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ACAUSAL REALIZATION THEORY, PART I; LINEAR
DETERMINISTIC SYSTEMS*

A. J. KRENERY

Abstract. We study acausal linear systems, their controllability and observability properties and the
weighting patterns that they realize. A complete classification is given of all minimal real analytic realizations
of a given weighting pattern and of all minimal autonomous realizations of a stationary weighting pattern.
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1. Introduction. Acausal linear systems theory is concerned with mathematical
entities of the form

(1.1a) %= Ax+ Bu,

(1.1b) Vox(t0)+ V'x(1,) = o,
(1.1¢) y=Cx+ Du,

(1.1d) w=Wx(to) + W'x(t,)

where x(1), v, weR", u(t)eR™ and y(¢)eR”. The matrices A B C D,V v w°
and W' are dimensioned accordingly and A, B, C, D may be bounded measurable
functions of 1. We refer to x(t) as the state, u(r) as the input and y(t) the output at
time ¢, although ¢ may actually represent a spatial parameter. The vector v is called
the boundary input and the vector w the boundary output. We refer to (1.1) as the
acausal system X.

We always assume that (1.1a), (1.1b) is a well-posed problem, i.e., for every boundary
input v and square integrable u(¢) there exists a unique solution x(t). In this case
(1.1) defines a linear mapping also denoted by 3.

(1.2a) 23R"XIXL3"XI[%, fl]_’RMIXLg“[to, 0],
(1.2b) (v, u(t))—(w, y(0)).

We say that such a mapping is the input output map of the acausal system (1.1) or
equivalently that the acausal system (1.1) is a realization of the input output mapping.

In § 2 we discuss situations where such models naturally arise. Of course (1.1) is
a generalization of the usual linear system where V°= W'=] and V'= W°= g, Such
a system is causal because future inputs do not affect past states or outputs. Systems
of the form (1.1) do not necessarily have this property, hence the term acausal. There
are many possible generalizations of (1.1) which are of interest. We shall mention
some of these in § 2, but we shall not discuss them in any great depth.

Section 3 is essentially a review of [1] where systems of the form (1.1) were first
introduced under the name of boundary value linear systems.
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In § 4, we exhibit two other processes closely related to x(¢) but which are causal
in some generalized sense. These processes supply the foundations for the definitions
of controllability and observability given in § 5. Also in this section we begin to relate
controllability and observability to minimality.

The key results of this paper are found in §§6 and 7. The first is a complete
classification of all the minimal real analytic realizations of the mapping

(v=0,u(-))—>y(-)
induced by (1.1). The second is complete classification of all the minimal autonomous
realizations of such maps which are stationary.

Recently Gohberg and Kaashoek [9], [10] have made an excellent study of such
systems. Their work is based on completely different concepts of controllability and
observability. They do not discuss the question of minimality but treat a different

question of irreducibility. At the end of § 5 we give an example that illustrates the
differences between their work and ours.

2. Examples and extensions. Acausal systems naturally arise when the independent
variable ¢ is spatial rather than temporal. For example, consider a static, approximately
horizontal beam, clamped at both ends, which supports a continuously distributed
load. We can view this from a system theoretic point of view where the input u(t) is
the load density and the output y(t) is the deflection of the beam. (y(¢)>0 indicates
downward deflection.) The variable 1 measures length along the beam. The relationship
between input and output is given by
4

dy
a4
where E(t) is the modulus of elasticity and I(t) is the moment of inertia of the cross
section. Clamping at both ends imposes boundary conditions on y(t,), y(t,), y(t,) and
y(t).

This can be put in state space form (1.1) by letting x = (xy, x5, X3, x5) = (y, ¥, J, ¥);
then

(2.1) E(t)I(t

[0 1 0 o] [0
AA_ooxo’ B:o,

0 0 0 0

L0 0 0 0] |1/ EI
C=[1000], D =[0],

(1 0 0 0] [0 0 0 0
po|0 1 oo V,:()ooo'

0 0 0 o) 1 00 0

[0 0 0 0] (001 0 0

A similar example was considered in [2] but with the bending moment as input, which
resulted in a second order system.

The acausal nature of this system is apparent, the load at point s affects the
deflection at every point ¢ along the beam. One goal of the loading might be to force
the beam to assume a desired shape. Such a problem can be cast as a linear quadratic
optimal control problem [2].

The boundary condition (1.1) can be used to force x(t) to be cyclic, x(1,) = x(t,)
by letting V°=—V" and v =0. Similarly if V°= V' and v =0 we obtain an anticyclic
state process x(fy) = —x(f,). Such phenomena cannot be modeled by causal systems.
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If we drive (1.1) by white Gaussian noise process u(t) and an independent
Gaussian boundary value v then we obtain two Gaussian processes x(¢) and y(ty. If
a causal system is so driven, then the state process x(t) is Markov but for most acausal
systems the state process is not Markov.

These stochastic systems are a convenient way of representing stochastic processes.
We study the associated realization theory in the sequel [4] to this paper. Using this
class of models one can formulate and solve various estimation problems for spatially
distributed processes [3], [5], [6].

Even processes where the independent variable ¢ is temporal can have an acausal
character. These are systems which are anticipatory. There is an intelligent controller
who modifies the evolution of the system in order to achieve a desired goal at some
future time. This may be on a fixed time interval or over a moving time interval. Most
messages are of this type. Before composing the message, the author usually has a
fairly clear idea of what the contents should include, and particularly how it should
begin and end. Another example is the tracking of an object whose ultimate destination
is already known.

Causality is a property of the mapping from inputs u(-) to outputs y(- ). Suppose
one is studying a system where the inputs and outputs are not known a priori as is
frequently the case in network theory. If it is impossible to decide a priori whether
the process one wishes to model is causal or not, why restrict a priori to causal models?
Besides (1.1), Luenberger’s descriptor systems can be used to model acausality [12].

There are numerous extensions of the acausal linear system (1.1) which we will
not go into in any depth. A straightforward one is to discretize t or we could let 1, = —©
and/or t, =0, A more substantial generalization is to allow ¢ to be a multidimensional
variable. Such systems arise in distributed parameter control, image processing, and
seismic data processing. It is somewhat surprising considering all the effort that has
gone into these areas that one-dimensional acausal systems have not received more
study.

Throughout this paper we consider only well-posed systems. This rules out many
interesting problems. For example in the stochastic setting, we rule out a pinned Weiner
process ( Brownian Bridge). Generally we restrict our attention to two point boundary
value processes where the solution x(t) of (1.1a) is partially constrained at only two
times f,, t, as in (1.1b). But multipoint constrained problems will arise even in this
paper. They have wide applicability in many other contexts.

3. Basic facts. Let ®(t, s) be n x n matrix valued function satisfying
d
(3.1a) aq)(t,s):A(t)CD(t,s),

(3.1b) d(t,t)=L

Since A(¢) is assumed to be bounded and measurable, the existence, uniqueness and
absolute continuity of ®(t, s) follows from standard theorems on ODE’s.
The boundary value problem (1.1a), (1.1¢) is well posed iff the matrix

(3.2) F=V'+V'®(ty, to)

is invertible. If this is satisfied then the solution to (1.1a), (1.1b) is given by

(3.3) x(1) = (1, tO)F"v+jtl G(t, 5)B(s)u(s) ds.

to
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Green’s matrix G(t, s) is given by splicing together two matrix valued functions

Gt,s) ift>s
(3.4a) G(I’S)Z{Glgt,’s)) ifs>t’
along the line t = s, where
(3.4b) G°(t,s)=D(t, 1) F 'V°D(1,, 5),
(3.4¢) G'(1,5)=—D(t, L)) F'V'®(1,, 5) = B(t, 1) F YV = D)DP(,, 5).
The output y(t) is given by

(3.5) y(£) = C()P(y, to)Flv+J‘ll W(t, s)u(s) ds

Yy
where the weighting pattern W(1, s) is given by
(3.6) W(t, s)=C(1)G(t,s)B(s)+ D(t)8(t —s).
The system (1.1) defines a linear mapping =

E:R"Xl X L;nXl[tO’ tl]_)[Rnxl X LIZ,Xl[tO) tl]s

()= (0 300

The maps X,,, £,, and Z,, are of finite rank since they map from and/or to finite-
dimensional vector spaces. The most important part of £ is the infinite rank part 3,,
which maps between the function spaces. The usefulness of the model (1.1) depends
ultimately on the fact that it describes an infinite rank mapping in a very concise and
tractable fashion.

