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Computation of Observer Normal Form
Using Macsyma™*

by Andrew R. Phelpst and Arthur J. Krener}

|’ Abstract

1

s The nonlinear observer algorithm has been simplified by removal of the expensive
_bracket computations. Explicit solutions to the state coordinate change problem are pro-
vided. Macsyma was instrumental in finding these solutions and makes the algorithm

F readily computable.

1. Introduction

The computation of linear observers bas become relatively routine, and computer
packages exist which make these computations straightforward and accessible. When it
comes to nonlinear observers, however, the picture has not been so bright. Algorithms for
this sort of calculation have been published [1], [2], {4], (5], [6]. In general, these are limited
by one or more steps involving difficult computations.

The Ph.D. thesis of Phelps [8] provides a breakthrough in the nonlinear observer al-
gorithm. In particular, Lie bracket calculations are no longer required to perform changes
of state coordinates, and the computation becomes straightforward. Macsyma was in-
strumental in developing the new approach. A prototype of this new algorithm has been
implemented in Macsyma.

We consider an uncontrolled dynamical system with partial state observation:

E=f(6) and y=h(). ()

The state space is in R™ and the output space is in R?. Generally, this may be put in
observable normal form:

§=Af-Boff) and y=C¢. (2)
The problem is to see if, in fact, it supports observer normal form:

i=Az—a(Cz) and §=Cz. 3)
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(See [3] for detail.) Here the A, B and C are matrices given in Brunovsky canonical form.
We seek to convert a system (1) to observer form (3). This paper is based on the
approach in [4] and (5], as modified in [8]. The conditions (as modified) are:

Observable form  Must be able to convert system to observable form (2)
Output coordinate change Must satisfy d.e. for y = y(§);

Polynomial degree  Observable form polynomials f i(€), for 1 < j < p, (the entries of
B a(£) in (2)) must have degree < ¢;;

Coeflicient compatibility ~Observable form polynomials must evaluate to certain in-
tegrals of differential expressions in injection terms (the entries of a(C z) in (3)).

b

Note. The coefficient compatibility condition replaces a condition that certain
brackets vanish. (If g; is the unit vector in the ¢ j:¢; direction, we require that all
brackets of elements in {adi}l g; 1 <1< ¢;} must vanish.) We also take note of
the approach in [1), [2] and [6], which is not used here.

2. Coeflicient Compatibility in Standard Coordinates

For simplicity’s sake, we first describe the results in the case that we have the “right”
output §. In fact, we will see that this could be considered sufficient for an improved
algorithm, since the relevant change of state coordinates will be entirely determined by
the tranformation y = y(§) of the corresponding outputs.

In section 3, however, we will indicate a result expressed directly in observable form
coordinates (¢,y).

We may compute observable form ((, §) coordinates), relative to the output 4 which
is the solution to the output d.e.’s:

§=AE-Ba(f) and §=CE. (4)

We call the coordinates (4) standard coordinates.
This computation does not constitute a major burden on our algorithm (given Mac-

syma), since we only require an iterated set of Lie differentiations of functions and back-
substitutions to get the transformation ¢ = £(8).

To annotate our coordinate systems, we adopt certain conventions. We describe the
state variables by ;.;, indicating that it is the (j — 1)-th time derivative of the output
variable y;, the same going for (z,§) and (,) coordinates. The injection functions a;
are written similarly. If p = 1, we omit the “1:” to simplify the notation.

Furthermore, the coefficient
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is characterized by having degree i j.x and exponent €;:k with respect to its factor 3 :’-:. 10

" for1 <k < and 1< j < p. The vertical bars ‘|’ separate the subscript into parts

according to the the output j involved. We also have cumulative indices e := Y p—; €jik 5
€= 251 andw:= 2.5, " | ijk ejk - Tosimplify the notation, we also occasionally
represent functions as their own “0-th” derivatives and we write “a mii, fori <0,asa
pull symbol indicating 2 contribution which vanishes.

The natural way to describe the change from observable form coordinates £ to ob-
gerver form coordinates z is to compute the d.e.’s which determine it. These get quite

complicated, since they involve the change of coordinates matrix J= —a—?{ and its iterated

derivatives. The choice of standard coordinates, however, causes all these terms to vanish.
Using, for convenience, the simplifying assumption that each observability index £;

is equal to some £, we compute the equations z = z(&) governing the change of state

coordinates: :

Ej:l =T,

€2 = iz — @j1(¥)

41

i, = Tity — > Llf"—i-l ;i) (6)

i=1

¢ _
F@) =—> L7 @),

i=1

for 1 < j < p, where f is f in the £ coordinates.
From the expansion (6) we can, in effect, read off the @ polynomial coefficients in
terms of the a injection functions.

