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Normal Forms for Linear and Nonlinear
Systems*

Arthur J. Krener!

1 Introduction

It is wellknown that a state space description of a controllable linear system
can be transformed to controllable or controller form by a linear change of state
variables. A state space description of an observable linear system can be trans-
formed to observable or observer form by a linear change of state variables.
Moreover the former are closely related to right matrix fractional descriptions
(RMFD) of the transfer function and the latter are closely related to left ma-
trix fractional descriptions (LMFD). These facts can be found in many texts
such as Wolovich [1] or Kailath [2]. (The reader should be warned that the
controllable/controller and observable/observer terminologies are not standard,
we follow that of [2]). Unfortunately there is no one treatment of this material
which is suitable for our purposes so we devote Sections 2 and 3 to a review.
This is by way of preparation for our discussion of the existence and uniqueness
of normal forms for nonlinear systems in Sections 4 and 5. Our treatment gen-
eralizes Zeitz [22] who discussed similar forms for scalar input and scalar output
nonlinear systems.

2 Linear Normal Forms

Throughout this paper we shall use the following notation. The indices y,...,4,
are positive integers summing to n. A prime triple (A,B,C) with indices £;,...,£,
is a triple of block diagonal matrices of dimension n X n, n x m and p X n of the
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form »
0 1 o 14%%
A = BlockDiag. 1 (1)
0 0
0 gix1
B = BlockDiag. | )
0
1
C = BlockDiag. [ 10 --- 0 ]lxe, )

The “prime” terminology was introduced by Morse [3].
Consider the linear state space description

= Fé+4+Gu (4)
= H¢ (5)

where F™X™ G"*™ and HP*". The system is said to be controllable if
rank {F77!G7: j=1,....m; r=1,...,n}=n (6)

(Note: FT denotes the r** power of F, G’ denotes the 7t column of G and H;
is the " row of H.)

Every controllable linear system has controllabiity indices £y,...,£4, > 0
characterized by £, + ...+ £,, = n and

rank{F"!G7: j=1,....m; r=1,...,{} =

rank{F"7!'G7: j=1,...,m; r=1,... LAl 7
j

for £ =1,...,n. The minimum of £ and ¢; is denoted by £ A £;. The set of
controllability indices is uniquely determined by F and H and does not change
under linear state feedback. There can be some freedom, m in the ordering of the
controllability indices even when the ordering of the inputs remains fixed. This
is because there may be several orderings which satisfy (7). Of course a change
of variables in the input space or a reordering of the inputs can change the order
of the controllability indices. We could reorder the inputs so that £; < ...¢,,
or the reverse but we shall not do so. To simplify notation we shall restrict our
attention to systems where the controllability indices are positive, £;,...,%,, > 1.
A general system can be made to satisfy this condition by deleting dependent
columns of G.
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An alternative characterization of property (7) of the controllability indices
is that

F4G7 =0 (8)
mod {FF™'G*: i=1,....,m; r=1,...,(& + 1) A&}

The controllabilities indices of (4), (5) are said to be strict if (8) holds
mod {FT™'G*: ¢=1,...,m; r=1,...,¢; A4}. The controllability indices are
strict iff there is only one ordering of the controllability indices satisfying (7).

It is always possible to make a linear change of input coordinates & = Su
that makes the controllability indices strict for the new pair (F,G) = (F,Gpf™1)
without changing their order. One way of accomplishing this to define 1 X n
vectors Ki,..., K, by

0 1<r<i;

K Friaf = { 5 =t (9)

and let B be the m X m non-singular matrix whose © — 7 entry is
B! = K, F4—1G7. (10)

In this case g satisfies _ _
Bl =6 &<t . (11)

Moreover § is the only such matrix which makes the controllability indices strict
and leave the order invariant. A change of input coordinates u = Al preserves
the strictness of the controllability indices while leaving the order invariant iff
Al =0for & > ¢;.

The system (4), (5) is said to be observable if

rank {H;F""': i=1,...,p; r=1,...,n} = n. (12)

Every observable linear system has observability indices £;,...,£, > O charac-
terized by £; +---+ £, = n and

rank {H;F"™': i=1,...,p; r=1,...,0} =

rank {H;F"" ' :i=1,...,p; r=1,...,L AL} (13)

for £ = 1,...,n. The set of indices is uniquely determined by H and F and
does the change under linear change of coordinates in the state and output
spaces and linear output injection. There can be freedom in the ordering of the
observability indices even when the order of the outputs remains fixed. This is
because there may be several orderings which satisfy (13). Of course a change
of output variables or a reordering of the outputs can change the order of the
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observability indices. We could reorder the outputs so that £; < ... < ¢, or the
reverse but we shall not do so. We shall restrict our discussion to systems where
all the observability indices are positive.
Similarly an alternative characterization of property (13) of the observability
indices 15 that
HFY = (14)
mod {H;F"™': j=1,...,p; r=1,...,(& + 1) AL}
The observability indices of (4), (5) are said to be strict if (14) holds mod {H —
JF™™ . 7=1,...,p; r=1,...,&4 A¢;}. The observability indices are strict iff
there is only one ordering of them satisfying (13). It is always possible to make a

linear change of output coordinates y = y¢ that makes the observability indices
strict for the new pair (H, F) = (y~'H, F) while not changing their order. One

way of accomplishing this is to define n x 1 vectors Q!,..., Q" by
H;F"IQ’?{ 501 lfli& (15)
and let -y be the p x p non-singular matrix whose 1 — 7" entry is
N = HF51Q7, (16)
In this case v satisfies . .
'73 = 63 42 ¢ (17)

Moreover v is the only such matrix which makes the observability indices strict
and leaves the order invariant because a change of output coordinates § = uy

preserves the strictness and order of the observability indices iff u] = 0 for
4 < g,
The controllable form of a linear system is
z = Az -aCz+ Bu (18)
y = 1z (19)
where {4, B, C} is a prime triple with indices £,, ..., £, and o and 7 are arbitrary

matrices of dimensions n X m and p X n.