Suppose we have an integral operator 2,

S0 L3 g, 1] L[ 1, 1,],
2ot u()*")’()

where

y(1) = J' W(t, s)u(s) ds.

The system (1.1) is said to be a realization of X, (or equivalently the kernel W(4, s))
if W(1, s) is the weighting pattern of (1.1) as given by (3.6). Realization theory (in the
deterministic sense) is concerned with the existence and classification of the realizations
of W(t, s) and related questions. As an example of such a question consider the adjoint
map X* of X

(3.7a) SRR X LY to, 1] >R X< LY ™[ 1o, 1,1,
(3.7b) ¥ (g u() (& v(1))
defined by the equation

(3.8) §u+J‘t‘ v(1)u(t) dt=§w+J";L(t)y(t) dt
ty 0

for all (v, u(1)) and ({, n(1)). An obvious question is whether £* can be realized by
an acausal linear system. As was shown in [1] the following system (given in adjoint
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form) does the job. The functions A(¢), w(¢) and »(t) are the state, input and output,
respectively, { denotes the boundary input and ¢ the boundary output.

(3.9a) A=—AA—puC,
(3.9b) At )M+ A ()M =¢,
(3.9¢) v=AB+uD,
(3.9d) E=A(ty) N°+A(t,)N".

The boundary matrices are fixed by
v vi[-M° -N° 0 -1
(3.10) . . r|= .
we w'il M N I o
It is convenient to make a change of coordinates in the space of boundary input
values v so that

(3.11) F=V'+Vd(s,, ty) =L

If V" and V' satisfy this, then the boundary conditions are in standard form and X is
a standard realization of W(t, s). Causal linear systems where V°=1T and V'=0 have
boundary conditions in standard form.

Frequently W° and W' are not explicitly given, but the dual systems can still be
determined if one assumes that the dual boundary conditions (3.9¢) satisfy the dual
of (3.11), ie.,

(3.12) Oy, t) MO+ M' =L

By equating the upper left blocks of (3.10) and (3.12) we see that
(3.13a) M°=V',

(3.13b) M = d(1y, 1) VODP(to, 1))

These conditions (3.13) are called the standard dual boundary conditions.

Notice in the causal case when V°=1 and V'=0, the standard dual boundary
conditions are M®=0 and M'= I. Systems with such boundary conditions are said to
be anticausal, because under time reversal they become causal.

Having computed the standard dual boundary conditions we can in the same way
compute the standard boundary output equation (1.1d). We assume that

(3.14) WO (1, 1)+ W' =1,
then this and the lower left block of (3.10) imply that
(3.15a) Wo=d(1,, 1,)(V°—1),
(3.15b) Wl=T1+d(1,, t,) V'

This normalization has been chosen so that for causal systems W°=0and W'=I, and
the boundary output is w= x(¢,). Q

It is a simple exercise to verify that for the standard boundary equations (1.1b),
(1.1d) the matrix

o
(3.16) we W'
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is nonsingular. This means that the boundary inputs and outputs are linearly indepen-
dent variables. A standard acausal system (1.1) is one where the coefficients of the
boundary equations (1.1b), (1.1d) satisfy the normalizations (3.11) and (3.14).

As we have seen, (1.1) defines a linear mapping

(3.17) zzzzu(t)»»y(t):J "Wt s)u(s) ds
where
(3.18) W(t, s)=C(t)G(t, s)B(s)+ D(t)8(t—s).

A kernel W(1, s) is called proper if it is the sum of a bounded measurable term and a
Dirac delta term as is (3.18). It is called strictly proper if the second term is missing,
e.g., D(t)=0. The next theorem is trivial but occasionally useful.

THEOREM 3.1. A strictly proper p x m kernel W(t, s) can be realized by an acausal
linear system (1.1) iff there exists bounded measurable px n and nx m matrices C(t)
and B(s) and n X n matrices V® and V' such that

(3.19) Vo+ Vi=1,

C(t)V°B(s), 1>,
—C(1)V'B(s), t<s.

Proof. If C(1), B(s), V’and V' exist then W(q, s) is realized by (1.1) with A=0.

On the other hand, if W(¢, s) is realized by any acausal system (1.1) then the time
dependent change of state coordinates given by X =<I>(t9, t)x transforms (1.1) into an
acausal system 3 where A=0, C(t) = C(6)®(1, t,) and B(s)=®(t;, s)B(s). The trans-
formed boundary conditions YO: V®and V'= V'®(s,, t,) are in standard form. It is
straightforward to verify that % also realizes Wi(t s). Q.E.D.

(3.20) ‘ W(t,s)={

4. The inward and outward boundary value processes. In general a system of the
form (1.1) defines an acausal mapping from u(-) to y(-). The output y(t) at time ¢
depends on the input u(s) at all times s € [1,, 1], not just those s € [ 1, t] as for causal
systems. A natural question to ask is whether there is any causal way of looking at (1.1).

It turns out that a related question is how to view the boundary input condition
(1.1¢) and the boundary output equation (1.1d). For causal systems the boundary input
condition is just x(t,) = v and the boundary output equation is w = x(t,). The initial
value v can be thought of as the medium which transmits the effects of past controls
u(s), s€(—w, t,) to the state x(z) and output y(¢) for t€[to, t,]. The state x(¢) and
output y(t) can also be determined if w and u(s), s€ [t, t,] are known. But this is not
really an anticausal representation because w depends on v and u(s) for all se[¢t,, t,].

We now present a similar interpretation of v and w in the acausal case. We need
to introduce moving boundary conditions. Suppose t, = 70= 7, =1, then define four
matrices

(4.12) K= (7o, 1) V'O (10, 7o),
(4.1b) CK'=®(1, 1) V(4 7)),
(4.1¢) L°=®(7y, t,) WD (1, 79),
(4.1d) L'=®(7, 1) W'(t,, 1y).

These matrices are functions of 7, and 7, but for notational simplicity we suppress the
arguments. We shall assume that v°, V', W° and W' are in standard form on the
interval [fo, t,], then it is easy to see that K°, K', L° and L' are in standard form on
the interval {7, 7]
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Let x(t) be the solution of (1.1) for some u(t) and v. We define the inward
boundary process k(7,, r,) by

(4.2) k(7o, 7)) = Kox(To)+le(Tl).

There are two important points to be made about this process. A simple calculation
shows that

(4.3) k(7o, 70) = (o, 1) v+ (J + J) G(ro, 5) B(s)u(s) ds.

We can interpret this as causality in some generalized sense for the mapping u(-)—
k(-, -). Think of the pair {7, 7,} as being the present; the past is [ £, t,)\[7,, 7,] and
the future is (7, 7,). Then (4.3) says that the present value of k(7o, 7\) does not depend
on future values of the input u(7) for r€(7,, 1,).

The second point is that given the present value k(7,, 7,) and future values u(r),
T€ (79, T,) We can compute future values x(7) and y(7) for 7€ (=, 7,). This is because
the boundary value problem

(4.4a) X = Ax+ Bu, tefr, 1],
(4.4b) K°x(15)+ K'x(7) =k,
is well posed, and its solution for given u and v agrees with that of (1.1) on [7g, 7,]
provided k = k(7,, 7,) given by (4.3).
Note that k(1,, t,)=v and so v can be thought of as the medium that transmits

the effects of u(s) for sg[1,, t,] to x(t) and y(¢) for L€ty t,].
If we consider the process I(79, 7,) defined by

(4.5) I(7,, Tl):LOx(TO)+L1x(Tl)a
then
(4.6) W7o, 1) =D(1,, 70) k{7, 7'1)+J’Tl (1, s)B(s)u(s) ds.

