then
P < €X(D).

The set of locally (adg g) controllability distributions is a semilattice under
addition.

LeMmMa 7.2. Suppose €, and €, are locally (adj, g) controllable. Then so is €=
€, +6,.

Proof. Of course € is locally (adj g) invariant. Let ¢* and €* be defined by the
controllability subdistribution algorithm (7.3) applied to €; and €. Clearly €= ¢°
and €, < € so by induction 6¥< € But

<€:<€,+<62:< U <@’;>+< U <€§>= U (€+65< U €*=<¢6.  QED
k=0 k=0 k=0 k=0

The next lemma is important for it shows that if % is (adg g) invariant then
(ad f]@ N R(g))is independent of the choice of feedback so long as it leaves & invariant.

LEMMA 7.3. Suppose 9 is (ady, g) invariant under y. Let €* and €*(9) be defined
by the CSA (7.3), (7.5) applied to 9. Then for k=1

k .
- and}" (@NR(g))

and

€*(2) =(ad |2 N R(g)).

Proof. The second assertion follows from the first which follows by induction.
For k=1 it is clearly true. Suppose it holds for k—1. Let X € 6*"'. Then

ad;(X) =adf(X)Y‘fo(7)-
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Since y = (. %) it follows that Lx(y)=(%?) and fLx(7y). Moreover vy is invertible so
ad (X)) + R(g) =ad(X)+R(g).
This allows us to express €* as

€ =ad (€ )+ (DN R(g)).
= T ady (@ 9(g)). QED

COROLLARY 7.4. If € is (adj, g) controllable then € is locally (ady, g) controllable.

Proof. If €is (ad,, g) controllable then itis (ad, g) invariant, hence locally (ad, g)
invariant. Let v be a feedback which leaves 4 invariant and separates the controls,
so that C,N G, = G then €*(6)=(ad;|6N R(g))=(adR(g"))= % so € is locally
(adj g) controllable. QED

COROLLARY 7.5. If € is nonsingular, involutive and separates the controls then the
following are equivalent.

(a) € is locally (ady g) controllable.

(b) There exist an open cover {U"} of M and separating feedbacks y* such that €
is (ad,, g) controllable on U” under y* (in other words, locally € is (ad,, g) controllable).

(c) There exist an open cover {°} of M and separating feedbacks y* such that €
is (Adg g) controllable on y* under y° (locally € is (Ady, g) controllable).

Proof. This follows directly from Lemmas 5.1 and 7.3. QED

Computation of €* = €*(2*(¥(dh)). One could apply the CSA to 9* = @*(dh)
computed by the ISA of § 5. A more convenient approach is to apply Lemma 7.3 so
that in the notation of the end of § 5,

€* = (adj, |R(&2,)
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