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THE STRUCTURE OF SMALL-TIME REACHABLE SETS IN
LOW DIMENSIONS*

ARTHUR J. KRENERY AnDp HEINZ SCHATTLER:

Abstract. This paper outlines a general method to determine the geometric structure of small-time
reachable sets for a single-input control system with a bounded linear control. The authors™ analysis relies
on free nilpotent systems as a guide, and hence their techniques only apply to nondegenerate situations.
The paper illustrates the effectiveness of the method in low dimensions. Among other results is given a
precise description of the small-time reachable set for a system ¥ = f(x)+ g(x)u, |u] =1 in dimension four,
under the generic assumption that the constant controls u = +1 and u = —1 are not singular. As a corollary,
a local synthesis is obtained in dimension three for the time-optimal control problem under the analogous
generic condition.
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1. Introduction. In this paper we study the qualitative structure of small-time
reachable sets in low dimensions for a single-input system with a bounded linear
control. More precisely, we consider a system of the form

(1) S:x=f(x)+glx)u, |ul=1, xeR"

where f and g are smooth (C™) or analytic vector fields and admissible controls are
measurable functions with values in [~1, 1] almost everywhere. A trajectory of the
system corresponding to a control u(-) is an absolutely continuous curve x(-) such
that x(r) = f(x(1)) + g(x(¢))u(t) almost everywhere. We say a point g is reachable from
a point p within time T if and only if there exists a trajectory x(-) defined on an
interval [0, t], t=T, such that x(0) = p and x(¢) = q. The set of all such points g is
denoted by Reach (p, = T); Reach (p, T) denotes the set of points that are reachable
exactly at time T. The reachable set from p, Reach ( p), is the set of all points that are
reachable from p within some time T.

Reachable sets play an important role in control theory. If a system can be stabilized
to a given point by a feedback control law, then that point must be in the reachable
set of every other point. In optimal control problems, if the cost is added as another
coordinate, then the optimal trajectories must lie in the boundary of the set of reachable
points. For this reason the Pontryagin Maximum Principle plays an important role in
studying the boundaries of reachable sets.

The problem of describing a reachable set and the extremal trajectories that
generate its boundary is closely related to the problem of regular synthesis in the sense
of Boltyansky [1] and others [5], [18]. While the problem has been studied extensively
for many years, only a few examples of regular syntheses have been described, for
instance, [24]. Even in low dimensions, the reachable set of a general control system
can be extremely complicated.
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We shall attempt to avoid this difficulty by considering only “nondegenerate”™
systems. By a nondegenerate system we mean one where (i} f, g, and the low-order
Lie brackets of f and g span as many dimensions as is possible given the dimensions
of the state space; and where (ii) no nontrivial equality relations hold between those
vector fields (for instance, if n is the space dimension, then any relation saying that
n vector fields are dependent at a point is considered a nontrivial equality relation,
whereas a relation that simply expresses the fact that a vector field can be written in
terms of a basis is considered trivial).

This is in the spirit of Lobry [14], who described the small-time reachable set of
(1} in dimension three under the assumption that f, g, and [ f, g] are linearly indepen-
dent. The method described below is an attempt to extend Lobry’s result to higher
dimensions. As will be seen, it is successful in the four-dimensional case, but in
higher-dimensional cases obstacles still have to be overcome. These obstacles, however,
are not due to our general approach, but they lie in the fact that, at the moment, too
little is known about the structure of extremal trajectories. We shall return to this
question at the end of the paper. In the paper we shall give a precise description of
the small-time reachable set in dimension four assuming that the constant controls
u=+1and u=—1 are not singular on the boundary of the reachable set. It can easily
be seen (cf. § 4) that this is equivalent to an independence assumption on the vector
fields f, g, (£, g], and [ f+g,[f, g]], respectively, [ f—g,[f, g]]. As a corollary we are
able to improve on recent results of Bressan [4], Schéttler [17], and Sussmann [21]
on time-optimal control in dimension three.

Throughout this paper we will use nilpotent systems as a guide to the general
situation. A system is nilpotent of order k if all brackets of orders greater than k vanish
and if k is the smallest integer with this property. In a certain sense these systems play
the same role as the polynomials do within the class of smooth functions. Nilpotent
systems are the low-order part of the coordinate free Taylor series expansion of a
general system.