The following facts are well-known and/or can be easily proved. A system in
controllable form is controllable with controllability indices £;,...,£,,. A system
(4), (5) can be transformed into controllable form (18), (19) by a linear change
of state coordinates £ = Tz iff it is controllable. If (4), (5) is controllable with
controllability indices £;,...,4,, then the z coordinates of (18), (19) are defined
by taking as a basis the columns of the matrix T

T =[F4-1GY ... ,GY,.. ., F*~lg™, ... ,G™] (20)
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Let z = T~'¢ have components

Il?‘=(zn,...,Sul,...,zml,...,:cmgm), (21)

where * denotes transpose, then F%~"G7 in ¢ coordinates becomes the unit
vector in the zj, direction in z coordinates. The j”‘ column of a and the matrix
~ are given by

o = T 'F4GY (22)
v = HT. (23)

It can be shown that af; = 0if & — r > £;. The controllability indices are strict
iff o], = 0 for & — r > £;. The controllable form (18), (19) of the linear system
(4), (5) and the associated z coordinates (20), (21), (22), (23) are unique up to

reordering of the controllability indices. The observable form of a linear system
is

£ = Az— Baz+ fu (24)
y = Cxz (25)

where (A, B, C) is a prime triple with indices £,...,4, and a and f§ are arbitrary
matrices of dimensions p X n and n x m.

A system in observable form is observable with observability indices ¢y, ..., £,.
A system (4), (5) can be transformed into observable form (24), (25) by a linear
change of state coordinates { = Tz iff it is observable. If (4), (5) is observable

with observability indices ¢y, ...,£, then the z coordinates of (18), (19) are of
the form

z* =(3711,...,zul,...,xpl,...,:tpep) (26)
where T1 is defined by
zip = H;FT71¢, (27)
The #** row of o and the matrix 8 are given by
a; = -—H,'FC“T (28)
g = T lG. (29)

It can be shown that a{' = 0if r > 4 + 1. The observability indices are

strict iff a{' = 0 for r > {;. The observable form (24), (25) of the linear system
(4), (5) and the associated z coordinates (26), (27), (28), (29) are unique up to
a reordering of observability indices.
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The controller form of linear system is

z = Az — Baz-+ Bfu (30)
y = 7z (31)
where (4, B,C) is a prime triple with indices £;,...,4n and «, 8,y are matrices

of dimensions m x n,m X m, p X n. These matrices are arbitrary except § must
be non-singular.

A system in controller form is controllable with controllability indices ¢4, ...,
{,, and the controllability indices are strict relative to the input & = Bu. A
system {4),(5) can be transformed into controller form (30), (31) by a linear
change of state coordinates £ = T'z iff it is controllable. If (4), (5) is controllable
with controllability indices £, ...,%4y,, then let 8 be defined by (10). One can
define a pseudo-output for (4), (5).

¥ = K¢ (32)

where K is the m X n matrix defined by (9). The square system (4) and (32)
is observable with strict observability indices £y,...,&,. The observable form
realization of (4) and (32) is a controller form realization of (4), (5). The z
coordinates of (30), (31) are of the form (20) and

Tyr = KJ'Fr—lf- (33)
The matrix v is given by (23) and the :** row of a is given by
a; = —K;F“T. (34)
Since the observability indices of (4) and (32) are strict, we have
" =0 r>¢. (35)
In general controller form realizations are not unique. However the controller

form realization which satisfies (11) and (35} is unique up to reordering of the
controllability indices.

The observer form of a linear system is

z = Az—aCz+ fu (36)
y = 7Cz (37)
where (A, B, C) is a prime triple with indices ¢, ..., £, and «, B, are indices of

dimensions n X p,n X m, p X p. These matrices are arbitrary except that v must
be non-singular.
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A system in observer form is observable with observability indices £y,...,4,
and the observability indices are strict relative to the output § = v 'y. A
system (4), (5) can be transformed into observer form (36), (37) by a linear
change of state coordinates £ = Tz iff it is observable. If (4), (5) is observable
with observability indices £;,...,4,, let v be given by (16). One can define a
pseudo-input u

§=FE+Qu (38)
where Q is the n X p matrix defined by (15). The square system (38) and (5) is
controllable with strict controllability indices £;,...,4,. The controllable form

realization of (38) and (5) is an observer form realization of (4), (5). The z
coordinates of (36), (37) are of the form (26) and defined by ¢ = Tz where

T=[Fa"1Q,...,Q%...,F» 1A% ... Q7). (39)

The matrix 4 is given by (29) and the j** column of « is given by
o = -T 'F4%Q7 (40)

Since the controllability indices of (38) and (5) are strict, we have
ol =0 1< r< 44 (41)

In general observer form realizations are not unique. However, the observer
form realization which satisfies (17) and (41) is unique up to a reordering of the
observability indices.

Remark 2.1 The controller form (30), ($1) of a system is very useful in de-
signing a linear state variable feedback to stabilize the system. The observer form
(86), (87) vs very useful in designing asymptotic observers. Together they can be
used to stabilize a system by dynamic output feedback (also called observer based
compensation). See [1] or [2] for details.

Remark 2.2 Controllable and observable forms are easier to compute and are
useful for finding the observer and controller forms of related systems.

3 MFD’s

The purpose of this section is to emphasize the very close relationship between
the normal forms of a linear system described above and the so-called polynomial
matrix fractional descriptions of its transfer function. For linear systems it is
only a matter of personal preference which representation we choose to work
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with. This is not the case for the nonlinear systems because they don’t have nice
frequency domain descriptions. Our treatment is similar to that of [1] and [2].

Throughout we shall use the following notation. Given the indices £;,...,4,
where n = £; +---+ £, then A(s), ®(s) and ¥(s) are block diagonal polynomial
matrices of dimensions ¢ X q, ¢ X n and n X ¢ of the form

A(s) = BlockDiag | s* ]1><1 (42)

(I)(s) = BlockDiag [ st~ ... 1 ]lxei (43)
1 &H+1

‘I,(S) = BlOCkDiag (44)
6, —1

The linear state space description

T = Az+v (45)
z = z (46)

with input v, state z, output z, all of dimension n, has the following polynomial
matrix description in the transform domain

Afs)é(s) = D(s)u(s) (47)
z(s) = Y(s)¢(s) (48)
where the so called “partial state” £(s) is defined by
£(s) = () (49)
or equivalently
2(s) = ¥(s)€(5) (50)
(Here z{s) denotes the Laplace transform of z(t), etc.). The (A, B,C) of the
above are a prime triple with indices £;,..., £, so that
C¥(s) = ®(s)B = I19, (51)

From this we quickly obtain MFD’s corresponding to the 4 normal forms of
the last section. For a system in controllable form (18), (19) we use the relations

v(s) = —aCz(s)+ Bu(s) (52)
y(s) = z(s). (53)
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Let ¢ = m, then from (47), (48) and (49), (50), (51) we obtain

u{s) = (A(s) + B(s)a)é(s) (54)
y(s) = ~¥(s)€(s) (55)
which 1s a RMFD of the form
y(s) = N(s)D™*(s)u(s) (56)
where
D(s) = (A(s)+ 2(s)a) (57)
N(s) = ~¥(s). (58)

Given a RMFD (56) we can always obtain a controllable form realization.
Recall that a polynomial matrix is unimodular if it has an inverse which is a
polynomial matrix. If we multiply N(s) and D(s) on the right by a unimodular
matrix we don’t change the transfer function. In this way we can insure that the
matrix of highest column coefficients of D is invertible and even more equals the
identity.