From knowledge of I(7,, r,) and u(t) for tefty, t,]\(ro, 7,) we can reconstruct x(t)
for tet,, t,)\(7y, 7,) as the solution of the well-posed four point boundary value
problem

(4.7a) X = Ax+ Bu, tefty, t,1\(70, 7)),
(4.7b) VOx(to)+ Vix(t,) = o,
(4.7¢) LOX(TO) + le(Tl) =, 7).

However the map u(-)— (-, -} is not causal in any generalized sense because I(7,, 7,)
depends on u(s) for all se [, 1]

We have just seen that the inward boundary value process of an acausal system
plays a role similar to that of the forward moving state of a causal system. For acausal
systems there is also an outward boundary value process which plays the same role
as the future jump x(t,) —®(1,, 70)x(7,) of the state of a causal process caused by u(r)
differing from 0 on [, t].

Given u(7) for €[, 7,], define z(7) and j(7,, 7,) by

(4.8a) Z=Az+ By,
(4.8b) z(7) =0,
(4.8¢) J(7, 1) = 2(1,).
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The outward boundary value process is j(r, 7,) and has two important properties
similar to those of k(r,, r,). The first is that

T

j(70, 7)) =J' O(7y, s)B(s)u(s) ds,
so if we think of {7,, 7.} as the present, [t,, ,]\[ 7o, 7,] as the past and (7, 7,) as the
future, then the mapping u(-)~j(7,, ,) is anticausal. In other words Jj(7o, 1) does
not depend on past values of u(r).

The second point is that given the present value J(70, 7,) and past values u(t),
te[to, ty]\[7o, 7] we can compute past values x(r) and y(t) for t €[y, t,\[ 7o, 71]- This
is because the solution x(t) of the well-posed four point boundary value problem
(4.7a}, (4.7b), and

(4.7d) -&(7, To)x('TO)"'x(Tl):j

agrees with the solution of (1.1) if j =j(7,, 7,) given by (4.8).

We have chosen the letter j for the outward boundary value process because it
represents the jump that the state experiences between times 7, and 7, because of the
control u(t)#0, te[z, 7,].

This suggests another viewpoint on the boundary value v. It is possible that the
process x(t) lies on some compactified version of the real line and v is the jump that
the state experiences from time ¢, through infinity to time ¢, because of the effects of
the control u(t) for r£[t, t,].

5. Controllability and observability. Suppose the map 2:(v, u(-))—(w,y(+))
arises from the state space model (1.1); then it factors into a mapping (v, u(-))—>x(-)
followed by a mapping x(- )~ (w, y(-)). It is natural that realization theory be con-
cerned with these factor mappings. The critical issues for the minimality of a realization
. are whether the first factor is onto and the second is one to one in some sense. In
the systems literature this first property is called controllability and the second is called
observability. For linear time invariant causal systems any two reasonable definitions
of controllability are equivalent. The same holds for any two reasonable definitions
of observability. But for time varying and/or nonlinear causal systems there are several
nonequivalent definitions whose utility varies with the problem of the moment. There-
fore it should come as no surprise that there are at least two useful definitions of both
controllability and observability for acausal systems.

The first two definitions relate to the inward boundary value process k(7,, 7).

DeriniTION. The system (1.1) is controllable off [, 7,] if the map

(5.1) {u(0): telto, t\[7o, 7y} k(7o, 7y) = (J

1,

+ J ) G4, 5) B(s)u(s) ds,
defined by (4.3) (or equivalently (4.2)) where v =0, is onto.
DeriNiTION. The system (1.1) is observable on [, 7,] if the map

(5.2) k—{y(7) = C®(7, T)k: 7€ [0, 1,1},

defined for 7€ [7,, 7] by (4.4a), (4.4b) and (1.1¢), is 1-1. The control u(t) is assumed
to be zero on [7,, 7,]. )
As mentioned before, in a general sense controllability and observability are the
two halves of minimality. The next result shows that we are on the right track.
THeOREM 5.1. Let the system (1.1) be a realization of the weighting pattern W (i, s).
If there exists 7, and T, where ty< 7,<7,<t, such that (1.1) is controllable off [ 1o, 7,]
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and observable on [1,, 7,], then (1.1) is minimal, i.e., of minimal state dimension among
all realizations of W(t, s). Moreover, if 3 is any other minimal realization of W({, s)
then S is also controllable off and observable on [7,, T,].

We defer the proof of this theorem for the moment. To check controllability off
[ 70, 7:] and observability on [7,, 7,] we need to compute the Gramians

(5.3) @Yo, T = (j "4 [) G(7, 5)B(s)B*(5)G* (70, 5) ds,

(5.4) Ol 1o, 1] = J d*(t, 7o) CH() C(1)D(¢, 7o) dt
where * denotes transpose. The following is a standard exercise in linear systems
theory; see, for example, Desoer [11] or Brockett {17].
PROPOSITION 5.2. The system (1.1) is controllable off [ 7o, 7,] iff €17, 7.[ is positive
definite. The system (1.1) is observable on [7,, 7] iff O, 7,.] is positive definite.
Remark. Of 1y, 7,] is the observability Gramian of the causal system with the same
A and C matrices. Therefore observability on is the same as causal observability.
Proof of Theorem 5.1. Let X and 3 be realizations of W(t, s). (2 is given by (1.1)
and $ by a similar acausal system with tildes, i.e., X, A, etc.) Since X is controllable
off [y, 7], €170, 7i[ is invertible. Given keR" define a control u(t; k) with support
off (7o, 7,) (i.e., with support in [ 1o, t,]\(7o, 71)) by

u(t; k) = B*()G*(7o, 1)( €17, i) 'k
Under (5.1)
u(t; k)y—k(+°, r) =k

If we drive S and £ with u(t; k) (=i(1; k) and v =0, §=0, then we obtain k(7o, 7.)
and K(7,, 7,). We have the commuting diagram (Fig. 5.1),which defines a linear mapping

T:k(ro, 7)) k(70, 71).

The outputs ¥(t) and y(¢) of £ and 3 corresponding to u(t; k) must agree. Since
the support of u(t; k) is off (7, ), the output y(r) on [7o, 7] is given by (5.2) as a
function of k(7,, 7,). A similar expression holds for y(7) for €[, 7,]- Therefore we
have another commuting diagram (Fig. 5.2). From this we see that the kernel of T is
contained in the kernel of the upper right mapping of Fig. 5.2 which is given by (5.2).
But this latter kernel is 0 since 3 is observable on [ 7o, 7.}.

This shows that the state dimension of 3 must be greater than or equal to that of
S Hence 3 is minimal. If the dimensions are equal, then T is a linear isomorphism.
From this it follows that 3 is controllable off and observable on {7, 7;}. Q.E.D.

We note for future reference that if ¥ is controllable off [ 7o, 7,] but not observable
on [ 7, 7], the map T is well defined but not necessarily 1-1. Its kernel is contained
in the kernel of O[1,, 7,]. In particular, for all te[7,, 7]

(5.5) C()D(1, 1) T = C(OHD(¢, 7).

There is an analogous development based on the outward boundary value process
JTo, 1)
DerINITION. The system (1.1) is controllable on [7,, 7,] if the map

(5.6) {u(r): 7€ 10, ] (70 1) = J ®(r,, 5)B(s)i(s) ds

To
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as defined by the system (4.8) is onto.
DEeFINITION. The system (1.2} is observable off [7,, 7,] if the map defined by
(4.7a), (4.7b), (4.7d)

(5.7) Jj(7o, 71)""{}’(0 =C(1)G(1, Tl)j(”'o, ) tety, 1\(7, 7)}

is one to one. The control is restricted to be zero off (74, 7).
The associated Gramians are '

T

(5.8a) B0, 7] = J " @(r,, 5)B(s)B*(s)®*(r;, 5) ds,

k)

(5.8b) Oro, 71 = (J + J) G*(1, 1) C*)C()G(1, ) dt.

m

PROPOSITION 5.3. The system (1.1) is controllable on {7y, 7,1 iff €[ 7, 71] is positive
definite. The system (1.1) is observable off 7o, 7] iff O)7o, 7:[ is positive definite.