To be more precise, we must define the Lie jet of system (1). At a point p the Lie
jet consists of a list of the values at p of the Lie brackets of f and g written down in
some prescribed order. Of course, because of the skew-symmetry and Jacobi relation

(£ gl+le./1=0,  [fle h11+(g[h f11+[h £ g]]1=0,
we need only consider a list of distinct brackets. These brackets can be partially ordered
by the total number of vector fields involved; for example, f is a bracket of order one
and [ f, g] is of order two. The Lie jet of order k is a list of values at p of the distinct
brackets of f and g of order less than or equal to k. The Lie jets of orders one through
four are given below:

Order one:  {f(p), g(p)},

Order two:  {f(p), g(p), [, gl(p)},

Order three:  {f(p), g(p), (£ &)(p), [£ £ 2)1(p).[2 [ £, g11(p)},

Order four:  {f(p), g(p), [/, g1(p). [£ [ £, g1)(p), (2 £, g11(p),

LALA LA 811p), LA e, LS 11N p), [, [, [ £, g111(p)}-
If N(k) is the number of distinct brackets of S and g of order k or less, then the
kth-order Lie jet of (1) at p is a point in the vector bundle consisting of the Whitney
sum of N(k) copies of the tangent bundle.

A basic result of Krener [12], later proved in other contexts by Rothschild and
Stein [15], Hermes [10], Crouch [8], Bressan [3], and Sussmann [20], [21] is that for
analytic systems of the form (1), the kth-order Lie jet at p determines the trajectories
emanating from p up to order O(¢+*"') and up to diffeomorphisms of the state space.
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Sussmann {22], [23], Bressan [4], and Schattler [16], [17] have shown that the
local structure of time-optimal controls in dimension two or three is determined in
nondegenerate situations by the second, respectively, third-order Lie jet at a reference
point. In degenerate situations higher-order jets need to be considered [16], [17], [23].

On the basis of these results we might conjecture that in nondegenerate situations
the kth-order Lie jet at p determines the structure of the set of small-time reachable
points where the Hormander or controllability condition is satisfied, i.e., the rank of
the kth-order Lie jet at p equals the dimension of the state space. And maybe the
qualitative structure of the reachable set can be obtained by looking at a kth-order
nilpotent approximation. Unfortunately, as we mention in the last section, these
conjectures are not completely true, but they do motivate much of our work.

The paper is organized as follows. The next section reviews the Pontryagin
Maximum Principle as applied to the system (1). This also gives us a chance to introduce
some notation and terminology. In § 3, we will describe the main ideas and outline
the general structure of our techniques by tooking at the trivial two-dimensional case.
We will also give a brief proof of Lobry’s three-dimensional result. The main part of
the paper is § 4, where we determine the geometric structure of the small-time reachable
set for the nondegenerate four-dimensional system (assuming that both quadruples
(fglfgllf+gfg])and(f g f gl [f—8&[f gl consistof independent vectors
at p). We also draw the obvious corollaries about time-optimal control in dimension
three. Section 5 concludes with a brief discussion of the free nilpotent five-dimensional
system and explains why the general nondegenerate five-dimensional case is different
from this one.

2. The maximum principle. The Maximum Principle [13] gives necessary condi-
tions for a point to lie on the boundary of the reachable set. Let u(-) be an admissible
control defined on an interval [0, T] and let x(-) be the corresponding trajectory
starting at p. If x(T)e a Reach (p), then x(¢) € Reach (p) for all +<[0, T] and there
exists an absolutely continuous curve A :[0, T]-R", which does not vanish anywhere
such that

(2) A" ==X (Df(x(1) + Dg(x(1)) - u(1)),
(3) (A(r), glx(D)nult)= erll (A1), glx())o,
(4) H = (A1), f(x(1)) +g(x(0))ult))=0

almost everywhere on [0, T]. (We write vectors as columns, (-, -} denotes the standard
Euclidean inner product on R", and Df and Dg denote the Jacobian matrices of f and
g, respectively.) Any trajectory for which an adjoint variable A(-) exists such that
(2)-(4) are satisfied is called an extremal trajectory. The optimality condition (3)
determines the control u(t) whenever ¢(t) = (A(#), g(x(#)))#0; ¢ is called the switch-
ing function and u=—1 (u=+1) on intervals where ¢ is positive (negative). Trajec-
tories corresponding to these constant controls are called bang arcs and are denoted
by X (=f—-g) and Y (=f+g), respectively. A concatenation of bang arcs is a
bang-bang trajectory. Observe that (A(t), f(x(1))) =0 at switching times ¢, i.e., where
(A(1), g(x(£))=0. At these times (3) gives no information about the optimal control.
If, however, ¢ vanishes on an open interval I, then all the derivatives of ¢ also vanish
on I and this may determine the control u. We have

G = (A1), [f, gl x()),
HO =), [f+gu [fg]lx(0),
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andif (A (1), [ g, [ f, g]1(x(1))) does not vanish on I, we can solve for u in ¢ = 0 as follows:

wity — AL N1
(). T, £ gCx(0))

A control of this type is called singular and the corresponding trajectory is a
singular arc.