Let £1,...,4n be the column degrees of D, then D(s) and N(s) can be written
as (57), (58) thus defining a and 4. This yields a controllable form realization
of (56).

For a system in controller form (30}, (31) we use the relations

v(s) = —Baz(s)+ BBu(s) (59)
y(s) = 72(s) (60)

and so we obtain the RMFD (56) where

D(s) = B HA(s) + a¥(s)) (61)
N(s) = ~¥(s). (62)

Of course we can go backwards. Given the RMFD (56) we multiply N(s) and
D(s) on the right by a unimodular matrix so that the matrix of highest column
coefficients of D(s) is nonsingular. The decomposition (61), (62) defines o, £
and « of a controller realization of the transfer function.

For a system in observable form (24), (25) we use the relations

v(s) = —Baz(s)+ Pu(s) (63)
y(s) = Cz(s) (64)
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We obtain the LMFD

y(s) = D™ (s)N(s)u(s) (65)
“where

D(s) = A(s)+ a¥(s) (66)

N(s) = ®(s)f. (67)

On the other hand given a LMFD (65) we can multiply D(s) and N(s) on
the left by a unimodular matrix to obtain the decomposition (66), (67). This
defines « and S of an observable form realization.

For a system in observer form (36), (37) we use the relations

v(s) = —aCz(s)+ Bu(s) (68)
y(s) = 2Cz(s) (69)

D(s) = (A(s)+2(s)a)y™" (70)
N(s) = ®(s)p. (11)

Given the LMFD (65) the decomposition (70), (71) defines «, 8 and « of an
observer form realization.

4 Nonlinear Observable and Controller Forms

Henceforth we focus our attention on the nonlinear system

zi = f(€)+g(€)u (72)
y = h(¢) (73)

where £ € R, u € R™, y € R? and f, g, h are smooth (C*) functions. We
are interested in (72}, (73) in some open connected subset M of the state space
containing the nominal operating point ¢°.

We introduce some terminology and notation. The Lie derivatives of the
function h;(€) by the vector fields f(€&) and g7 (&) are functions defined by

Lih)(O) = F(E(6) (74)
L&) = Ze)ee). (75)

¢
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Of course these operations can be iterated,
Ly (hi) = Ly (L5 (). (76)
The differential dh; of a function h; is a one form defined by

Oh;
9¢

A one form w is a row vector field or more precisely a C* linear combination of

differentials.
w(€) = (@ (&), w™(§) = D ki(¢)dhs(8) (78)

where k;(¢) and h;(£) are smooth functions. A one form can be paired with a
vector field (all vector fields are columns unless otherwise stated) to obtain a
function

dhi(§) = (&) (77)

(, (&) = w(€)f(&) =D W' (&) £:(€). (79)
=1
A vector field can also Lie differentiate a form to obtain another one form
3 dw™*
Lw) = w3k + (G5 1y o)

where * denotes transpose. In particular
Ly(dh:) = d(Ly (h:)). (81)

A vector field can also Lie differentiate another vector field to yield a third
vector field.

(g’ = 11,6] = SE(©)1(6) - (60 (82)
This can be iterated, . _
ad™ ()¢ = [f,ad" " (f)g"]. (83)

The operation (82) is also called the Lie bracket (82) of the vector fields and can
be thought of both as a multiplication and as a differentiation. This is evidenced
by the following Liebnitz-type formula called the Jacobi identity

(518, @l =lf,d') 9]+ |, [f, 711 (84)

Moreover the pairing (79) satisfies a Liebnitz formula with respect to Lie differ-
entiation

Ly ((w, ") = (Ly (), ¢°) + (w, |, 9°]) (85)
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For the readers unfamiliar with these concepts we suggest the calculation of the
above definitions and formulas in the linear case (4), (5) where

&) = F¢ (86)
g = ¢ (87)
hi(¢) = Hié. (88)
We define
E8=C®{L7 Y dh): i=1,...,p; r=1,...,8} (89)

where C*{-} means the linear span over C* coefficients. Such a collection of
one forms which is closed under addition and multiplication by C* functions
is called a codistribution. We denote by £¢(¢) the linear space of 1 X n vectors
obtained by evaluating the one forms of £¢ at the point .

Given indices £;,...,4, we define
f;l _____ ¢, = C°°{L'}_1(dh;) ci=1...,p r=1,..., LA L} {90)
and &, (€) the vector space obtained by evaluation of these forms at ¢.

The sysgem is (72), (73) has observability indices ¢,, ..., ¢, around ¢° if ¢, +
<+ £, =n, and
dimension £™(¢) =n (91)

and
E4E) = &,.e, () (92)

for £=1,...,n and all £ in some neighborhood of ¢°. The reader who has done
the suggested calculations recognizes (91) as a generalization of (12) and (92) a
generalization of (13). The observability indices are strict if

LY (dhi) € £ (93)

fort = 1,...,p. This generalizes the linear definition.

The set of observability indices of (72), (73} is uniquely determined by h and
f and is invariant under changes of coordinates in the state and output spaces.
There can be some freedom in the ordering of the indices even when the ordering
of the outputs remains fixed. The observability indices are strict iff there is only
one ordering satisfying (92). To simplify notation we restrict our attention to
systems where all the observability indices are positive.

Condition (91) could be called zero input observability. It means that the
state £(t) of (72), (73) can be distinguished from its neighbors by the output y(t)
and its first n— 1 time derivatives along the trajectories near ¢° corresponding to
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u(t) = 0. Unlike the linear case, (91) does not imply the existence of observability
indices satisfying (92) around every £° but only for a generic, (i.e. an open and
dense) set of £2’s. The latter condition implies that the functions

2 = L7 (hi)(€) (94)

forz = 1,...,p; r = 1,...,4 are valid local coordinates on the state space.
When (72),(73) has observability indices around a point ¢° which is a critical
point of f, (f(£°) = 0) then they agree with the observability indices of the
linear approximating system to (72), (73) at £°.

The observable form of a nonlinear system is

z = Az — Ba(z)+ B(z)u (95)
y = Cz (96)

where (A, B,C) is a prime triple with indices ¢;,...,%, and o, are smooth
m % 1, n X m matrix valued functions of z.