Remark. C[ty, 7,] is the controllability Gramian of the causal system with the
same A and B matrices. Therefore controllability on is just causal controllability.

TuEOREM 5.4. Let the system (1.1) be a realization of the weighing pattern W(t, 5).
If there exists a 1o and 1, where to<7,<T7, <1, such that the system is controllable on
{79, 1] and observable off [7,, T,] then (1.1) is minimal. Moreover if S is any other
minimal realization of W(t, s) then 3 is also controllable on and observable off [ 7o, 7,].

Proof. 1t is essentially the same as the proof of Theorem 5.1. Let £ and S be two
realizations of W(¢, 5). Since X is controllable on [ 74, 7,1, €[ 70, 7,] is invertible. Given
j€eR", define a control u(z;j) with support in {7, 7,] by

u(t; j)=B*()®*(z;, )(€[70, 1) 'js
then under (5.6)
jroult; j) = jlre, 1) =J.
Let j{, 1) be the value of the outward boundary value process of b3 corresponding

to u(t;j). Then we have the commuting diagram (Fig. 5.3). which defines the linear
mapping

S: j(70, T1) > j (70, T1)-

The outputs y(t) and y(¢) of = and 3 must agree. Since the support of u(r;j) is
on [ 7y, 7,], the outputs off (7, 7;) are functions (5.7) of j(7, 7,), j~(7'0, 7,). Therefore,
we have a second commuting diagram (Fig. 5.4). The kernel of S is contained in the
kernel of the upper right mapping of Fig. 5.4, given by (5.6). Since X is observable off
[ 70, 7], the latter is zero. Hence S is one to one. The state dimension of 3 must be
greater than or equal to that of 2. Hence X is minimal. If the dimensions are equal,
then S is an isomorphism. From this it follows that 3 is controllable on and observable
off [y, 7,]. Q.E.D.

We note for future reference that if 2 is not controllable on [7,, 7,] then the map
S can be defined on thie range of the map (5.6) which is the range of €[ 7y, 7]. If X

is observable off [, 7,] then on this domain S is 1-1 by the above argument. In
particular, for all se{r,, 7]

(5.9) S®(r,, s)B(s)=d(r,, s)B(s).

In general the concepts of controliability on and controllability off are independent,
i.e., we can construct an example that is one but not the other. A system is real analytic
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id k(7o, 7))
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id J(70, 7y)
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s
\ ]»'( Tos Ty )
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j(To, Tl)\
IS ()= y(0): 1ety, (,\(7o, 7)}
Jf("'o’ 71)/

Fi1G. 5.4

j — {u(r; j): reln, ik

if the matrices A, B, C and D are real analytic functions of ¢. Of course this includes
autonomous systems where A, B, C, and D are constant. For real analytic systems,
controllability (observability) on implies controllability (observability) off but they are
not equivalent.

PrROPOSITION 5.5. Suppose (1.1) is a real analytic system and t,< 7,< 7, <1,.

(a) If (1.1) is controllable (observable) off some [1,, 7,] then it is controllable
(observable) off every [ 14, 7,].

(b) If (1.1) is controllable (observable) on some [r,, 7] then it is controllable
(observable) on every [, 7,].

(c) If (1.1) is controllable (observable) on some [7,, 7,] then it is controllable
(observable) off every {r,, 7,].

Proof. (a) By definition, the Gramian €]z, 7,[ is a real analytic, nonnegative
definite matrix valued function of 7, and 7,. Also it is monotone nonincreasing in
[70, 7], 1€, if [0, 0,127, 7,] then €loy, o[ = €)7o, 7i[. Suppose for some 7, and
Ti, bo<To<7; <, the Gramian €], 7[ is not positive definite then it is also not
positive definite for all o, and o, such that {0y, 0,1 2[ 7, 7,]. For some open set of o
and oy, the determinant of €]o,, o[ is zero. Real analyticity implies it is zero
everywhere.

The other parts of (a) and (b) are proved in a similar fashion. (¢) Suppose (1.1)
is controllable on some [ 7, 7,]; then by (b) it is controllable on every [ 7o, 7). Suppose
it is not controllable off some [,, 7,]. Then we can find 0% A € R"" such that

A(€17° ' Da*=0.
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€17°, 7'[ is the sum of two nonnegative definite matrices so A must annihilate each:

0=A J’T“ G 7o, s)B(s)B*(s)G*(7,, s) dsA™

= AD (7o, 1,) VOD( 10, 1,) €[ 1o, 1,]1D* (1o, 1,) VO*D* (74, 1) *.
Since €[ (o, 7o] is positive definite and ®(1,, t,) is invertible we observe that
0=AP(r,, t,) V°.
From the other integral of €]7°, r'[ we derive in a similar fashion that
0=AD(7y, 1) V'd(1,, 1,).

But this implies A =0 for V'+ V'®d(t,, 1,) =L

The other part of (c) is proved similarly. Q.E.D.

While Theorems 5.1 and 5.4 give sufficient conditions for minimality, these condi-
tions are not necessary, as is shown by the following example, similar to one found
in [10].

Example 5.6. Let [ty, t,]=[0, 1]. Consider the acausal system

xlzo’ x2(0)+x1(1)—x2(1):vh
Xy = U, x5(0) = v,

Y =X

It is a simple exercise to verify that this system is controllable and observable off
every [7o, 7] but it is not controllable nor observable on any [ 7,, 7,]. The Gramians are

1—7,+ 0 0
€1, = T, <€[T°,r‘]=| ,
To To 0 -1
L B LA T POPL) I O"
=1 1-7+7 0 0

By studying this system we get an understanding of what controllability and
observability off [ 7o, 7,] really mean. The boundary conditions allow us to control x,
in an indirect fashion. For example, to achieve a desired x(7), 0<7<1, we use the
control on [0, 7] to fix x,(7). We use the control on [ 7, 1]to fix x,(1). The first boundary
condition and dynamics imply that x,(7) = x,(1).

This indirect controllability through the boundary conditions is possible in acausal
systems that are controllable off every [7o, 7,]. Given any 7€ (4, t,) and any x°cR
there exists a u(-) such that x(7) = x°. The controllability off hypothesis implies that
the map u(-) - k(7, 7) is onto, and it follows immediately from (4.1) and (4.2) that
x(t)=k(7, 7).

The boundary conditions also allow us to detect jumps or breaks in both state
coordinate trajectories even though we can only observe x,. For example, if for some
unknown reason x, jumps at 7€(0,1) (x,(7") —x,(77) =},), then this affects x,(r)
through the first boundary condition and we can detect it through y(¢).

This indirect observability through the boundary conditions is possible in any
system that is observable oft every [7o, 7,]. Given any 7€(t,t,) and jump j=
x(7")=x(77), the mapping j > y(-) is one to one. Therefore if we know the time 7 of
the jump, we can detect it.



ACAUSAL REALIZATIONS 511

The weighting pattern of this system is W(¢, s)=1 for all ¢, se[t, ¢;]. From
Theorem 3.1 it can be seen that this is a minimal realization of W(¢, s)=1. For if X
is a one-dimensional realization then there exists 1 x 1 matrices C(z), B(s), V° and
V! such that

Vet vi=1
and

1=C(t)V°B(s), t>s

1=-C(1)V'B(s), t<s.

The latter equations imply C(t) and B(s) are constant. If one is subtracted from the
other we have

0=C(V°+V)B=CB,
so either C or B is zero, a contradiction.

6. Minimal real analytic realizations. In the last section we gave sufficient condi-
tions for minimality. In this one we give necessary and sufficient conditions for a real
analytic realization to be minimal within the class of real analytic realizations. We
describe how a real analytic realization can be reduced to a minimal real analytic
realization, and how minimal real analytic realizations of the same weighting pattern
can possibly differ. It may come as a bit of a surprise to readers familiar with causal
systems theory that two minimal real analytic realizations can differ by more than a
change of coordinates in the state space.

THEOREM 6.1. Suppose 2., given by (1.1), is a standard real analytic realization of
W(t,s5). Z is a minimal real analytic realization if and only if £ is controllable and
observable off every [ 1y, 7,] and

(6.1) Kernel O[t,, 1,] = Range ®(t,, £,)C[to, 1, ]D*(¢,, ).