This suggests that concatenations of bang and singular arcs are the natural
candidates for trajectories in the boundary of the reachable set (but of course no such
regularity statement can be drawn from the Maximum Principle alone). We denote
concatenations of bang and singular arcs by the corresponding letter sequence; for
instance, we simply write XSY for a concatenation of an X-arc, followed by a singular
arc and a Y-trajectory, etc.

3. The main ideas of the technique: the nondegenerate two- and three-dimensional
cases. In this section we analyze the (well-known) structure of small-time reachable
sets in a nondegenerate situation in dimensions two and three. These cases are easy
and give us an opportunity to outline the general ideas of our technique without getting
preoccupied with technical details.

Suppose X is a system of the form (1) in dimension two and assume that f and
g are independent at a reference point p (see Fig. 1). It is clear how the small-time
reachable set from p will look. If we let [ (respectively, I'") be the integral curves
of the vector fields f+g (respectively, f—g) for positive times, then for sufficiently
small T, Reach (p, = T) is the union of ', I, and the open sector R between I’ and
I into which f(p) points. It is easy to see that any point in R is reachable from p;
for instance, if g¢ R, just run a trajectory of X corresponding to the control u = +1
backward in time until it hits I'". The important point is that this is all of the small-time
reachable set. This follows immediately from the Maximum Principle since only
trajectories corresponding to the constant controls u = +1 or u= -1 can lie in the
boundary of the reachable set. (There cannot be a junction, since then both
AL}, fx(6))y and (A (1), g(x(1))) vanish, contradicting the nontriviality of A.)

rt
f+g
P f q
f—g -
FiG. 1

Generalized to higher dimensions, the quintessence of this argument is to have
two hypersurfaces I'* and I', which are generated by extremal trajectories, have a
common relative boundary and “enclose” a region R. Then, to prove that R is actually
the reachable set Reach (p, = T), we must show (1) trajectories cannot leave R through
I or Iy, and (ii) all points in the sector are reachable. The latter is immediate if we
have a drift vector field f with S(p)#0. This is exactly the same argument as in the
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two-dimensional case. Take any point g inside R and run a trajectory of % corresponding
to the control u=0 (or for that matter corresponding to any control) backward in
time. Since f( p) # 0, this trajectory will hit I'* or I, . So basically (i) must be checked;
this is mostly a matter of computing tangent spaces, as will be shown below. This is
the general strategy of our technique.

All technical issues left aside for a moment, the key question is how to come up
with the surfaces I'* and I',. We propose an inductive procedure. Let us explain it at
the next step, which is the case of a three-dimensional system X, where we assume
that f, g and [f, g] are independent at a reference point p. (This is the example
considered by Lobry {14].)

Choose coordinates x = (x,, X», x;) such that {(dx, (f(p), g(p), [ f, g1(p)) =1d, the
identity matrix. The projection of X into the (x,, x,)-plane is then the two-dimensional
system considered above and we know the structure of its small-time reachable set.
Our aim is to find two hypersurfaces I'* and I',, consisting of extremal trajectories that
project onto the reachable set R of the two-dimensional system in dimension three. If
I'* and I', have a common relative boundary that projects onto dR and if I and T',,
do not intersect in their relative interior, then it is clear that these surfaces “‘enclose™
a region R. Then we must check whether trajectories can leave R. If this is impossible,
R is the small-time reachable set.

The Maximum Principle gives preliminary information about I'* and I, because
it describes necessary conditions for trajectories to lie in the boundary of the reachable
set. In this three-dimensional case it actually determines ['* and I', precisely, but in
higher dimensions this is no longer true. It is then that we will use nilpotent systems
as our guide to find candidates for I'* and I',. More on that appears in § 4.

Now that we have outlined the general approach, let us also illustrate the basic
technical arguments by reproving Lobry’s result. It follows from the Maximum Principle
that all trajectories that lie on the boundary of the reachable set are bang-bang. For,
if the switching function vanishes at some f, ie., if {(A(1), g(x(1)))=0, then also
(A(D), f{x())) =0, and hence & (1) = (A (D), [ f, g](x(1))) cannot vanish by the indepen-
dence of f, g, and [f, g] and the nontriviality of A. For dimensionality reasons it is
therefore reasonable to consider the following two surfaces as candidates for [* and I':

[*={pexp(s;(f—g))exp (so:(f+g)):5=0,s,+s,small},
U,={pexp(t,(f+g))exp(t(f—g)): =0, t,+ 1, small}.