Proposition 4.1 . A nonlinear system in observable form (95), (96) has ob-
servability indices £y,...,£,. A nonlinear system (72), (78) can be transformed
into observable form (95), (96) by a change of local coordinates around £° iff
the system has observability indices around £°. If (72), (78) has observability
indices £y, ..., L, around £° then the z coordinates of the form (26) given by (94)
transform it to observable form. The observable form of a nonlinear system, the
associated z coordinates and the nominal z-operating point z0 = T~1(£9) are
unique up to a reordering of the observability indices. The functions a and S of
the observable form (95), (96) are given by

Qg = L? (h,) (97)
Bl = Lo Ly (hs). (98)

The observability index assumption (92) tmplies that
da; = L (dh;) € £51 (99)

which means that o; does not depend on z; if r > & + 1. The observability
indices are strict (93) iff a; does not depend on a z; if r > & + 1, in other
words

do; = L (dh;) € €. (100)

The proof of this result is relatively straightforward, for example see (4], section
2.
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We now turn to controllability properties of (72), (73). We define

Pt=cC®{ad" H-f)g: j=1,....m; r= 1,...,¢}. (101)

This is a collection of vector fields closed under addition and multiplication by

C* functions; such an object is called a distribution. Given indices £y,..., {n,
let

Db e ={ad N =AF g =1,. . omr=1,... LA ;). (102)

The system (72), (73) has controllability indices ¢,,...,¢,, around £° if £, +
-+ £,, = n and

dimension D" (¢) = n (103)

and
D(&) =D, e, (8) (104)

for £ = 1,...,n and all £ in some neighborhood of ¢°. Of course (103) is a
generalization of (6) and (104) is a generalization of (7). The controllability
indices are strict if

ad“(—f)¢ € DY, (105)

Taveey

fori=1,...,n. This generalizes the linear definition.

The set of controllability indices of (72), (73) is uniquely determined by f and
g and is invariant under change of coordinates in the state space and nonlinear
state feedback, i.e. u = a(z) + B(z)v where f(z) is m x m invertible. There
can be some freedom in the ordering of the indices even when the output is
fixed. The controllability indices are strict iff there is only one ordering satisfying
(104). For notational convenience, we restrict our attention to systems where
the controllability indices are positive.

Condition (103) could be called local linear controllability for if £° is a critical
point of f, (f(¢°) = 0) then the linear approximation to (72), (73) at € is
controllable iff (103) holds. Once again (103) does not imply the existence of
controllability indices satisfying (104) around every £°, only for an open, dense
set of £%’s. When (72), (73) has controllability indices around a critical point 0,
they agree with the controllability indices of the linear approximating system to
(72), (73) at £°.

The controller form of a nonlinear system is

z = Az — Boa(z)+ Bf(z)u (1086)
v = 7(z) (107)
where (A, B, C) is a prime triple with indices £,...,4, and a, B, v are smooth

m X 1, m X m, p x 1 matrix valued functions of z which are arbitrary except
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that B(z) must be nonsingular. The question of when a nonlinear control sys-
tem can be transformed to controller form has been independently solved by
several authors [5,6,7,8,9,22]. Some only considered special cases like m = 1 or
B(z) =constant. Our treatment follows Hunt and Su [8].

Recall that a distribution D is involutive if it is closed with respect to Lie
bracket, i.e. [¢,¢%] € D whenever ¢',¢> € D. Given a distribution we can
consider the under-determined systems of partial differential equations.

(dk,q) =0 forallqge D (108)

for the unknown function k(€). The question of existence and uniqueness of local
solutions to (73) is addressed by the following.
Frobenius Theorem Suppose D is of constant codimension d. D is involutive
iff locally there exists d independent solutions ky,...,kq to (73). Any other
solution k(&) is a function of ky(&),...,ka(€).

Proposition 4.2 (/8], see also [5,6,7,8,9,22]). A nonlinear system in controller
form (106), (107) has controllability indices £, ... £, which are strict relative
to the input & = Pu. A nonlinear system (72), (78) can be transformed into
controller form (106), (107) by a local change of coordinates around £° iff it has
controllability indices £, ..., 4y, and D%~ 45 involutive for § = 1,..., m.

Proof The proof of the first statement is a straightforward verification.
As for the second suppose (72), (73) can be transformed to controller form
by £ = T'(z). Using the C matrix of the prime triple we define a pseudo-output.

% = k() = CT'(¢) (109)
then the function k satisfies
LS(ks) = o (110)
— 0 1<r<y
ngLf l(k‘.') = { ﬂ'] r;& (111)

Using the Liebnitz formula (85) and induction we can show that (111) is equiv-
alent to

0 1<r<¥, 0<s<r

,Bf r=1{¢, 0<s<r (112)

(L7 (dki),ad™™ "~ (= f)g") = {
From this it follows that for every ¢ € D¢

(L7 (dk:),q) =0 (113)
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fort = 1,...,nand r = 1,...,4 — £. Moreover from the invertibility of 8 it
follows that the functions {L}™!(k;) ¢ = 1,...,m and r = 1,...,4 — £} are
independent. There are as many such functions as the codimension of D¢ so
by the Frobenius theorem D¢ is involutive for all £ and in particular for £ =
-1, 7=1,...,m.

On the other hand if D% ~1 is involutive for y = 1,..., m then by repeated ap-
plication of the Frobenius theorem one can find independent functions ki, ..., k,,

satisfying (112) where § is some invertible m X m matrix valued function. If we
define z coordinates by

zjr = L7 (k5)(€) (114)

for y =1,...,m; r =1,...,¢; then these coordinates transform the nonlinear
system to controller form (106), (107). The functions o and J are given by (110),
(111).

When it exists, the controller form of a nonlinear system is not unique. From
the procf of the above we see that the controller form is completely determined
by the choice of the pseudo-output k(¢) satisfying (111) for some invertible 5(¢).
If k() is another solution of (111) then (112) and (113) imply that k,(¢) is a
function of z;, = L}_l(kj) forf; >Land r=1,...,¢4 — .

Notice that the nominal operating point z° = T !(£°) of the controller form
is determined by the choice of k(&). In particular there exists k such that z° = 0
iff there exists u® such that f(£°) + g(£°)u® = 0.

Another point worth mentioning is that the system (72) with pseudo-output
¥ = k(£) does not necessarily have observability indices £,...,£,,. This would
be the case iff in addition to (112), k() satisfies

(LY (dk;),ad™ ™! (— f)g") = 0

forr=1,...,¢ -4 - 1.
We might try to obtain a unique controller form by requiring that « and B
also satisfy the nonlinear generalizations of (11) and (35), namely

BlE) =8 ti<y (115)
68:_" =0 r>4 (116)
Jr

But this would reduce the number of nonlinear systems that admit a controller
form. The conditions (115), (116) imply that

0 1<r<y

(dki,ad" " (= f) ) = { B r=¢;

(117)
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This is a system of first order partial differential equations for the unknown func-
tions ky, ..., ky,. The solvability of such a system is addressed by the following.