Any real analytic realization can be reduced to a minimal real analytic realization.
If £ and X are two standard minimal real analytic realizations of the same W({, s),
then there exists a real analytic invertible n X n matrix valued function R(¢) such that

(6.2a) A(t)= R())A(HR™ (1) + R(1)R™'(1),

(6.2b) B(1)=R(1)B(1),

(6.2¢) C(1)=C(OR™ (1),

(6.2d) D(1)=D(1),

(6.2¢) R(1)®(1, s) =d(1, s)R(s),

and

(6.3a) Olta, ,1(V° = R (1) VOR(10)) D[ o, 1,1 € 10, 1,1 =0,
(6.3b) Ol ty, ,](V' = R (1) VIR(1,)) €[ to, 1,1 =0.

On the other hand, if £ is a minimal real analytic realization of W(¢, s) and pN
satisfies (6.2) and (6.3) for some real analytic invertible R(t), then X is also a minimal
real analytic realization of W(¢, s).
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Remarks. Condition (6.1) means that any state which is unobservable on [1,, t,]
must be controllable on [1,, 1,]. Equations (6.2) are the same as those that arise from
a time varying change of coordinates £ = R(t)x, but this is not the whole story because
of (6.3). If X is both controllable and observable on [ 1o, t,] then (6.3) becomes

VO=R(t,) V°R (1), Vi=R(t,) V'R '(1,).

Then (6.2) and (6.3) represent a time varying change of state coordinates x = R(t)x
and a corresponding change of coordinates in the space of boundary inputs, 5 = R(t,)v,
so that ¥ is standard, V°+ V‘&)(t,, to)=1I Since % is standard, (6.3a) and (6.3b)
are equivalent.

Proof. Suppose = and ¥ are standard real and analytic realizations of W(t, s).
Clearly D(t) = D(t). For simplicity henceforth we assume that D(¢) =0. Suppose for
some 7, and 7, the system X is controllable and observable off [ 7o, 1] and (6.1) is
satisfied.

It is convenient to make a time varying change of state coordinate x,..(t)=
D(ty, t)x,4(?) so that in these new coordinates A(t) =0. We make a similar change of
coordinates on S so that A(t) =0. Then ®(t, s) = I, d(4, sy=1I and

(6.4a) W(1,s)=C()V°B(s)=C() V°B(s) ift>s,
(6.4b) W(t, s)=CUNV°-D)B(s)=C(t)(V°~D)B(s) ift<s.

By real analyticity we conclude that these formulas must hold for all ¢ and 5 SO
(6.5) C(1)B(s)= C(1)B(s).

Relative to the controllability on and observability on Gramians 4[1,, t,] and
O[t, 1,1, there is a nested family of subspaces of the state space

R" = Range {6[1,, t,]) + Kernel (Ol 1, 1,
2 Range (€[, t,])
=2 Range (€[ 1, t,]) N Kernel (O[ ¢, 1,]) 20.
We can choose coordinates x = (x,, x,, X3, x4), which respect this flag, i.e.,
Range €[1, £,]1N Kernel O[1,, 1,]={x: x;,=0,i=1, 2,3},
Range €[y, 1] ={x: x,=0,i=1, 2},
Range €[ t,, t,]+ Kernel O[1,, t,]={x: x, =0}.

This is essentially the Kalman 4 part decomposition of the state space; see Kalman
[16] or Desoer [11, p. 187] for more details.

The x, and x; coordinates are observable and the x, and x, coordinates are
uncontrollable on [1,, f,]. We make the same change of coordinates in the space of
boundary inputs v to ensure that V°+ V=1,

Relative to this partition of x we have that

(6.6a) B*(s)=(0 0 B3(s) BX(s)),
(6.6b) C(1)=(C\(r) 0 Cy(1) 0).

Let d; be the dimension of x;; then d, +d,+d;+d,= n. Condition (6.1) ensures
that d, =0.
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We make a similar decomposition of the state space of S, X=(F, %, %y, %) of
dimensions d,+d,+ d,+ d, = n. Of course d, need not be zero.
Relative to this partition of X we have

(6.7a) B*(s)=(0 0 Bi(s) Bi(s)),
(6.7b) C(ry=(C,(1) 0 C5(1) 0).
From (6.5), (6.6) and (6.7) we see that

(6.8) C5(1)Bs(s) = C5(1) Bs(s).

We can consider (6.8) as the weighting pattern of a causal system which can be realized
on eitker x, or X, space. Both these realizations are minimal because the x; and X
coordinates are both controllable and observable on [¢,, t,]. Hence d; = 33.

Now consider the map T: k(7, 7,)— IZ( 7o, T1) constructed in the proof of Theorem
5.1. Since X is controllable off [7,, 7,], T is well defined but it need not be one to one.
Restricted to the range of O 1y, 7,], it is one to one. The ranks of O[ 7y, 1] and @[«ro, 7]
are d,+d, and d,+d,, respectively. The counting diagram (Fig. 5.2) implies that
di+d,=d, + d Since dy = d3 this implies that d, = d1

Next consider the map S:j(7, 71)»—>]('ro, 7,) of Theorem 5.4. This is not defined
for all j(7o, 7;) but only those in the range of €[7,, 7,]. On this domain it is one to
one. The ranks of 4[7,, 7,] and ‘6[70, 7,] are d3+d4 and d3+d4, respectlvely The
commuting diagram (Fig. 5.4) 1mphes that d;+d, = d3+d4 and hence d,= d4

We have shown that d, Sd, fori=1,2,3,4s0n=x and hence X is minimal.

Suppose Z{¢, 5) is any standard real analytic realization of W(t, s); we now show
that = can be reduced to obtain a lower-dimensional realization of W (i, 5s) which is
controllable and observable off every {7, 7,] and such that (6.1) is satisfied. In this
manner we see that if a realization is minimal it is controllable and observable off
every {70, 7], and every state unobservable on [ 7y, 7] is controllable on [, 7].

We assume that we have made the preliminary change of state coordinates so that
A(t)=0. Suppose X is controllable and observable off every [7,, 7,]. We decompose
the state space relative to the Gramians €[, t,] and O[ ¢, t,] as above.

The x, coordinate is irrelevant to the weighting pattern of the system. From (6.5)
we have that

Y Y GV 3Bi(s) ift>5,

i=13j=34

=¥ ¥ C{)ViB(s) ift<s.

i=1,3 j=3,4

Wi(t s)=

Therefore we can delete x, and the second boundary condition. The new system satisfies
(6.1) so we obtain a new realization of W(¢, s), of lower dimension, which is minimal
among real analytic realizations.

Suppose X is not controllable or not observable off every [, 7,]; then we can
reduce it to one that is. We decompose the state space into 4 parts relative to Gramians
€7, Tol and O]7y, 7o[ for any t,< 7o< 7, <t,. We obtain a flag of subspaces

R" 2 Range (€17, 7,[) + Kernel (O], 7,[)
2 Range (€7, 1i[) -~
2 Range (€], 7,{) " Kernel (O], 7,{) 20.

As before we choose coordinates x = (x,, x,, X3, x4) which respect this flag and we
make the same change of coordinates in the space of boundary values v to keep the
system in standard form.
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From the choice of coordinates

0

. 0
G(t, 5)B(s)=V'B(s) = . where i=0ifr>sand i=1if t<s,

and
CG(,s)=C(t)Vi=[x 0 = 0] where i=0ifr>sandi=1ifr<s
Since V°+ V' =T we obtain

B(s) 0
, | Bx(s) |0
(6.9a) B(s)= By(s)| | « |
B,(s) *
(6.9b) CO) =[CUOCNC(6)Cy(1)]=[* 0 = 0],

ViaBs(s)"‘ Vi4B4(S) 0

; V5:By(s)+ Vi,B 0
(6.9¢) VB(s)=| ' ® 5(5) 2 J(s)| _ ’
. ViiBy(s)+ V3aBa(s) *

ViBy(s)+ ViBy(s) *
COV'=[CUNVii+ Ci() Vi Cl(1) Vig+ Cy(1) Vi
CUD Vi + Ci(1) Vi Cl0) Vig+ C(1) Viy]
=[x 0 = 0].
We can calculate W(1, s) from (6.9a), (6.9d) as
COVEBy(s)+ C()V3By(s), 1>,
—C,(t)V}3B3(s)—C3(t)V;3B3(s), t<s

(6.9d)

(6.10a) W(t, s) :{

or from (6.9b), (6.9¢) as
Cy(1) V(3)3BJ(S)+C3(t) V34Ba(s), >,

(6.10b) W(t, s) :{ .
=C5(1) Vi3 B5(s) ~ Cy(1) VisBy(s), t<s.

