THE INTRINSIC GEOMETRY OF DYNAMIC OBSERVATIONS
Arthur J. Krener

ABSTRACT

There are several ways to introduce geometry into the problem of
estimating the state of nonlinear process given observations of it. We
classify these as intrinsic or extrinsic. We show how the
linearizability of this problem is related to the existence of an
intrinsic Koszul connection on the output space and its curvature and
torsion.

1. Extrinsic Geometry

Consider the problem of estimating a process £(t) from observation
of a related process y(t). This can be formulated in stochastic terms as
a nonlinear filtering problem. We assume that the two processes are
described by stochastic differential equations

dg = f(g)dt + g(g)dw (1.1a)

dy = h(g)dt + k{(g)dv (1.1b)
0

5(C0> = g (1.1¢)

The state process £(t) and output process y(t) evolve on n and p
dimensional manifolds N and P. The driving processes w(t) and v(t) are
m and p dimensional independent standard Wiener processes. The

initial condition go is an N valued random variable independent of
w(t) and v(t). This (1.1) is a local coordinate description using Ito
differentials. We regularly abuse notation by confusing local coordinate
descriptions with the intrinsic objects they describe.

The nonlinear filtering problem is to compute in real time the
conditional distribution of the current state E(t) (or some useful
statistics such as the conditional mean) given the past observations

¥(s), t, < s < t. We assume that f, h, g, k and the distribution of 50

are known. This is an extremely important and extremely difficult
problem. Kalman and Bucy discovered the only broad class of models for
which an efficient algorithm is known. These are the linear filtering
problems.

dx = A(t)x dt + B(t)dw (1.2a)

dy = C(t)x dt + D(t)dv (1.2b)
0

x(to) = X (t.2¢)
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These can be viewed as a special case of (1.1) where & = (t,x) and ¢
= y' O
If the initial condition x is Gaussian then the conditional
distribution of x(t) is also Gaussian hence completely described by its
mean and covariance. These evolve according to ordinary differential
equations and so are easily computable in real time. Actually only the
conditional mean need be computed in real time for the conditional
variance evolves independently of the observations

There have been several attempts to relate the complexity of the
nonlinear filtering problem to certain geometric aspects of the model
(1.1). (We use the term geometry in the broadest sense to include Lie
theoretic concepts.)

The program which has received the greatest effort was initiated by
Brockett [1] and recently surveyed by Marcus [3]. The basie goal is to
find models (1.1) other than (1.2) for which the evolution of the
conditional density of §g(t) or some useful statistic such as the
conditional mean could be described by a finite number of sufficient
statistics which evolve according to ordinary differential equations
driven by wy.

The approach is to try to reduce the partial differential equation
which describes the evolution of the conditional density to ordinary
differential equations for a set of sufficient statistics. A certain Lie
algebra can be associated to the model (1.1) and if this algebra is
finite dimensional or admits an ideal of finite codimension then the
program can be successfully carried out. Unfortunately this approach has
not led to any new broad class of finite dimensional filters.

With the benefit of hindsight there are several criticisms that one
can make of this program. We should not really expect the conditional
density of £(t) to be any easier to describe than the unconditional
density of £(t) for the former can be seen as a special case of the
latter when nh(g) is constant. Yet (1.2) is the only broad class of
models where the evolution of the unconditional density from a family of
initial distributions can be described by a finite number of sufficient
statistics. Moreover virtually nothing is known regarding infinite
dimensional nonlinear realization theory. The finite dimensional theory
has been extensively studied. This depends heavily on invariant
foliations rather than finite dimensional Lie algebras. Therefore it
seems a bit naive to expect infinite dimensional Lie algebras to play
such an important role in the infinite dimensional case.

Finally the Lie algebraic structure is extremely sensitive to small
perturbations of the problem. A small change in f, g, h and k of (1.1)
can dramatically change the resulting algebra. For example, a small
cubic nonlinearity can transform the Lie algebra of (1.2) from low
dimensional to infinite dimensional [3].

The last point is particularly undesirable because the essential
role g and k play in defining the Lie algebra. Typically f and h
are derived from physical laws. The directions of g and k may also
follows from such laws but the magnitude and their dependence on § are
usually no more than the result of educated guesses by the modeler. Even
for the linear case (1.2) there is no consensus on how to choose B and
D.
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It is for this reason that we call extrinsic any geometric structure
assoclated to (1.1) which depends on how the observations are imbedded in
noise, i.e., on g and K. If the structure only depends on the
observations, i.e., only on f and h, then we call it intrinsic.

Another example of an extrinsic geometric structure is as follows.
We can define a vector bundle E over N by letting the fiber E be
the vector space.