Integrability Theorem Let ¢'(£),...,¢"(£) be an n linearly independent n
dimensional vector fields. There exists a solution k = (ky, ..., kpn) to the system

. 67 i=1,...,m
Py =4 % P
(dk”q> { 0 j:m-f—l,...,n
iff o
[qi,q]]ep ia].=1""’n

where D is the distribution spanned by {¢g™*1,...,q"}. The solution is unique
up to a choice of k(£°).

From this theorem we see that there exists a solution to (117) iff
[2d™ (= £)g", ad’ "N (- f)g') € D (118)

fort,7=1,...,n; r=1,...,4, s =1,...,£; where D is the distribution given
by

pD=C{ad" Y~f)g: j=1,...,n; r=1,...,4; —1}. (119)
Condition (118),(119) is considerably more stringent then D%~! being invo-
lutive for 5 = 1,...,m. In particular suppose we consider a generic nonlinear

system (72), (73) with n = 2 and m = 1. Around a generic point ¢°, the vector
fields g' and ad(—f)g! are linear independent hence such a system has a con-
trollability index £; = 2. The distribution D! = C°{g'} is trivially involutive
so such a system has a controller form. However condition (118), (119) which in
this case is

l¢', ad(~f)g'] € C={g"}
is not generically satisfied.
Suppose (72), (73) has controllability indices £;,...,4,, around £°. Regard-
less of whether or not it admits a controller form around ¢°, it is always pos-
sible to make the controllability indices strict by a change of input coordinates

& = B(€)u when B (£) = & for £ < £; as in the linear case. We define one forms
wl(&); e awp(g) by

. , 0 1< ;
{(wi,ad 1(“f)gj>={ 53' r;z&

From this and the controllability index assumptions (104) it follows that

(120)

(wiyad" Y =f)g) =0 £ <r <. (121)
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Moreover by repeated use of the Liebnitz formula (85) we see that (120), (121)
is equivalent to

CACTAS T (122)
1 -
We define g8 by ) _

Bl = (LS wi), &) (123)

Immediately we see that ,Bf = 5{ for & < £; so B is invertible. It is not hard
to show that the system defined by (f,3) = (f, 987 !) has strict controllability
indices £y,..., £y,. Notice that if (117) is solvable then w; = dk;.

5 Nonlinear Controllable and Observer Forms

The controllable form of a nonlinear system is

z = Az+ a(Cz)+ Bu (124)
y = () (125)

where (A, B, C) is a prime triple with indices £y, £,, and «, ~ are smooth matrix
valued functions of dimensions n x 1, p x 1. Notice that o is a function of the
pseudo-output ¢ = C'z while v is a function of z.

Notice that if «(t) is a linear function of  then the dynamics (124) of the
nonlinear controllable form agree with the dynamics (18) of the linear control-
lable form. Hence the question of the existence of a nonlinear controllable form
1s closely related to the question of linearizing the dynamics (124) by a change of
state coordinates. This latter question has a long history going back to Poincare
[16]. For more recent work see [17,18,19,20,21].

For the most part the controllable forms of nonlinear systems have not ap-
peared explicitly in the literature. But as one might expect they have arisen
implicitly in some of the work on observer form [4,10], and on linearization [21].
The following is a reformulation of similar results from [10], [21] and [22].

Proposition 5.1 A nonlinear system in controllable form has controllability in-
dices £;,...,¢,,. A nonlinear system (72), (78) can be transformed into con-
trollable form (124), (125) by a change of local coordinates around £° iff it has

controliability indices £;,...,4,, and
[ad""!(~f)g', ad* " (-f)g’] =0 (126)

fore,7=1,....mandr=1,...,4, s=1,.. ., ¢; around £°. Controllable form
and the associated z coordinates are unique up to a choice of the nominal z-
operating point z° = T~ 1(¢°) and up to reordering of the controllability indices.
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The dynamics (72) of a nonlinear system can be linearized, or equivalently,
can be transformed to the dynamics of linear controllable form (18) by a change
of state coordinates around &0 iff (72) has controllability indices £,...,4y and
(126) holds fori,j=1,....mandr=1,...,6+1; s=1,...,6 + 1.

Proof Consider the nonlinear system in controllable form (124}, (125). It is a
straightforward calculation to show that

. ATl Bl 1< r<{;
ad" ' (—Az + a(¥))B’ = { -

a —
5‘5“; r—£]'+1

(127)

Hence the controllable form (124), (125) has controllability indices £;,...,2n,.
Moreover if (72), (73) can be transformed to (124), (125) by a change of state
coordinates then clearly (72), (73) must have the same controllability indices
and (126) must hold.

On the other hand suppose (72}, {73) has controllability indices £,...,4n
and (126) holds. By the integrability theorem of Section 4 with m = n, we can
choose coordinate functions z;,(£), 2 =1,...,m; r=1,..., 4 such that

(dzsp, ad®~*(—f)g") = 676¢ (128)

forv,7=1,...,mandr=1,... 4, s=1,...,¢;. A
In the z coordinates, ad®~*(—f)¢’ becomes the unit vector in the direction
Zj, or in other words

ijfade:'-"(—f)gf = A4"°pI (129)
3¢
fory=1,...,mand s =1,...,¢;, where A, B are from the prime triple with
indices £;,...,£4y. Let f(z) be the transform of f(£) into z coordinates.
P dz
1(z) = 3 (€l=Df(El=) (130)

Then from (129), (130) we have if s > 1

3 - R
57 f(a) = (457 B, f(a)
= 9% qti-e(_ 9z

oz

= Za £i—s _ ]
= 56T ()P
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= Ab—stigi (131)

From this we conclude that

f(z) = Az + a(Cz)

where Ciz = z;y, 1=1,...,m.