We write flows of vector fields as exponentials and we let the diffeomorphisms act on
the right, i.e., p exp (¢f) denotes the point obtained by following the integral curve of
f that passes through p at time zero for ¢ units of time.

It is clear that I'* and I',, are two-dimensional surfaces with boundary. In both
cases the boundary consists of the two curves corresponding to the trajectories of f+g
and f—g and the point p. Furthermore, by the Campbell-Hausdorft formula [11]

pexp (s,(f—g))exp (s:(f+8))
=p exp ((sy+s)f +(s2—s,)g+ 550/ gl+ss,- O(T)),
pexp{(,(f+g) exp(L(f—g))=p exp(tl+t2)f+(t,ﬂt3)g4t,t2[f, gltuty: o(T1))

where O(T) stands for terms that are linear in the total time T. This shows that [™*
and ', do not intersect in their relative interior. So I'* and I, enclose a region R.
To prove that the enclosed sector R is the smali-time reachable set we must show
that there cannot be any other points in the reachable set. As in the two-dimensional
case we have two options: either we show that we have exhausted all trajectories that



SMALL-TIME REACHABLE SETS IN LOW DIMENSIONS 125

possibly can lie on the boundary of the reachable set, or we show that trajectories
starting at points on ['*, Iy, I, or I'_ cannot leave R U M*Ur,Ur*ur_. As it turns
out, this is the same argument, only viewed difterently.

Let us first show that we have exhausted all possible trajectories that can lie in
the boundary of the small-time reachable set, i.e., that such a trajectory is bang-bang
with at most one switching. Let y be a bang-bang trajectory with two switches, say of
the form XYX, with junctions p, and Pyat times ty<<t,. If A=A(t,), then we have
(A, g(p1))=0 and (A, f(p))=0. Also (A1), g(po)) =0 or, equivalently, if we move g
ahead along the flow of the vector field Y we get (A, exp (—(t, —t;) ad Y) X (po))=0.
But A #0 and so these three vectors are dependent: p, and D1 are conjugate points
(Sussmann [22]). Therefore

X(p) A Y(p) nexp (~Arad Y)X(p,) =0

ie, X(p)a Y(p)na[X, Y](p)+O(At) =0, where Ar=1t,—1t,. But such a relation
cannot hold in small time by the independence of X, Y,and [X, Y]. Similarly it follows
that YXY-concatenations cannot satisfy the Maximum Principle.

This computation can also be viewed in the following way. Define a map
F:(t, 6, 6)p exp (4, X) exp (1, Y) exp (£;X) for ¢, small. Then this map has full
rank if 1,> 0. For, if we compute the tangent space to the image, but pull back to
pexp(t,X)exp (1Y), we get exactly the vectors exp (-1, ad Y) X, Y,and X. Therefore
F(t., 1, 1;) is an interior point of the reachable set. Finally, if we pull back the tangent
Space one step further to p exp (¢,X) we have the vectors X, Y, and exp (t,ad Y)X =
X =6[X, Y]+ O(£3). The minus sign at [ X, Y] implies that X-trajectories point inside
R at points on '*, Similarly, it follows that Y-trajectories steer the system into R from
I'*. And this proves that trajectories of the system cannot leave R through I'*, I, , ',
or I'_. (Because of the Maximum Principle we can restrict ourselves to Just looking
at these regular controls instead of having to consider arbitrary measurable functions.
For, if any trajectory would leave R, then there will also have to be additional trajectories
lying on the boundary of the reachable set and these must be bang-bang.)

The structure of the small-time reachable set as a stratified set can easily be
described using the following notation. For neN let

S, ={pexp(s,X) exp (s, Y) exp (5,X)
“rexp(s,B):5,>0,B=Xif nis odd, B=Yif n is even},
S, ={pexp (s, Y) exp (LX) exp (1,Y)
“rexp(4,B): >0, B=X of nis even B = Y if nis odd}.

[n a nondegenerate situation each of the Sn+ is a n-dimensional smooth manifold.
(Certainly this will be true in all the cases we consider here.) In the three-dimensional
case the boundary of the small-time reachable set consists of the two two-dimensional
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strata S, , which have in their boundary the two one-dimensional strata 8, and the
zero-dimensional stratum S, ={p}. S, also lies in the boundary of S, .. If we restrict
the total time to be =T we must make the obvious adjustments. In particular, we must
add the strata SA‘,,‘*A =S8,+NReach (p, T) for n=1,2.