E_ = Col Span Cg)(g) 0 (1.3)

3 k(g)

We assume that this matrix is everywhere of full rank so that the
fiber dimension is m+p. Since the Wiener processes w(t) and v(t) are
standard it is natural to think of the columns of (1.3) as defining an
orthonormal basis for E,_, and hence a Riemannian structure on E. This
construction is even lessgintrinsic than the previous because we have
used only g(g) and k(g).

There have been suggestions in the literature that a study of this
Riemannian structure could assist in understanding the nonlinear
filtering problem. Perhaps this might be so but the arbitrariness in the
modeler's choice of g and k makes this approach highly suspect.

2. Intrinsic Geometry

We will construct from f and h something resembling a Koszul
connection on the output space and show how the existence of this
connection, its torsion and curvature relate to the difficulty of the
observation problem. Recall [4] that a Koszul connection V is mapping
from pairs of vector fields to a third vector field.

Vi (X,Y) b VXY. (2.1)

This mapping is linear over c” functions in the first argument X and
satisfies a_Liebnitz formula in the second argument Y. If ai(w) and
bj(\b) are C  functions then

v (zb.y)) = (I, (a;pv iYJ +oal
% aix1 j o +J J x X
i

J
i(bj)Y ). (2.2)

L i(bj> denotes Lie differentiation of bj by x'. From this it follows

tf‘lat V is completely determined locally by its Christoffel symbols I‘l“-|

where ¥

v N (2.3)
K Bwk
sy, Y
The simplest example of a Koszul connection is RP with Fli‘) = 0.

This is called the linear connection on T because it depends on the

linear structure of ]Rp. Intuitively VXY can be thought how Y is
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twisting along integral curves of X. If V.Y = 0 then Y is parallel
along the integral curves of X. In g%is way V defines parallel
translation on P and "connects" the various tangent spaces.

In defining the Christoffel symbols (2.3) we could have taken any
frame of vector fields not necessarily a coordinate frame. For our
purposes the latter will suffice. Of course (2.3) js a coordinate
dependent description of V. If we make a change of coordinates ¢ = ${(y)
then the new Christoffel symbols are given by

~ 2 ~
- oYy JyY oY 3Ty 3y

F;J _ 5 rio Np No Nk . g - TN k (2.4)
P,0,1T Ay awj BWT av, awj awT

Because of the second summation, FlJ cannot be the components of a
tensor. Moreover it is possible for thé Christoffel symbols to be zero
Wwith respect to one coordinate system but not another.

We return to our dynamic observation problem. Since we are ignoring
the coefficients of the noise, we write it in a deterministic form

€

£(g) (2.5a)

#

¥y = h(g) (2.5b)
To be completely analogous to (1.1) we should put a dot over the ¢ in
(2.5b), but this notation is more standard and is essentially equivalent.

We assume that (2.5) is observable with all observability indices
equal to & = n/p. (This greatly simplifies the analysis. The general
case is treated in [2] from a different point of view. We discuss this
later.) k=1

The observability assumption means that the functions L (wi), for
i =1, ..., psk = 1,...,%, are independent and hence coulg be taken as
local coordinates on N. .

We define p vector fields g, j = 1,...,p by

k-1
LjlL ) =
gJ (p.)

0O for 1 < k < & (2.6)
f i j

63 for k = %

From this we define F;J by
2-1 i

- 1< ), fad T gt adt P -mgd D (2.7)

Generally these are functions on N but they transform like Christoffel

symbols under change of coordinates on P, ~j
Lemma 1. Let ¢ = ¢(y) be a change of coordinates on P and let gv,

T ;J be defined by (2.6) and (2.7) in the m coordinates.
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We expand this using (2.11) and (2.9).
(2.6). We are left with

~ij 1 3%
Tk ) p,g,r < k L (dw )
D
T
lad* ™ (-0)g”, ad* 2(-02g°1 ¥

v 2(r)g0 . e 3,
ad (—f)gl = ~
3¢j Y,

1
(2-1) ad®” (f)ngZ(f) 3 Be (2% Le (3%
. AV,

If © =9 (y) then (2.6) implies that

Lg% (_f)gi(@) = 3%
)

<
e

81

Proof. By induction for k = 1,..., %
d y dv
Row Span Lk; 1 = Row Span Lk:1 _ (2.8)
and £ (dy) £ (dy) )
k k ~
Le (dy) = 3¢ L, (dy) Mod (2.8) (2.9)
W
therefore
T - @ a_f (2.10)
ay
and
Y Y
-1 ~ -1 -2 —x
d (-f)g = ad (-fg 3% (2-1) ad (-f)g Lf <3$> (2.11)
Mod {g,..., adl_3(—f)g}
Now
NlJ _ ~
r, —% < Lf(dwk), [a (- f)g s aa* ( f)g 1>

Most of the terms are zero by

(2.12)
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3
(Lo(®) = L (P = °F
L Gb 2(~ f)gJ ad1 1(—f)gJ 3%
Y

Therefore (2.12) reduces to (2.4) as desired. .