We now prove the last part of the theorem. If the nonlinear dynamics (72)
can be transformed to the dynamics (18) of linear controllable form then by
the above it must have controllability indices £y, ..., 4, and (126) must hold for
r=1...,4 and s = 1,...,£;. Moreover we see from (127) that adzf(-—f)g"
must transform to a constant vector field in z coordinates so (126) must hold for
r=1,...,4+1and s=1,...,6 + 1

On the other hand if (126) holds for r = 1,...,4 +1and s =1,...,4; + 1
then adt"(——f)gk must be a constant linear combination of the frame of vector
fields {ad" " '(~f)¢', i=1,....m; r=1,..., £;}. To see this, suppose for some
functions A% (¢)

m &

ad®(—f)g* = Z Zad'—l(—f)g‘,\{?,.

i=1r=1

Bracketing with ad®~!{—f)¢’ yields

m ¢
0= ZZ ad'—l(——f)g'Ladn-x(__”g, (}\:’cr)

i=1r=1

The linear independence of the vector fields of the frame implies that for 7 =
L...,m; s=1,...,4

0= Lad"‘(—f)gj ()‘:cr)
k

hence ), is a constant. By (127) this implies that
air(¥) = ) A¥x  QED.
k=1

Notice that it is more difficult for a nonlinear system (72), (73) to have
a controllable form than to have a controller form. Clearly conditions (126)
implies that D%~ is involutive for 7 = 1, . .. ,m. This extra difficulty is partially
explained by the extra freedom afforded by f(z) in the controller form which is
lacking in the controllable form. Zeitz defines controllable form with B(z) present
[22]. There is also more freedom in the a of the controller form than the a of the
controllable form. The former is an R™ valued function of R"™ while the latter
is a R™ valued function of R™. The linear terms of the Taylor series expansion
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have the same number of degrees of freedom, n m, but there are more degrees
of freedom in the higher order terms of the controller form that the controllable
form. In particular for the terms of order 2, there are mn(n + 1)/2 degrees of
freedom in the former and nm(m + 1)/2 in the latter.

The observer form of a nonlinear system is

z = Az-—a(Cz)+ B(Cz)u (132)
= ~(Cxz) (133)

where (A4, B,C) is a prime triple with indices £;,...,4, and @, B8 and v are

smooth matrix valued functions of dimensions n X 1, m x m and p X 1. They

are arbitrary except that 4 must be a local diffeomorphism. We let § = Cxz.
Observer form is useful in the construction of asymptotic observers

3= A2+ a(9) + A(g)u+ M(g - C2) (134)

with linear error dynamics

i=(A-MOC)z. (135)

The question of when a nonlinear system can be transformed to observer form
has been considered by several authors [4], [10,11,12,13,14], [22]. Most treated
only special cases like p = 1 or 4 =identity. The general solution can be found
in [4). The approach taken in [4] is similar to the approach described above for
the linear case.

Suppose the nonlinear system (72), (73) can be transformed into observer
form (132), (133) by a local change of coordinates around £°. Using the B
matrix of the prime triple we add a pseudo-input u to (132)

= Az — a(Cz) + B(Cz)u + Bp. (136)

When u is held constant at 0, (136) can be viewed as the controllable form
relative to the pseudo-input u.
We transform (136) back to &-coordinates

€=1(8) +9(u+a(&n
which defines the vector fields § = ', ..., 3. These vector fields satisfy

: 0 1< ;
7w, )= { 5 TEITH

If g is known then we can recover the observer form by choosing local coordinates
z;r to satisfy

(137)

(dzir, ad" ™" (—f)¢) = 676} (138)
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forz,7=1,...,p, r=1,...,4 and s = 1,...,£;. Such coordinates exist iff
[ad“ "7 (= )¢, ad% (= f)F]=0 (139)
fori,j=1,...,p; r=1,...,4; s=1,...,¢ and
[ad“""(~f)¢',¢"] = 0 (140)

forz=1,...,p;7=1,...,nand r=2,...,4.

Summarizing the discussion, an observer form (132,133) of (72), (73) exists
iff there exists a change of coordinates y = () on the output space and vector
fields ¢',..., " determined by v via (137) such that (139),(140) holds. In effect
(139),{140) constitute an overdetermined system of partial differential equations
for the change of coordinates y = (§) on the output space. To analyze such
equations we must introduce the geometric concept of a Koszul connection on
the output space. Let ¢*(y),7 = 1,2,... denote vector fields on the p dimensional
output space. A Koszul connectton on y-space is a mapping A from pairs of such
vector fields to vector fields.

A (¢, ¢7) > Byi(47) (141)

This mapping is linear over C™ functions in the first argument and satisfies a
Liebnitz formula in the second argument. In other words if A;(y) and p;(y) are
smooth functions then

As (Z pi¢’) = Z('\iﬂjAos" (87) + AiLgi (u5)47)- (142)

If ¢'(y),...,#"(y) is a local frame of vector fields then A is completely deter-
mined by its Christoffel symbols T'} (y) relative to this frame. These are defined
by the expressions

Ap(d7) = ST 4", (143)

k

Comsider a second frame ¢!,..., ¢? related to the first by
-_ p .
F =2 (144)
p=1

and

P
$7 =D N (145)
k—1
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where A = ()\f) is a p X p nonsingular matrix valued function of y and A=! = (p,f)
It follows from (141,142) (143) and (144, 145) that

I = 37 Wi e + 3 AL Lo (). (146)

PO, T /T

A Koszul connection A has zero curvature if there exists a frame where the
Christoffel symbols are zero. From equation (146) we obtain the partial differ-
ential equation that such a change of frame must satisfy. It is more conveniently
written in matrix notation where I'? denotes the p X p matrix (I'2?) with row
index 7 and column index o,

0=T A"+ Ly (A7Y) (147)
or equivalently
Lgo(A) = AT, (148)
The integrability condition for this is
L¢p L¢“ (A) - L¢° L¢p (A) - L[¢ay¢pl(A) =0 (149)
or equivalently
A(TPT7 —T°T? + Lgo (T9) = Lgo (T?) = D cZPT") =0 (150)

T

where C7? are the structural coefficients of the frame

[67,4°) =D _Co9". (151)

T

The coeflicient of A in (150) is the curvature of A.
It is convenient to work with frames of vector fields arising from coordinates

on the output space. Suppose y and § are two different coordinate systems and
¢ and ¢ are the associated frames, i.e.

5} o/

Ly=— Lz=—.
¢ dy; ¢ 9% (162)
These frames are related by the chain rule
el
4=52 (153)

SO

A = 37/3y. (154)
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A Koszul connection A is flat if there exists a coordinate frame for which the
Christoffel symbols are zero. Such coordinates are said to be flat relative to the
connection. Suppose I'?? are the Christoffel symbols relative to coordinates y.
Clearly we can find new coordinates § where Christoffel symbols are zero iff we
can solve the pair of partial differential equations (147,148} and (154).

We rewrite these as

94 = ar (155)
Oy
9y

= A 156
5 = A (156)

The integrability condition for the first is the zero curvature condition (150)
which can be rewritten as

ars  ard
dy; du

T — 17 + 0 (157)

for 1,5 = 1,...,p. The integrability condition for the second is
Iy —Ti =o. (158)

The left side of (158) is called the torsion of the connection A. In summary
a Koszul connection is flat (i.e. has Christoffel symbols zero relative to some
coordinate frame) iff it has zero curvature (157) and zero torsion (158).

