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Abstract We review the concept of a reciprocal process and show
that a stationary Gaussian reciprocal process, which satisfies a
certain technical assumption, can be realized by a linear

stochastic differential equation with independent initial
condition. '
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1. Reciprocal Processes. Suppose x(t) is an n vector valued

stochastic process where t ranges over a subset of the reals or
the integers. The process x(t) is called reciprocal (or qﬁasi-
Markov) if given any 7, < 7, the values of the process within
[(74,7;] are independent of the values of the process outside of
[7,,7;] conditioned on xX(7,) and x(7,).

In particular a Gaussian process x(t) is reciprocal if

for any t,,..., t, = 7, < S1reeesSy S Ty S Y44y, .. ,t; we have

for i = 1,...,1

E(x(t;) [x(7,),%(7,))
(1.1a)

E(X(t;) [x(70) /%x(71),%X(81),...,%(sy))

and for j

]

1"'.’m



E(x(s;) [x(74),%(7}))

(1.1b)

= E(x(sj)|x(1°),x(11),x(t1),...x(t1).

This definition was formulated by Serge Bernstein [1] as
a generalization of the concept of a Markov process. Recall that
a process x(t) is Markov if for any T, the values of the process
to the left of 7, are independent of the values to the right
conditioned on x(7,). A Gaussian process x(t) is Markov if for

any t,,...,ty s 7, ¢ s;,...,s, we have for i = l,...,k

(1.2a) E(x(t;)|x(7,)) E(x(t;) [x(7,),%(s;),...%(sy))

and for j =1,...m

(1.2b) E(x(s;)|x(7,))

i

E(x(so)IX(TO),X(tl),...,x(tk)).

It is easy to see that Markov processes are reciprocal
but the converse is not true. Throughout this paper we will
restrict our attention to zero-mean Gaussian processes, and often
we shall further restrict our attention to stationary zero mean
Gaussian processes. Because of the zero-mean Gaussian
assumption, all the probablistic information about the process

x(t) is contained in its covariance
(1.3) Ry (t,s) = E(x(t)x*(s))

where * denotes transpose. This is a nxn matrix valued function.

A process x(t) is nonsinqular of order one if Ry(74,7,)

is nonsingular for every To. Such a process is Markov iff its

covariance satisfies



(1.4)

for any

(1.5)

-1
Ry(t,8) = Ry (L, 75)Ry (74,7T4)Ry(7,,s)

t <71, 2 s.
Let 7 denote the ordered k-tuple (ToreeesTr.,) where

$+.+2 Tp. Define an k'n dimensional random vector X(T1)

x(7,)

X(T) = .

X(Tk_I)

A process x(t) is nonsingular of order k if for any

T°<11

<...< Ty_; the covariance of the random vector X(7) is

positive definite.

Suppose x(t) is nonsingular of order 2, then x(t) is

reciprocal iff its covariance satisfies

(1.6)

Ry (t,74) Ry(t,7,)]

for all

partial
defined

X(71) is

Ry (t,s) =

Ry(To,7,) Rx(1o,11)J ' [RX(TO,S)]
Ry(7T3474) Ry(74,7,) Ry(71,,s)
t <7, s < 7, and for all Tg S8 2 1y 2 t.

If 7 = (1,,7,) and ¢ = (¢9,9,) then we can define a
ordering by 7 2 ¢ if 7, < g £ 03 £ 7,. Let X(7) be

by (1.5). The process x(t) is reciprocal if the process

Markov relative to this partial ordering.

Mehr and McFadden [2] noted that reciprocal processes are

conditionally Markov. If we condition an x(7,) then the




conditional process is Markov to the left of T, and if we
condition on ¥(7,) the conditional process is Markov to the right
of 7,.
2. Examples. We review the classification of all one
dimensional, stationary, Gaussian, reciprocal Processes where
teIR. This is due to Jamison (3], Chay [4] and Carmichael-Masse-

Theodorescu [5]. Essentially there are only six families of such

processes,

la. Ornstein Uhlenbeck Processes
1b. Cosh Processes

lc. Sinh Processes

2. Slepian Processes

3a. Cosine Processes

3b. Shifted Cosine Processesg

The Ornstein Uhlenbeck brocesses are the only ones that

are Markov. They have covariance Ry(t,s) = R, (t-s) given 5y
- |at|

(2.1a) Ry(t) = e R, (0)
Such processes have an infinite lifetime, i.e. they can be
defined for all telR. Of course one can restrict t to lie in
Some proper subset of fR. If A = 0 then the process is constant
with respect to t and hence singular of order two. If Ry(0) = 0
then the process is identically zero and singular of order one.
Otherwise the process is nonsingular of every order k 2 0.