Equation (6.10a) shows that the x5 and x, coordinates are unnecessary to realize
W(t, 5), so we delete them and the corresponding boundary conditions to obtain a
new system which is observable off every [, 7). From the first component of (6.9¢)
we see that Vi;B;(s) =0 so we can delete the x; coordinate and realize W(t, s) by

(6.11a) X3 = Bju,
(6.11b) V(3)3x3(t0) + V313x3(11) = U,
(6.11¢) y=GCsx;.

This realization is controllable and observable off every [ 7y, 7/]. As previously
seen, such realizations can be further reduced so that (6.1) holds, thereby obtaining a
minimal real analytic realization.

Next we study the relationship between minimal real analytic realizations.
Let  and S be two standard minimal real analytic realizations of W(t, s). Hence they
are controliable and observable off every [7o, 7,] and (6.1) is satisfied. We transform
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state coordinates on X and 3 as in the first part of the proof so that A(t)= /i(t) =0
and x= (x), X3, X4), X =(X;, X3, X;). Because they are minimal d;=d,, i=1,3,4 and
dj_ = dz =0.

The decomposition of the state space induces a similar decomposition of the
b?urldafy value processes, k= (kla k3’ k4)a k= (kl’ k3’ k4)a .’ = (jl’j37j4) and .] =
(J1s J3s Ja)- We con§ider the maps T and S in more detail. If k € kernel O[7,, 7,] then
T(k) =k e kernel €l 1y, 7], so k= Tk is given by

kl Tll Tl3 0 kl
{6.12) kyl=1T;, T:» O ks |
ks Ty Ty Ta ks
By the commuting diagram (Fig. 5.2) the upper left 2x 2 block of T is invertible.

On the other hand S is only defined on the range of C{7,, ] G.e. j=1(0, j3,ja)),

but it is one to one. So j = S(0, j3, ji) is given by
]‘:1 0 S5 Sw\/0
(6.13) J3]=10 Su Ssa ll Js

Ja 0 Siz Sasf \Js

where the matrix is of rank d;+d,.
From (5.5) and (5.9) we have

(6.14a) C(y=C(T,

(6.14b) B(s)=SB(s),

so (6.5) becomes

(6.15) C(1)TB(s) = C(1)SB(s).

If we multiply by C*(1) and B*(s) and integrate we obtain

(6.16) Ol 1o, LT —S) €l t, 1,]=0.

This implies that T, =S, for i=1,3 and j=3,4. We define an nxn matrix R by
T, Ts ©

(6.17) R=|T;y T3 O
Tai Siz Sua

Since S,3= T,,=0 and S;;,= T5, =0, S,y must be invertible for S to be of rank d,+d..
The upper left 2x2 block of R is from T, hence is invertible. This shows that R is
invertible. Since R agrees with T in rows indexed by 1 and 3, from (6.7b) and (6.14a)
we see that

(6.18a) c(t)=C(nHR

Since R agrees with S in columns indexed by 3 and 4, from (6.7a) and (6.14b} we see
that

(6.18b) B(1) = RB(1).

From (6.4a) and (6.18), we obtain 7
C(t)V°B(s)=C(t)R ' V°RB(s).

We multiply on both sides and integrate to obtain

(6.19) Ol ty, ,](VO=R'V°R)Cl to, 1,]=0.
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Let d(t, s) and ®(1, s) denote the fundamental solutions for £ and $ in their
original state coordinates. Define

(6.20) R(1)=®(t, o) RO(1,, 1);

then it is straightforward but tedious to verify (6.2) and (6.3) from (6.18), (6.19) and
(6.20).

On the other hand suppose X and X are two systems related by (6.2) and (6.3).
Then if ¢t > s the weighting pattern of X is given by

W(i, s)= C(0)®(t, 1,) V°D(1,, s) B(s)
= C(1)D(1, to) V°D(1,, 5) B(s)+ C(£)D(t, 1,)( VO = R\ (25) V'R (1,))D(t,, s) B(s).

But (6.2a) implies that this second term is zero, so W( t,s)=W(t, s) for t > 5. A similar
calculation holds for ¢ <s. Q.E.D.

Suppose X is a minimal realization of W(t, s) and we choose state coordinates
as before so that A(r) =0 and x =(x,, x;, x,) respects the flag of subspaces associated
to €[to, t,] and O[1,, t,]. Since V°+ V'=T

(6.21a) W(t, s)= _Z ‘Z Ci(t) V(,;«Bj(s) ift>s,
(6.21b) W(t,s)='Z AZ C,-(t)(VO—I),-ij(s) if t<s.
Then
(6.22a) W(t, s)=W,(¢t, s)+ W,(t, s),

_G(1) V3Bs(s), t>s,
(6:220) Wil s) ‘{c3<t)(w3—1)33<s), (<s

and for all ¢, s
(6.23) W(t, ) = Ci(1) Vi3 Bs(s) + Cy(1) V14 Bu(s) + C3(t) V34 Ba(s).
Each kernel W(¢, s) defines a mapping

t

u(t)Hy,-(t)=J Wi(t, s)u(s) ds.
The first kernel W (1, s) defines a mapping of infinite rank which can be realized on
x; space. The second kernel W,(¢, s) defines a mapping of finite rank

t ¢

" By(s)u(s) ds+(C(1) Vit Cy(1) V34) J " Bu(s)u(s) ds.

to

ya(1) = C (1) VY, J

fo

There is an alternate decomposition of W(¢, s):

(6.24a) Wit s)= Wl(t, )+ Wz(t, 5)

where

(6.24b) Wi, s) = {C;(t)Bg(s), t>s,
0, t<s,

(6.24c)
Wz(t, s)=C\(1) V?3Bs(5)+ Ci(1) V(I)4B4(s)+ Ci(e)( V23 —I)B;5(s)+ Cs(1) V(3)434(S)-

W,(1, s) is a causal weighing pattern which can be realized on X, space. As before, W,
and W, are maps of infinite and finite rank, respectively.
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[n their excellent study of acausal systems, Gohberg and Kaashoek [9], [10] have
introduced the concepts of multicontrollability and multiobservability, which are
different generalizations of causal controllability and observability from those discussed
above. The following example is a slight modification of one found in [10,§ IL.1 and
illustrates some of the differences between their work and ours.

Example 6.2. Let [t,, t,]=]0, 1].

X, =0, %(0) + x,(1) —x5(1) = v,,
X, =0, X2(0) + x3(0) — x3(1) = vy,
X3=u, x3(0) = p,,

y=x,.

Gohberg and Kaashoek associate with an acausal system a sequence of weighting
patterns of which W (s, s) given by (3.6) is the first. Relevant to these weighting patterns
are the concepts of multicontrollability and multiobservability. This example is a 3
controllable and 3 observable system. They show that such systems are irreducible
under similarity and reduction and are characterized up to similarity by their sequence
of weighting patterns. They do not discuss minimality.

By our definition this system is not controllable nor observable off any [z, 7]
and (6.1) is not satisfied. Therefore by Theorem 6.1 it is not minimal among real
analytic realizations. If we reduce it as described above we arrive at the trivial system
of state dimension 0. The weighting pattern (3.6) is W(z, 5) =0, but the other weighting
patterns of Gohberg and Kaashoek are not all zero.