Suppose § are flat coordinates for a flat connection A. It follows from
(155,156) that another set of coordinates y is flat iff y and % are affinely re-
lated, i.e. for some constant invertible matrix A

g=Ay+¢°.

The relevance of the above for the problem of transforming a system to
observer form is explained by the following lemmas.

Lemma 5.1 Suppose the nonlinear system (72,78) has one distinct observability
indez £ =€y = ... = £, of multiplicity p. Define vector fields ¢*,...,qP by

_ : 0 1<L<r<¢
) = { g TEIE

(159)
Define p° functions FL’(&') by

Iy = J{Lyldw), b (= 1)g',2d" 7 (1)) (160)
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Let § = g(y) be a change of output coordma.tes and §=q,...,q° be vector fields
defined by (187). Define another p® function I"" (&) by

7 _ 1 - - T 5
7 = (L (d90), (7 ()0, 225 (161)
Then I‘ff and F;j are related by

ig 8y Yo Ok By, 99k 9 ayr
= 9o Vi % 162
V=2 8y 07, 8yr Z 3y 3y, dy, 3y ) (162)

Po,T

The proof of this lemma can be found in [15]. Notice that the lemma asserts
that F'] transform like the Christoffel symbols of a connection on the output
space, not that they are Christoffel symbols. If I‘;c’(f) are actually only functions
of y then they define a connection on the output space and this connection is
independent of the choice of output coordinates.

Lemma 5.2 Suppose the nonlinear system (72,78) has one distinct observability
indez £=4£, = ... ={, and can be transformed to observer form (182,188) then

I‘;'cj(f) defined by (160) are functions only of y and define a flat connection on
the output space.

Proof We compute the symbols 1‘;’3’ given by (161) where § = Cz are the trans-
formed output coordinates of the observer form. The vector fields §(£) defined
by (143) transform to B in z coordinates. By induction we obtain

. Wi A""1B7 1<r<¢
e a@)B = { Ao 120 (169)
From . '
[2d*"}(~ Az + a(9)) B', ad*"%(~ Az + a(g)) B] =
[A*1B*, A 2B =0. (164)
It follows that .
I =o. (165)

If T are defined by (160) then (162) and (165) shows that they are functions
of y alone and can be transformed to zero by a change of output coordinates.
Hence they define a flat connection on the output space. QED.

From these lemmas we immediately obtain the following theorem [15].

Theorem 1 Suppose the nonlinear system (72,78) has one distinct observability
indez =€y = ... = £, around £°. It can be transformed to observer form around

€ o
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the I‘;’.(f) defined by (160) are functions only of y, hence define a Koszul
connection on the output space

this connection s flat

for any flat coordinates § on the output space the vector fields defined by
(187) satisfy the commutative conditions (189,140).

Consider a system with one distinct observability index £ = £, = ... = £,
which is in nonlinear observable form, i.e.
. ir 1<r<?
Pir = { i&; s (166)

fori=1,...,pandr=1,...,¢L
The vector yields ¢',...,¢” defined by (159) are just the unit vectors in the
directions £ye,..., £pe. The I'Y defined by (160) are given by

d a
€52 O&ie

The change of output coordinates § = v~ (y) must satisfy the partial differential
equations (155,156) or

7 _
Y=

7 1(6) (167)

d ayp "lzagp asz

_—. 168
Jyi By, Oyx €208 (168)

The integrability conditions for this are the zero curvature condition (157) or

5 8%f,  a%f, 2f, 9%,

p 08,2080 0622080 9€,20850 8€,206;

8%, 8 fs
£ - 169
(96:0€.298 ~ 58106,206, (169
and the zero torsion condition (158) or
Ol _ _Ph (170)

0€;20&e 0620,

If these are satisfied then we can solve (168). If (139,140) are satisfied then we
can solve (138) to find the z coordinates of observer form.

Needless to say this is a very tedious process. There is a necessary condition
that a system in nonlinear observable form (166) must satisfy to be transformable
to observer form. We define the degree of the variable ¢;, to r — 1 and the degree
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of a product of such variables to be the sum of the degrees of its factors. If (166)
can be transformed into observer form then f;(£) must be a polynomial of degree
at most £. We refer the reader to [4] for a proof of this. In particular if £ =2
then this degree condition, the zero curvature condition (169) and (139, 140) are
necessary and sufficient. The torsion free condition (170) is trivially satisfied. It
follows from (169) that (139) need only be checked for r = s =1 and 2 # j.

If p = 1 then trivially the curvature and torsion are zero and (168) reduces
to a first order linear ordinary differential equation for the quantity dg/dy. It
is solvable if the degree condition on f; is satisfied. In particular when p = 1
and £ = 2 the degree condition and (140) are necessary and sufficient for the
existence of observer form.

We now discuss the case where there are several distinct observability indices.
The general approach is as before. To find the observer form of (72,73) if it exists
we seek an appropriate change of output coordinates § = v~ !(y) which allows
us to define vector fields ¢ via (137). If (139,140) are satisfied then we can solve
(138) for the z coordinates of the observer form.

The presence of several distinct observability indices complicates the search
for § and forces us to proceed in stages. Notice that for a system in observer
form the observability indices are strict for the output § = Cz. This is because

L{as—a(y)(dg) = CA™™ mod 777

and the output indices are strict for the pair C, A. So any nonlinear system that
admits an observer form must admit a change of output coordinates which make
the output indices strict. Moreover, the problem of transforming a nonlinear
system with strict observability indices into observer form is greatly simplified
by the following fact.

A change of output coordinates § = vy~ !(y) preserves the order and strictness
of the observability indices iff

3%
dy;

=0 for & < ¢;. (171)

To find a change of output coordinates which make the observability indices
of (72,73) strict we start by defining vector fields ¢',..., ¢° via (159).