If (2.7) are only functions of Y, then they are the Christoffel
symbols of a Koszul connection on P intrinsically defined by the dynamic
observations (2.5).

Example. Consider the linear dynamic observations

X = Ax _ (2.14a)
y = Cx (2.14p)

This is the simplest problem for if (C,A) is an observable pair it is
easy to construct an asymptotic observer of x(t).

2 = (A +GO)x - Gy (2.15a)

with error (x = x-X) dynamics

X = (A + GO)X. (2.15b)

The observability assumption implies that the spectrum of (A+GC) can
be arbitrarily determined (up to invariance under complex conjugation) by
proper choice of G. Therefore, the error can be made to decay
exponentially fast at an arbitrary rate.

We use BJ to denote the vector fields deflned by (2.6) applied to
(2.14) which in this case reduce to

o1 1 0 1<k<d
c. A 'l . (2.16)
! &) k=2 '
1
Then
ij_ L-1_1  9-2_j
r, T <CA, [ATTBY, AT B> 0

so the linear dynamics observations (2.14) induces the linear connection
P
on the output space P =R .
We can generalize this example by adding output injection to the
dynamics

X

[

Ax + J(y) (2.18a)

Cx (2.18b)

]

y
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We can add the same output injection to the observer to obtain the same
error dynamics

R= (8 +G0) % -Cy+ J(y) (2.19a)

(A + GC) X (2.19b)

X
It is a straightforward exercise to verify that the vector fields g‘J

defined by (2.6) applied to (2.18) are the BY defined by (2.16). 1In
other words, the linear output injected dynamics observations (2.18)

induces the same linear connection on P = ]RP as does the linear dynamic
observations (2.14).

Suppose we ask the question of when the nonlinear dynamic
observations (2.5) and the linear output injected dynamic observations
(2.18) are equivalent under changes of coordinates & = &(x) and ¢ = y(y).

ij . .
A change of state coordinates leaves T J invariant. Under a change of

- k
output coordinates the Fij transform like Christoffel symbols. Clearly

a necessary condition for the two problems to be equivalent is that the
ij
Fk > n
P. Furthermore there must be a change of output coordinates y = y(¢)

of (2.5) be functions of y alone, and hence define a connection on

which takes the riJ FHd
k k

When such a change of coordinates exists is a question at the very
heart of geometry. The solution dates to Riemann's Habilitation Lecture
of 1854 and the paper he submitted in 1861 to the Paris Academy [4].
Reimann was concerned with the question of when what we now call a
Riemannian metric could be transformed to the standard Euclidean metric
by change of coordinates. The solutions to the two problems are

essentially the same.

to = 0.

We denote the Jacobian of the change of output coordinates by

¢ = (tp‘.l)
[T o (2.20)

3.
Y5

This should be an n x n invertible matrix. Plugging into this (2.4)

with Fl‘] = 0 we obtain a system of linear first order partial
differential equations for the CPi thought of as functions of v,
3 m ij m
®, = "LTr o ;
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The equations (2.20) and (2.21) are first order linear partial
differential equations for the desired change of coordinates. Moreover
we can address the solvability of (2.21) independently of (2.20). The
former are solvable if certain integrability conditions are satisfied
(the mixed partials must commute). These are given by

po(rtl opIm oo It oplm 9 gm 8 iy s (2.22)
m.r k r k r W k a— k m

s i wj

. S . . R . . . ijm
Since CDm 1s assumed to be invertible, this is equivalent to R K

= 0 where Rlim is the coefficient of ‘P; in (2.22). The Rlim
If they are zero

are

components of the curvature tensor associated to V.

then V is said to be flat.
If V is flat so that (2.21) is solvable then (2.20) is solvable iff

the columns of ¢ are commuting vector fields. After a little
calculation this is seen to be equivalent to

o rf{l =0 (2.23)

iJ
T He
K I‘k

The TiJ so defined are the components of the torsion tensor

associated to V. If they are zero then V is said to be torsion free.
Therefore a necessary condition for the nonlinear (2.5) and linear,
output injected (2.18) dynamic observations to be equivalent is that
(2.7) define the Christoffel symbols of a flat and torsion free Koszul
However this is not sufficient, we need some
Suppose we have transformed output coordinates to
v o= v(¥), so that the Christoffel symbols are zero; r™ o 0. If this
can be transformed into (2.18) where the Christoffel symbols are also
zero_then from (2.4) we see that ¢ is necessarily an affine function of
dy/dy = constant. Applying the argument of Lemma 1 we see that

connection on P.
additional conditions.