7. Autonomous and stationary systems. An acausal linear system is autonomous if
A, B, C, D are constant with respect to . The transition matrix and Green’s matrix
are given by

(7.1) (D(t, s) — e(t—s)A’
(7.2a) G(t,s)=e" WAy pltgm9)a 1o s,
{7.2b) G(t,s)=—e" DAYl gtm9A e, o

From this it is easy to give alternate tests for controllability and observability.
PrROPOSITION 7.1. Let I be an autonomous acausal system and t,< 1, < T <t
(a) X is controllable on [ 70, 71] iff the matrix

(7.3a) €=[B,---,A"'B]
is of rank n.
(b) X is controllable off [7, 7] iff the matrix
(7.3b) € =[V°B, V'B, ... V°A"'B, V'A""'B]

is of rank n.
(c) X is observable on {70, 71] iff the matrix
C
(7.3¢) o=\

CA”71

is of rank n.
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(d) X is observable off [ 1o, 7,1 iff the matrix

cv®
cv'
(7.3d) 0" = :
CA"'V°
CAn-—l Vl
is of rank n.
(e) Condition (6.1) is satisfied iff
(7.3¢) Kernel 0 Range €.

Proof. Assertion (a) and (c) are well known from the causal theory, and (e) is
straightforward. We only prove (b) since the proof of (d) is essentially the same.
Suppose (7.3b) fails; then there exists an 1x n vector A # 0 such that

(7.4) AVPA*B=AV'A*B=0
for any k=0 (by Cayley-Hamilton). Hence for any ¢
(7.5) AV eMB=AV' "B =0.
Now for any <1< 71, <t,,

0=AD(t5, 7o} (€]70, M) P* (1o, To)A*

(7.6) = J AV? Al ) BB* o AT 0k )k g

O

+JII AV AT BR* AT T ylx g
Therefore €]r,, [ is not positive definite and the system is not controllable off [ 7o, 7,].

On the other hand, if there exists A such that (7.6) holds for all t,<7,<7,<#,,
then (7.5) must hold. Differentiating (7.5) yields (7.4). Q.E.D.

Gohberg and Kaashoek [13] have demonstrated that a weighting pattern can have
a minimal autonomous realization and a minimal real analytic realization of lower
dimension. They showed that the weighting pattern W(s, s) =1—s has this property.
Their realizations are as follows.

Example 7.2. Let [t,, t,]=1{0, 1].

X =0, x2(0) + x5(0) + x,(1) — x,(1) = vy,

X, = X;, x2(0) = v,,
X.B = uy x}(o) = 039
Y = Xy,

The system is controllable off any [7,, 7,] but not observable off any [7,, 7,], where
0 <79 <1, < 1. Therefore by Theorem 6.1 it is not a minimal realization within the class
of real analytic realizations. In fact W(1, s) = 1 — s can also be realized by the following.
Example 7.3. Let [t,, t,]1=[0, 1].

v X =(1-1)u, x(0) =1y,
X, =(1-1)u, X5(1) = v,,

Yy =Xy — X,
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This is controllable and observable off every [ 7, 7,] and (6.1) is satisfied. Hence by
Theorem 6.1 this is a minimal real analytic realization of W(t, s) = 1 — 5. Moreover the
other minimal real analytic realizations of W(t, s) are described by this theorem. If
one of them were autonomous there would exist an invertible 2 X2 matrix R(f) such

-~ -

that for some constant matrices A, é, C

(7.7a) A=R(1)R™ Y1),
- 1-¢

(7.7b) B:R(t)(l_t>,

(1.7¢) C=(1-1DR\(1).

Without loss of generality we can assume that R(0)=1T so I§=(1 D* and C =
(1 —1). Equation (7.7b) implies that B is an eigenvector of R(t) with eigenvalue
1/(1—1). On the other hand, equation (7.7a) implies that R(¢) = e and hence 1/(1—1¢)
cannot be an eigenvalue of R(t). We conclude that there are no two-dimensional
autonomous realizations of W(t, s} =1— s but there are two-dimensional real analytic
realizations.

We were a bit surprised by these examples for we had conjectured the opposite,
namely that the class of autonomous models admitted a self-contained minimal
realization theory. Being autonomous is a property of the system and not of the
weighting pattern. Therefore we should have expected that we need a “nice” class
of weighting patterns to obtain a self-contained minimal realization theory. The
stationary weighting patterns are such a class,

A weighting pattern W(1, s) is stationary if it is only a function of ¢ —s, in abuse
of notation W(¢, s) = W(t—s). An acausal linear system is stationary if it is autonomous
and its weighting pattern is stationary. Every autonomous causal system is stationary,
and hence the stationary acausal systems generalize the autonomous causal systems.
The corollary to the following theorem was first stated in [3]; see also [9], [10].

ProrosiTiON 7.4. A standard autonomous acausal linear system is stationary iff for
allk, 1=0,--- n—1.

(7.8a) CA*[A, V°14'B =0,
{7.8b) CA*[A, v1A'B=0

where [A, V1= AV' - V4, i=1,2.
Proof. Suppose the system is stationary; then

(7.9) CeR VO oA B - oAU YO G Al s p

If we differentiate this with respect to r at r =0 we obtain

(7.10) 0=CeJ[A, VO] o) p,

Differentiation of this with respect to ¢ and s one or more times yields (7.8). The steps
are reversible, so the converse holds. Q.E.D.

CoRrOLLARY 7.5. Suppose ¥ is a standard autonomous acausal system which is
controllable and observable on [1,, 1. 2 is stationary iff

(7.11a) [A V=0,
(7.11b) [A, V=0

The Gohberg-Kaashoek phenomenon cannot happen for stationary weighting
patterns; in other words, a minimal autonomous realization is also a minimal real
analytic realization.
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THEOREM 7.6. (i) Suppose X (1.1) is a standard stationary realization of a stationary
weighting pattern W(t —s). X is a minimal stationary (equivalently, autonomous) realiz-
ation iff

(7.12a) rank €° =n,
(7.12b) rank 0° = n,
(7.12¢) Kernel 0 < Range €.

(ii) A minimal stationary realization is also a minimal real analytic realization.

(iii) Any stationary realization can be modified and reduced to a minimal stationary
realization.

(iv) Suppose S and 3 are stationary minimal realizations of W(t—s) then there
exists an invertible constant matrix R such that

(7.13a) ‘ (A-R'AR)€ =0,
(7.13b) O(A-R 'AR)=0,
(7.13¢) B=RB,

(7.13d) C=CR,

(7.13¢) D=D

and

(7.14a) ’ O(V'~R'WV°R)€ =0,
(7.14b) O(V'-R'W'R)€ =0.

On the other hand, if 3 is a minimal stationary realization of W(t—s) and ¥ is an
autonomous system related to 3 by (7.13) and (7.14) for some invertible R then 3 is
also a minimal stationary realization of W(t—s).

Proof. (i) Suppose X is an autonomous realization of a stationary weighting pattern
which satisfies (7.12); then by Proposition 7.1, X is controllable and observable off
every [7, 7] and (6.1) is satisfied. By Theorem 6.1, 3 is a minimal real analytic
realization and hence a minimal stationary realization.

Suppose Z is an autonomous realization of a stationary weighting pattern W(t —s)
which does not satisfy (7.12). To show that ¥ is not minimal we shall construct a new
autonomous realization 3 of smaller state dimension which does satisfy (7.12) and
hence is minimal. As the reader has seen, the way one obtains a lower-dimensional
realization of a weighting pattern is to find an appropriate subspace of the state space
which is left invariant by the dynamics. One either restricts to this subspace or quotients
by this subspace to reduce the dimension of the state space. In the context of real-
analytic systems we have the luxury of making a time varying change of coordinates
so that the invariant subspaces are time invariant. In the context of autonomous systems
we do not have this option.

The natural subspaces associated with an autonomous system (1.1) are formed
from the matrices found in Proposition 7.1, e.g.,

(7.15a) Range €,
(7.15b) ) Kernel 0,
(7.15¢) Range ¢°,
(7.15d) Kernel 0°.

The first and second are clearly invariant by definition.
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(7.16a) A(Range €) < Range 4,
(7.16b) A(Kernel 0) < Kernel ©.