It follows by the standard induction argument using the Liebnitz formula
(85) that {143) implies

4 0. 1<r<y
(dys,ad™ (=)= B r=14 (172)
0 Li<r<y
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Moreover the vector fields ad" ' (—f)¢? 5 =1,...,p; r=1,..., ¢; form a frame
of n independent vector fields. These characterize £¢ as

Ef={ad" (~f)g’: j=1,..,pr=1,...,4— £} L

£¢ = {oneforms w : (w, ad” N ~f)g)=035=1,...,p; r=1,...,4 — &}.
(173)
Suppose § = v7!(y) is a change of output coordinates which preserves the
ordering of the observability indices. The observability indices are strict relative
to the i output iff

Ly (dg) € €5 (174)
or equivalently by (173)

(L (dg:)ad" " (= f)g') = 0 (175)
for r = 1,...,4; — 4. By induction and the Liebnitz formula this is equivalent
to

(dgi,ad" "' (~f)g’) = 0 (176)
for r = &iy1,...,4;. Since d§j = 3§/dy dy, (172) implies that (176) must hold
for r =1,...,£; — 1 also. We have shown that the observability indices are strict

relative to the output g iff (176) holds for r = 1,...,£; — 1 when £; < ¢; and for
r=1,...,¢; when £; > {.
We define p distributions

Y =c2{ad (-f)¢’: r= 1,...,4, —11if £; <4 and
r=1,.. 00 4 > 4 (177)

As we have just seen a change of coordinates § = 77 1(y) preserves the ordering
of the cbservability indices and makes them strict iff

dgi LY'i=1,...,p. (178)

This is an underdetermined system of first order PDE’s for j. By employing the
Frobenius Theorem, we obtain the following reformulation of Theorem 4.2 in [4].

Proposition 5.2 Suppose the nonlinear system (72,78) has observability indices
&y, ., 4, around £°. There ezists a local change of output coordinates § =
¥~ y) which preserves the ordering of the observability indices and makes them
strict iff the distributions Y, ... YP are involutive.

Lemma 5.3 Suppose the nonlinear system has strict observability indices £y,. ..,
€ and £ = min{¢y,...,£4,}. Define vector fields q by (159) and symbols T} by
(160) then

TY =0if &> Lor g > L.
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Proof Equation (160) can be rewritten as
ZI‘;.CJ' = Ladt—l(_f)gi Ladl—Z(_!)gj Ly (yk)

- Lad“’(—f)quad“l(—f)q"Lf (yk)- (179)

By (159)

_ 0 4 >¢
Lage-3(-g)qi Ly () = Loi L3 (u) = { 5 b=t

so the first term on the right of (179} is always zero. If £, > £ then

0 4g>£0+1
— Tt — ,
Ladl-—l(—f)gfo (Yk) = LqJLf(yk) - { 5; G =£+1
80 I‘i‘f = 0. ‘
Suppose £ = £ and & > £. Then ¢* € £% so by the strictness assumption
(174,175) it follows

Loat-r(— gy Ly(wn) = Lgi L (i) = 0
so I‘;.C"A =0.

Lemma 5.4 Suppose the nonlinear system has strict observability indices £y, ...,
£y, and £ = min{éy,...,&}. Define vector fields q by (159) and symbols T} by
(160). Let § = g(y) be a change of coordinates among those outputs of lowest
observability indez, 1.e.

9y; P
== =67 if £ or £; > £ 180
Byj ' ! ( )

Define g by (187) and I_“;;j by (161) then I‘;;j and I—";;j are related as Christoffel
symbols (162).

The proof of this is similar to that of Lemma 5.2, see [15].

Lemma 5.5 Suppose the nonlinear system (72,78) has strict observability in-
dices £y,...,¢, and £ = min{4y,...,€}. If (72,78) admits an observer form
(182,188) then the T} (€) defined by (160) are functions only of y and define a

flat connection on the output space.

Proof By Lemma 5.6 we know that I‘;;’. =0if & > £Lor £ > £ So all we need
to show is the existence of an observer form for (72,73) implies the existence of
a change of coordinates among those outputs of lowest observability index (180)
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which to transform the I‘Lj to zero for &; = £; = £, = £. But it is clear from the
proof of Lemma 5.3 that if we were to compute the I';’ defined by (160) for a
system in observer form then they are zero.

By Lemma 5.7 the I‘Lj for & = £; = £, = £ transform like Christoffel symbols
under a change of coordinates among those outputs of lowest observability index.
By (180) the change of output coordinates to observer form § = y~!(y) transform
the outputs of lowest observability index among themselves and can be used to
take[‘ to zero for £, = £; = £, = L.

If T'k' (€) defined by (160) are the Christoffel symbols of a flat connection on
the output space then we can solve the partial differential equations (155,156)
to find flat coordinates §. These coordinates are not necessarily the § of the
observer form if it exists. But at least those of lowest observability index are
because of (171). We change notation and denote the flat coordinates by y.

The next stage is to find the next smallest distinct observability index ¢ =
min{4 > £}. We define new symbols

0y = 5 (L(dwe), (20 (~ )g', 8 (1)) (181)

where £, =/ A 2.
It is not hard to see by an argument similar to Lemma 5.7 that I‘”‘ =0if 4

or £; > £'. Moreover if £; = £; = ¢ = £ then the T}/ of (181) are just £/€ times
the I‘;’ of (160). The latter are zero by our choice of flat output coordinates.

For reasons explained below, if the system admits an observer form then I‘”
defined by (181) define a flat connection on the output space. If this is so then we
solve (155,156) for new flat output coordinates §. Because of the above remarks
the change of coordinates will satisfy

ay;
I i =Cort, >0
8y]

We continue on in this fashion unti! we have exhausted the list of observability
indices or found symbols which do not define a flat connection. If the latter does
not happen then the last flat coordinates § are the desired output coordinates
of the observer form. The observer form will exist if (139) is satisfied for r =
L...,4; s=1,...,¢; and (140) holds for r = 2,...,4; 7 =1,...,m

To see why this approach is valid consider a system (72), (73) which can be
transformed into observer form. Using Lemmas 5.7 and 5.8 we can assume that
i = yi for those outputs of lowest observability index & = £. Assuming that
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u = ( we have

% = & Yi = i1
1=z Tl = Tiz — Qe
133 ' iz 1 ; (182)
Eie = fi(€) Tig = — Qe
By comparing these we arrive at
r—1 d
bir = Ty — Z(E)'”_lau (183)
=1
and
L d
10 = -3 (). (184
a=1
We add dummy state variables &, zi, for r = £41,...,# to (182) as follows
v = & Y =z
&i1= &2 Ti] = Tip — Qe
éiz_= & er1+ fi(§) Tie =i 41 — e : (185)
& o1 = & ex2 i g1 = Ti e42
i =0 Zip =0

It is not hard to see using (184) that these are transforms of each other under
(183) and

Cr=1x4 L<r< £, (186)
Hence if the original system (182) can be transformed to observer form and
yi = §; then so can the modified system (185). Moreover for the modified
system the smallest observability index is now £ rather that £ so we can apply
Lemmas 5.7 and 5.8. It is a straightforward calculation to show that the symbols

of the modified system defined by (160) with £ replaced by # are the same as
those given by (181).
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