The remaining one dimensional stationary Gaussian

reciprocal processes are not Markov. A Cosh process has

covariance



cosh A(T/2-t)
(2.1b) R.(t) = R, (0)
cosh AT/2

where A, T > 0. A Cosh process has a finite lifetime because any

covariance must satisfy the Cauchy-Schwartz inequality,

<

IR (t)]| < Rx(0). But R,(t) given by (2.1b) violates this for

t > T. Since R,(T) = R,(0), it is a cyclic brocess, x(0) = x(T)

a.s.
A Sinh process has covariance
sinh A(T/2-t)
(2.1c) R (t) = R, (0)

sinh AT/2

where A, T > 0. It also has a finite lifetime of length at most

T. Since R,(T) = =R, (0), it is an anticyclic process

X(0) = -x(T) a.s.

A Slepian process has covariance of the form

(2:2)  Ry(t) = (1-2t/T) R, (0)

where T > 0. Again it has a finite lifetime of length at most T.
It also is anticycliec, X(0) = -x(T) a.s.

A Cosine process has covariance

(2.3a) Ry(t) = (cos At) R, (0).

It has an infinite lifetime.



Since R, (t) is periodic with period 2T = 2n/A, the process is
also periodic x(t) = X(t+2T) a.s. Furthermore, it is
antiperiodic x(t) = -X(t+T) a.s.

A Shifted Cosine process has covariance of the form

cos A(t+t,)
(2.3b) Ry(t) = R, (0)
cos At

where 0 < t, < w/2A. It has a finite maximum lifetime
T = m/A-2t, and it is anticyclic, x(0) = X(-T) a.s.

The Cosh, Sinh, Slepian, Cosine and Shifted Cosine
pProcesses are all nonsingular of order two on any interval of
length less than T. Since in each case, X(t) =+ x(t+71), they
are singular of order two on intervals of length T. All of the
above processes except for the Cosine brocesses are nonsingular
of arbitrary order on any interval of length less than T. a
Cosine process is singular of order 3. This means that the
behavior of such a process is completely determined by its values
X(7,) and x(71,) at two times where 71-7, is not an integer

multiple of T.

3. Realization Theory. It is well known [6] that if R(t) is a

continuous covariance of stationary Gauss Markov Process then
R(t) is C® and it satisfies a first order linear differential

equation

(3.1)  R(t) = AR(t)



for t 2 0. Furthermore if B is an nxn matrix such that
BB* = -(R(0)+R*(0)) then the process x(t) defined for t 2 0 by

the stochastic differential equation
(3.2a) dx = A x dt + Bdw
(3.2b) x(0) = N(O0,R(0)),

where w is standard m dimensional Wiener process independent of
X(0), has covariance R(t). Note R(0) = R(0%).

In this section we shall show that certain continuous
stationary Gaussian reciprocal covariances can be realized by
second order linear stochastic differential equations driven by
white Gaussian noise with independent initial conditions. This
partially confirms a conjecture of ours made in [(73.

The first step is to show that a continuous stationary
Gaussian covariance R(t,s) = R(t-s) must be C®. We did this
in [7] but we shall repeat the proof here. We assume R(t) is
defined for [t| < T and is nonsingular of order two for |t| < T.

For a stationary reciprocal covariance, (1.6) becomes

(3.3) R(t-s) =

R(0) R(TO-TI)J ' [R(TO-S)J
R(7,~7,) R(0)

[R(t-7,) R(t~7,))
R(1,-58)



and this holds for 7, < s < 7, and either t < 7, or t » Ty.