Example 2.1. Coefficient solutions, for the case p =1 and £ =3.

The expansion (6) gives us:

f1(8) = azs(y) &2 & + as(y) & + aze2(y) &3 + az2(y) €2 +ax(y)ée + ay(y)-

. . . _ _ daz = dza _
This leads to the coefficient solutions: 4y = —a3, d¢2 = —E?I— , G2 = —EZ—IT , @222 =0,
d .
@23 = 0 and a3 = ——-d—c? . We integrate the a@’s to get the a’s. FAN
Y

The pattern described in the above example is easily extended to the case where we
have p equal indices.

Theorem 2.2. Suppose that all the indices are equal, i.e., £; = £ for 1 < j < p. Then the
polynomial coefficient @m....(§) is given by
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The existence of an injection vector a(§) compatible with all the coefficients of f1(£), as
given in (7), together with the observable form, output coordinate change and polyno-

mial degree conditions, constitute necessary and sufficient conditions for the existence of
observer normal form (supposing all indices equal).

Proof

Let m, 1 < m < p, be fixed. )

First of all, if £ = 1, then (4) simply becomes £,,.; = fm(E) = fm(F). Thus @Gpn =
Fm(@) = —am:1(F), where we take am:1 := — fm. But this matches formula (7).

Note that the derivation in example 2.1 gives a result in accordance with formula (7).
That illustrates the pattern we use for our induction.

As induction hypothesis, we assume that formula (7) holds for £ = p. We target the
coefficients in the expansion for &,. 4 — Tm:u in the case £ = p+ 1 which are the source via
Lie differentiation of the coefficients of f,, we seek to evaluate. _

But, in the p.d.e. expansion (6), we find the same expression, — }_% L';_' Qm:i , for
&m:p — Tm:y, in the expansion with € = p 4 1, as we find for fm in the expansion with
£ = p. This means that the induction assumption will enable us to know those “target”
coefficients, which, when Lie differentiated, give contributions to the expansion for f,
in the case when the multi-index £ is g + 1. These coefficients evaluate to nothing but
the coefficients of the terms of f,, in the case (given by induction assumption) that the
multi-index £ is p.

Let ¢!, given as in (5), be a monomial in f,(£). We wish to determine its coefficient

Az e
An expression which under Lie differentiation by f can give a term like ¢! may have
two forms.

Case 1. It may have no increment in the exponent e, of £, for 1 < j < p.
In this instance, it will come from Lie differentiation of a term of the form

6: E”:lrn:k Eq—:Ll,,;k-i-l * (8)

By induction assumption, term (8) has a numerical coefficient which calculates back
from our projected coefficient for £* as

Ln:k!er]:k (1 ) ( w! )
Tl —1e \w P T :
(Lﬂ‘k ) € w H H k!e,';k
=1 k=1

1.
ejklej

Here we take et := enk—1+1 if tyik—1 = tqr —1 {and :=1 otherwise). The differentiation
process contributes an extra factor of e?. Thus, the partial numerical contribution from
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this term is
1
‘ tn:k €n:k (E) . &)

In this case, the “a” part of the coefficient is carried through unchanged. Moreover, it
was already of the required form, since e, has not been altered by adding and subtracting
1 in (8).

Case 2. It may have an increment in the coefficient of €., for j = 0.

The source of the terms of this type is partial differentiation of the “a” coefficient by
§,- This will give an additional factor of £,.2, while not affecting the numerical coefficient.

The prior exponent of &2 will have been eq1 — 1.
Therefore, the monomial term prior to Lie differentiation was ¢} E,,"zl By induction

assumption, its numerical contribution was

, 1 w!
— ip1- €x:1 E’ 7 ™ .
II IT esetit

j=1 k=1

Its partial numerical contribution is therefore

(%) : (10)

since tj1! =1 =tja when 7 = 7.
nts by 1, so that the “a” term adjusts as prescribed

Note that in this case the e, increme
by formula (7).
sibilities. The “a” coefficients are as required. And,

These two cases exhaust the pos
bution to the numerical coefficient of a factor

combining (9) and (10), we get a total contri

(i iw ej:k) (%) =1,

j=1 k=1
A

which is also as required.