ys
g-22% 8 X
oy

fad” ™ (=) g1 <k < 1< § < pl (2.24)

must be a commuting frame.

fields associated to the output map ¥.
On the other hand if the basic vector fields (2.24) are a commuting

frame then we can choose state coordinates x so that they are a
coordinate vector fields. It is straightforward to verify in these state

We call (2.24) the frame of basic vector
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coordinates x and output coordinates y = 5 the nonlinear dynamic
observations (2.5) are transformed to (2.18). Therefore we have proved
a result of Krener and Respondek [2] which we can restate as follows.
Theorem 2. Let the dynamic observations (2.5) be observable with
one distinct observability index & of multiplicity p. It can be
transformed into linear, output injected dynamic observations (2.18) iff

(i) The Fij of (2.7) are functions of y.

(ii) The Koszul connection V on P defined by F;J is flat and torsion
free

(iii) The basic vector fields (2.24) corresponding to any output
coordinates where the Christoffel symbols are zero must be a commuting
frame.

Remark. If an addition {adg(—f)éj: j = 1,...,p} are commuting
and they commute with the basic vector fields then the output injection
J(y) = 0 so the system (2.5) can be transformed to a linear on (2.14),

The dynamic observations (2.5) are observable with observability
indices Q,...,lp if

(1) %, > ¢

1 PR Z.Qp and 21+"'+2p = n

(1&21 After reordering the output coordinates the n function

{Lf (W]) : 1 <1 <p; 1<K i»li} are independent hence coordinates.
(iii) If (k,,...k) also satisfy (i) and (ii) then (11,...l ) is less than
or equal to (k],...,kp) in the lexographic order. P

The generalization of the foregoing to dynamic observations with
several observabilty indices is not at all straightforward. The main
difficulty is proving the analog of Lemma 1. which allows the definition
of something like Koszul connection on P. To a certain extent these
difficulties can be sidestepped for those dynamic observations (2.5)
which are equivalent to linear, output injected observations. The
following paraphases [2].

As before we define p vector fields g1,...,gp by
0 1 <k < £,
L k1l = i
LgJ(Lf (v = ;
(o) k = 2.
i i

The output coordinates are said to be special if lj > Zi implies that
k-1
L i
gJ(Lf

Not every nonlinear dynamic observations (2.25) admits special
output coordinates. The linear part (2.14) of the linear, output
injected dynamic observations (2.18) can always be brought to dual

()} =0 for1 kg 2 (2.26)
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Brunovsky form by linear change of coordinates and linear output
injection. In this form the output coordinates are special. Hence any
system transformable to (2.18) admits special output coordinates.

If ¢ are special output coordinates for (2.5) then they must
satisfy

L.- . ’
<dEi, ad ¥ (-f)g¥> =0 (2.27)
or L. > Qi. This is an underdetermined system of PDE's for E. To be
,olvabhe first of all the p dimensional column vectors
. 1._1 .
v = w*(ad J (—f)gJ) (2.28)

should be functions of Y not £ and hence define vector fields on the
cutput space. Then by the Frobenius Theorem ¢ satisfying (2.27) exists
“ff the distributions

o J,
C®span {Y”: Qj > Qi}
re involutive for i = 1,...p.

The important point about special output coordinates is that
.ransformations between such coordinates are necessarily block upper
.riangular. ~

In other words, if both y and Y are special output coordinates then

B¢i

= 0 if &, < L&,
— i j
oy,
l1‘)\]
Theorem 4. (Krener and Respondek [2]) Let the dynamic observations
(2.5) be observable with indices 2 > +e¢e > % . It can be transformed
into linear, output injected dynamic observat idns (2.18) iff

(o) Formula (2.28A) defines vector fields on P and the distributions
(2.28b) are involutive. Hence special output coordinates exist.

(i) 1If ¢ are special output coordinates then

L.-1 5 L.-2

LJ Leoygh, ad 3 (epgd1 >

Lo o= 1 < Le(dy), [ad
by

are functions of Y, hence the Christoffel symbols of a connection on P.

(ii) This connection is flat and torsion free. Hence F;J can be
transformed to zero by change of output coordinates.

(iii) If y are special output coordinates in which the F;J= 0 then the
frame of basic vector fields
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L -k .
fad 7 (-r)gd: 1< < p; <K<

is commuting.
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