Assume that Ty = 7o < T. If we integrate with respect to t over

[ty = 8, 7,] where 0 < 5 < T - Ty + 7,, we obtain

T, T,=S
f R(t-s)dt = I R(t)dt = [6I + o/(3s) o&(3)] [R(TO—S)J

To=38 To=3-8 R(1,-s)

where o(3)/5 > 0 as 5§ » 0. If we integrate (3.1) with respect to

t over [7,,7,+5] we obtain

T,+3 T;+d-s
T, T,-8

I R(t~s)dt = J R(t)dt = [&(5) I + o/(s) [R(To—s)}

R(1,-s)

Putting these together we have

-

7 [ n o
To,-S

j R(t)dt 8L + o(3) &(3) R(7,-s)
To—d—-8
(3.4)
T,+8-s

f R(t)dt 3(3) 5T + o(3) R(7,~s)

T,-S J

— -l L. = -

Since R(t) is C°, the left side of (3.4) in ¢! in s for

Se[7,,7;]. By this we mean the left (right) derivative exists
and is continuous at To(7,). For sufficiently small § > 0 the
first matrix on the right is invertible hence we conclude that

R(7,~s) and R(7,-s) are c! in Se[7,,7;]. Since 7, and 1, are



arbitrary except that 0 < T1 = 7, < T we conclude R(t) is c! op
[0,T). By repeating the argument we conclude R(t) is ¢® on
[0,T). sSince R(-t) = R*(t) it follows that R(t) is also ¢® on
(-T,0]. By continuity R(0*) = R(07). The left and right
derivatives need not agree at 0, instead —ﬁ(O') = ﬁ*(O*), ﬁ(o‘) =
R*(0%), etc. Henceforth we shall take R(0) as R(0*), R(0) as
R(0%), etc.

The next step is to show that R(t) satisfies two second

order matrix differential equations. Let 7, = s - ¢ ‘and

Ty = 8 + ¢ for ¢ > 0 then (3.3) becomes

(3.5a) R(t-s) = [R(t-s+0) R(t-s-0)) [HI(U)J

Hz(“)

where H, (¢) and H,(¢) are determined for ¢ > ¢ by

(3.5b) {R(O) R*(ZG)J[HI(G)J ' {R*(c)}

R(2¢) R(O) H, (o) R(¢)

since R(t) is assumed to be the covariance of a Process which is
nonsingular of order two. For convenience, we make a change of
coordinates, x,.,(t) = R™1/2(0)x,,4(t) and thereby normalize
R(0) = I. We would like to study the limit of H; (¢) and H, ()

and their derivatives as ¢ > 0. From (3.5b) we obtain for ¢ > 0

(3.6a) Hy(¢) = G"1(0¢) F(o)

(3.6b) Hy(o) = R(¢) - R(2¢) H, (o)



where F(¢) and G(¢) are C® for ¢ 2 0 and given by

(3.6b) F(o)

I

R*(¢) - R*(20) R(c)

(3.6c) G(o) =T - R*(2¢) R(20).

Since F(0) = G(0) = 0, (3.6a) is indeterminate at ¢ = 0. We

define

_ F(e)/0o g >0
F(o) = _

F(0) ¢ =0
_ G(s)/¢c ¢ >0
G(s) = .

G(0) c =0 .

By repeated application of L'Hopital's rule it is easy to verify
that F(o¢) and G(s) are C® for > 0.

Henceforth we shall invoke the assumption that

Il

(3.7) G(0) = &(0) = -2(R(0) + R*(0))
is invertible. Rewriting (3.6a) we have for ¢ > 0

Hy (o) (G(e)/e) " (F(e) /o) = G(o)/F(o)

and hence H, (¢) has a C® extension to ¢ 2 0. Equation (3.6b)
defines a C® extension of H(¢) to ¢ 2 0. By straightforward

differentiation of (3.6) we obtain



-

(3.8a) Hy(0) = H,(0) = — 1
2
. » ,1 . [} " ”"
(3.8b)  H,(0) = -H,(0) = — (R(0)+R*(0)) " (R(0)-R*(0))
4
(3.8¢)  H,(0) + H,(0) = -R(0) -4R(0)H, (0).