where the observability indices are given arbitrarily, we adopt a
recursive method for calculating the & coefficients in terms of the a injection functions.
We may take a system with arbitrary indices £1,...,%p, and prolong it to a system of

, to which theorem 2.2 applies. Retracing the prolongation step-by-step,
ulas for the @ coefficients. We

In the general case,

dimension p - £,
we can track the (increasingly complex) form of the form
rely on the following prolongation lemma (for a proof, see [8]):

Lemma 2.3 (Krener-Respondek-Phelps). Suppose an uncontrolled system, given in
observable form, has 2 distinct multi-indices £1, ¢z of multiplicities p1, P2 and, further, that
it may be transformed by change of output coordinates y = y(§) to observer form. Then
it may be prolonged to a system in observable form, having multi-indices Ay:=4£ +1 and
\g 1= £5, of the above multiplicities. Furthermore, the transformation y = y(y) and the
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injection function a(-) both prolong trivially to functions which will take the prolonged
system over into observer form.

We formulate our recursive coefficient calculation as follows:

Algorithm 2.4 (Coeficient Prolongation Algorithm). Suppose we have solved for
the coefficients belonging to the indices £1,...,4x and moreover £y < £, +1 = ... = 4,
where s < p. We may construct a “quasi-solution” using the method of theorem 1 applied
to the prolonged system with s indices all equal to £,. By back-substitution we may then
express the prolonged version of f;(£) with a’s as coefficients, fork + 1 < j < s. We may
then substitute L} &n.e, (expressed in terms of the a’s, and using the solutions previously
derived for 1 < j < k) for the “quasi-variables” Ehity+i where1 < i< g, — £,. Finally, we
may “read off” the coefficients of the monomials thus derived.

We may now combine theorem 2.2 and algorithm 2.4 to get the coeflicient compatibility
theorem for £ coordinates:

Theorem 2.5. Suppose we have arbitrary indices £1,...,€,. Then we may derive the
coeflicients @y,....(¥) in terms of the a(§) injection functions by application of the Coeficient
Prolongation Algorithm. The existence of an injection vector a(y) compatible with all
the coefficients of fi(€), together with the observable form, output coordinate change

and polynomial degree conditions, constitute necessary and sufficient conditions for the
existence of observer normal form.

Proof
This has already been done in theorem 2.2 for the case where all indices are the same.
Algorithm 2.4 enables us to extend this result inductively whenever £, < £;,4,. Fay

It can also be shown that we can back-solve for the o injection functions in terms of
the @ coefficients by iterated integrations (see [8]).

For the generic case, where there are two distinct indices, differing by 1, we state the
formula:

Corollary 2.6. For the generic case of two different multi-indices of size A1 and Aq := A\ +1
and multiplicities p; and p,, the coefficient @pm....(7) is given by

w! i aeaiu\l—w(g) 8am:lm—A1(g) _ aeam:)"_w(g)
fI fI etk i=1 gt 837;, 9y; oy -+ 637;?
Jiketks T
Jj=1k=1

In particular, @....(§) is given by theorem 1 for 1 < m < p; and for degree > )\, when
n+1<m<p.

Proof
This is directly calculated using theorem 2.2 and one application of algorithm 2.4. A

To conclude this section, we give an example of coefficients for the (simplest) non-
generic case. Note that it is trivial to back-solve for the derivatives of the a ’s and integrate.

3
;
¢
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We have seen the expansion (6)
This can be converted to general
calculation. However, if we have
suggestive examples
solutions for the general
Example 3.1. Coefficient solutions,
L=4
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To describe the intricacies of t
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for terms of degree equal to ¢.

A proof of this theorem will appear in a forthcoming paper of Phelps [7].
Using Lemma 2.3 and the above theorem (adjusted to the case of P equal indices), we

may in principle compute the general transformation z = z(§), relating observer form (3)
to observable form (2).

4. Conclusion

Two points need to be made here.

First, the “coefficient compatibility” approach
to nonlinear observer calculations simplifi

es in principle the theory and makes unwieldy
bracket calculations unnecessary. Second, the use of Macsyma made it possible to do the
rather extended calculations of examples that made the patterns in the data stand out.
Every aspect of the algorithms for nonlinear observer calculation is readily accessible to
Macsyma programming, and converting the algorithm from its abstract form of “algorithm-
in-principle” to a concrete “algorithm-in-fact” is naturally done in this milieu.
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