The third and fourth are generally not. It is this latter fact which seems to cause the
Gohberg-Kaashoek phenomenon.

Even if the system (1.1) is stationary it is not always true that (7.15b), (7.15d) are
A invariant. However, they are nearly so, for (7.8) implies that

(7.17a) A(Range €”) < Range 6°+ Kernel 0,
(7.17b) A(Kernel ©° " Range €) < Kernel 0°.

The reader with a background in geometric linear control theory recognizes (7.17a) as
a form of (A, B) invariance (or controlled invariance) and (7.17b) as a form of (C, A)
(or conditioned invariance). For details see [14] and [15].

Let D be a matrix such that

(7.18) Range D = Kernel 0;
then by a standard lemma there exists a matrix F such that
(7.19) (A+ DF) Range 6° < Range 6".
Moreover, since (7.16a) holds we can choose F so that
(7.20) Kernel F > Range %.

Let A=A+ DF; then (7.18) and (7.20) imply that
(7.21a) CA* = CAK,
(7.21b) A*B = A*B
for all &, so for all ¢, s
{7.22a) Ce’i'zCeA’,
(7.22b) e¥B=eVB

Therefore we can modify X by replacing A by A and not change the weighting pattern
Wit~ s).

In this way we obtain another autonomous realization of W (¢ — s) such that (7.15¢)
is A invariant. By restricting this system to the subspace of the state space given by
(7.15¢) we obtain a smaller autonomous realization of W(t —s) which satisfies (7.12a).

The property described by equation (7.17b) is called (C, A) invariance (or condi-
tioned invariance). It is the dual of the property described by (7.17a). If we choose a
matrix E such that

(7.23) Range € = Kernel E,

then it is a standard exercise to show that there exists a matrix G such that
(7.24) (A+ GE) Kernel 0° < Kernel 0°.

Moreover, because of (7.16b) we can choose G such that

(7.25) Range G < Kernel 0.

If we define A = A+ GE then because of (7.23) and (7.25), (7.21) and (7.22) hold.
We can replace A by A without changing the weighting pattern. For this new realization
(7.15d) is A invariant and we can project it out. The resulting realization satisfies (7.12b).
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In this way we obtain a realization satisfying (7.12a), (7.12b); in other words, one
that is controllable and observable off every [7,, 7,]. To reduce this to a realization
satisfying (7.12¢) we choose coordinates that respect the flag of subspaces

R"” > Range €+ Kernel 0
2 Range €
> Range € Kernel 0 20.
In other words, x = (x,, x,, X3, x,)* and
Range €+ Kernel 0 = {x: x; =0},
Range € ={x: x, =0, x, =0},
Range €M Kernel 0= {x: x, =0, x,=0, x, = 0}.

If we define B(s)=e™B and C(t)= Ce™ then in these coordinates

0
(7.26a) eB=B(s)= B:zs) ,
34(5)
(7.26b) CeV=C(t)=[C\(t) 0 C;(1) 0],
and

Z Z Ci(t"to)V(.;Bj(to—S), t>s,

i=13 =34

=Y ¥ CGilt—1) ViBi{t,—s), t<s.

i=13 =34

(7.26¢) W(t—-s)=

Hence we can delete the x, coordinate and the corresponding boundary input condition
without changing W(z—s). This completes the proof of statement (1).

(ii) By (i) a minimal stationary realization must satisfy (7.12). Hence by Theorem
6.1 and Proposition 7.1 it must also be a minimal real analytic realization.

(iti) In the proof of (i) we showed how a stationary realization can be modified
and reduced to a realization satisfying (7.12). By Theorem 6.1 such a system is a
minimal real analytic realization, hence a minimal stationary realization.

(iv) If X is a minimal stationary realization of W(t—s) and ¥ is an autonomous
realization related to X by (7.13) and (7.14), then it is easy to verify that 3 realizes
W(t—s), hence is a minimal stationary realization.

If £ and $ are two minimal stationary realizations of W(t—s) then by Theorem
6.1 there exists a real analytic matrix valued function R(t) satisfying (6.2) and (6.3).
In particular (6.2b) implies that

B=R(1)B,
so R(1) is constant on Range B. If we differentiate this expression using (6.2a) we obtain
A AB=R(1)AB.
Further differentiations yield
(7.27a) C=R(1),

(7.27b) 0=R(1)%E
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In a similar fashion repeated differentiations of (6.2¢) yield

(7.28a) 6 =0R\(1),

(7.28b) 0=0R '(t)=-0R '(t)R(1)R '(1).
Rewrite (6.2a) as

(7.29) A~R()AR(1)R(1)R(1)

and multiply by € on the right using (7.27b) to obain

(7.30a) (A=R'()AR(1))€ =0.

We multiply (7.29) by @ on the left and use (7.28b) to obtain

(7.30b) O(A-R™(1)AR(1)) =0.

If we let R =R(t,), a constant matrix, then (7.13) follows immediately. Moreover,
(6.3a) implies (7.14a) and (7.27a) and (6.3b) imply (7.14b). Q.E.D.
Remark. While minimal stationary realizations are related by (7.13) and (7.14)
for some constant matrix R, they can also be related by nonconstant matrices.
Example 7.7. Consider the time varying change of state coordinates X = R(7)x

for Example 5.6, where
1 0
R(t)= .
-1 9]
The new system is given by
flz(), i2(0)+2351(1)‘)22(1):v|,
f?_ =X, tu, %,(0) = v,
y=X.
These two systems are also related by (7.13) and (7.14), where R=I.
Recall that an acausal system is causal if V°=1 and V!'=0 and anticausal if
V®=0and V'=1L Itis strictly acausal if both V° and V' are invertible.
ProOPOSITION 7.8. Suppose 3 is a standard stationary acausal system which is
controllable and observable on [1,, t,]. The state and boundary space of £ can be

decomposed x = (x|,x,, X;), v= (vy, va, 03) into a causal part x,, anticausal part x,, and
an acausal part x,.

(7.31a) X;=A;x;+ Bu,
(7.31b) x(2y) = v,,

(7.32a) X, = Apx,+ Byu,

(7.32b) x(1,) = ey,
(7.33a) X3 = A3iX;+ Apxy+ Ay x; + By,

(7.33b) Vi3ixs(to) + Vixs(1) = v3— V3,x, (1) — ngxz( to) = Vix () — Viaxa(t).
Proof. Consider the flag of subspaces
R™< Range V' < Range V(N Range V°< 0
and choose state coordinates that respect this ﬂ;ig X =(xy, X3, X3). In other words,
Range V' ={x: x, =0},
Range V’NRange V'={x: x, =0, x, = 0},
Range V°={x: x,=0}.
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We choose the same coordinates on the space of boundary input values v. Since A
commutes with V° and V' it leaves their ranges invariant. Because V°+ V' ¢4t~ — I
V?and V' also commute hence leave their ranges invariant. This implies that

A, 0 0
A=]0 A, 0|,

A31 A32 A33

I 0 0
V=0 0 o],

Vi Ve Ve

0 0 0
Vi=10 etale)

Vie Vi vy

where V§;+ VI, eAnl 0 = 1 Q.E.D.

Consider the acausal part of the above system, assuming that the causal state
coordinates x,(¢) and anticausal state coordinates x,(t) are identically zero. This yields
an acausal system

(7.34a) ' X3 = Asx;+ Byu,
(7.34b) Viixy(to) + Visxs(1,) = 3,

which can also be decomposed into causal, anticausal and acausal parts. The decompo-
sition process can be repeated until the acausal part is strictly acausal. In this way the
original system can be decomposed into causal and anticausal parts which feed into
causal and anticausal parts through the state differential equations and boundary
conditions. The pattern may be repeated several times until it terminates in a strictly
acausal system.

The boundary condition (1.1b) of a stationary system is said to be separable if
Range V°N Range V' =0.

CoRroLLARY 7.9. Suppose S is a standard stationary acausal system which is control-
lable and observable on [ 1, 1,[. If the boundary condition is separable then S, separates
into independent causal and anticausal systems.
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