We return to (3.5a) at s = 0 and differentiate twice with respect
to ¢ at ¢ = 0 to obtain
0 = i(t)(H1(0)+H2(0))

+ 2R(t) (H, (0)-H,(0))

+ R(t) (H, (0)+H, (0))

By utilizing (3.8) we obtain

(3.9a) R(t) = -2R(t)M* + 2R(t) N*
where
(3.10a) =2M* = (R(0) + R*(0))"! (R(0) - R*(0))

(3.10b) 2N* = R(0) + 2R(0)M*

Equation (3.5a) is valid both for t 2 s + ¢ and for
t<s+ 6. Sinces=o¢ =0 this implies that (3.9a) is valid for
te[0,T) and for te(-T,0]. The covariance R(t) = R*(-t) so

R(t) = -R*(-t) and R(t) = Rx(-t).



We transpose (3.9a) and substitute to obtain

(3.9b) R(t) = 2MR(t) + 2NR(t).

By adding and subtracting (3.9a,b) we obtain the
following.
Theorem 1 Suppose R(t) is the continuous covariance of a
stationary Gaussian reciprocal process defined on [0,T] and
(WLOG) R(0) = I. sSuppose that R(0) + R*(0) is invertible. Then

R(t) is Cc® on [0,T) and satisfies the differential equation

(3.11a)  R(t) = MR(t) - R(t)M* + NR(t) + R(t)N*

and the side constraint

(3.11b) 0 = MR(t) + R(t)M* + NR(t) - R(t)N*

where M,N are defined by (3.10).

We now construct a process y(t) which realizes the
stationary Gaussian reciprocal covariance R(t), under the
assumption that R(0) + R*(0) is invertible. By the cauchy-
Schwartz inequality R(0) = R*(0¢)R(¢) is monotone increasing for
small ¢ > 0 hence R(0) + R*(0) is nonpositive definite. Since it
is assumed to be invertible, it is negative definite ang there

exists an invertible nxn matrix B, such that



(3.12) BB * = =(R(0) + R*(0))

Let N and M be as above (3.10). Define a nxn symmetric

matrix mw(t) as the solution of the matrix Riccati differential

equation

anr

(3.13a) — = 2NR*(0) + 2R(0)N*
dat

+ 2Mm(t) + 2w (t)M*

+ (R(0) + w(t)) (B,B,*)" ! (R*(0) + T(t))

(3.13b)  7(0) = R(0)R*(0)

Let B,(t) be an nxn matrix defined by

(3.14) B,(t) = -(R(0) + n(t))B,*"!

Finally we define a 2n dimensional process x(t) =

(X, (t) ,%,(t)) by the stochastic differential equation

dx, 0 I
(3.15a) =
, ax, 2N 2M

NI
dat + dw
X, B, (t)

o)
(3.15b)

[R(O)
X, (0)

R(0)

v Vv = N(O0,I)



satisfies (3.16b,c). Fronm (3.16a) we obtain for T > t » g 2 0,

9P,
(3.18Db) — (%,s) = P,, (t,s)
ot

(3.18¢c) —— (t,s) = 2Mp,, (t,s) + 2NP,, (t,s)
ot

hence P, (t,s) = R(t-s) and P,;(t,s) = R(t-s). We have proved
the following.

Theorem 2 Suppose R(t) is the nxn continuous covariance of a
stationary Gaussian reciprocal process defined on (0,T] and
(WLOG)R(0) = I. sSuppose R(0) + R*(0) is invertible. Then R(t)"
can be realized by a first order 2n dimensional linear stochastic
differential equation (3.15a) driven by n dimensional white

Gaussian noise with an independent initial condition (3.15b).

4. Conclusion In Sections One and Two we defined and gave
examples of reciprocal processes. 1In Section Three we showed how
certain stationary Gaussian reciprocal processes can be realized
via stochastic differential equations. The condition that we
required was that R(0) + R*(O) be invertible, but we believe that
this technical condition can be dropped. We hope to prove this

in the near future.



where w is an n dimensional standard Wiener process independent

of v.

Let

P,,(t,s) PIZ(t'S)J
P(t,s) =

P,, (t,s) P,,(t,s)

then P(t,s) satisfies for T > t 2820

aP
(3.16b)  — (t,s) = AP(t,s)
at
d
(3.16Db) — P(t,t) = AP(t,t) + P(t,t)a*
dt
+ B(t)B*(t)
and
R(0) R*(0)
(3.16c) P(0,0) = | L J
R(0) R(0)R*(0)
where
) o]
2N 2M B, (t)
It is straightforward to verify that
[R(O) ﬁ*(O)J
(3.17a) P(t,t) = )
: R(0) w(t)
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