4. The nondegenerate four-dimensional systems. In this section we determine the
geometric structure of the small-time reachable sets from a point p for a system = of
the form (1) in dimension four, where we assume that the constant controls u=+1
and u=—1 are not singular. These conditions can easily be expressed in terms of
independence assumptions on f, g, and lower-order brackets of f and g. For, a constant
control u = u"is singular on an interval I if and only if there exists an adjoint multiplier
A such that (A, £), (A, g), (A, [ £, g]), and (ALf+gu’, [ f, g]1] vanish identically on I. By
the nontriviality of A this is impossible if £ g [/ gl and [f+gu’ [/ g]] are indepen-
dent. Therefore in terms of the vector fields X and Y our conditions are equivalent to

(A) X, Y, [X, Y]and [X,[X, Y]] are independent near p;
(B) X, Y, [X, Y]and [Y,[X, Y]] are independent near p.

If we write [ X, [X, Y]] as a linear combination of X, Y, [X, Y]and [Y,[X, Y]] as
[X,[X, Y]]=aX+BY+y[X, YI+8[Y, (X, Y]],

then (A) is equivalent to & # 0.

The cases §>0 and § <0 are significantly different: if §>>0 only bang-bang
trajectories can lie in the boundary of the reachable set, if 8 <O singular arcs are
possible. Intuitively this is clear. If u is singular on an interval [, then (omitting the
arguments ¢ and x(t))

b= [f+gu gl
=M (I-w[X,[X, Y]]+ (1 T Y, [X, Y]]
:ﬂul—M6+U+uD~MJYIX)QD¢O

and so u=(5+1)/(8§—1). This is an admissible control only if § =0. Note that the
singular vector field is given in feedback form as

5+1 1 X4 -6 Y 8<0
SIS s s X e a0

4.1. The totally bang-bang case: & >0. This is the generalization of Lobry’s
example to dimension four. We treat only the general case here, but we remark that
the structure of the small-time reachable set is the same as for a nilpotent system where
/. & [f,gl, and [f,[f, g]] form a basis and all other brackets vanish. In appropriate
coordinates the latter system is linear.

The key observation again is that the Maximum Principle precisely determines
the possible trajectories that can lie in the boundary of the small-time reachable set.

LeMmma L If y is a trajectory that liescin the boundary of the small-time reachable
set, then vy is bang-bang with at most two switches.

Proof. We first exclude bang-bang trajectories with more switches. Let vy be a
YXYX-trajectory with switching points p,, p., and psandlets,, s,, s, s, be the length
of the times along the respective X-arcs or Y-arcs. At every junction we have
(A, X(p))=0and (A, Y(p))=0. This gives rise to four conditions on A.
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If A is the value of the adjoint vector at the switching time at p,, we have
(X, X(p))y= (X, Y(p.)y =0,
(X, exp (—s, ad YIX(p))=0,
and
(X, exp (s;ad X)Y(p,))=0.

Again, the nontriviality of A implies that these four vectors are dependent (““conjugate
points™). So we get (dividing out s, and s,)

exp (s, ad X)—l) Y/\(exp (—s,ad Y)—1>X

53

0=Xn Y/\(

-85

{5) =XnrYnr[X, Y]+%s3[X,[X, Y]+ O(s3) n ~[ X, Y]+%s2[Y,[X, Y11+ 0O(T?)

:%cr(sz, SHX AYALX, YIA[Y,[X, YD,

where T is the total time along y and O(T?) stands for terms that are quadratic in T}
o is a smooth function of s, and s;. If we express [ X, [X, Y]]lintermsof X, Y, [X, Y],
and [ Y, [ X, Y]], we see that

(6) (52, 83) = 8,4+ 5,6+ O(T?)

where & is evaluated at p,. In a sufficiently small neighborhood of p. 6 is bounded
away from zero and so the linear terms dominate quadratic remainders in small time.
Hence (s, 5,) is positive for s; small; in particular, it cannot vanish, a contradiction.

Analogously, if 7 is a X YX Y-concatenation with switching points q,, ¢,, and q;
and if 1, t,, t5, t, are the times along the respective trajectories, then we get

—tad X)—1 tad Y)—1
0=X A w(e’(p( :2d X) )w(e"p(” ) >X
—t, t
(7)
1
:ET([?’ X AYA[X Y]ALY, [X, Y1),
where
(8) T(ts, 1) = —t;— 6,8+ O(T?)

is a smooth function of 1, and ¢, near the origin. Again, since & is bounded away from
zero near p this function is negative for small times, a contradiction.
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It now follows that, in fact, any trajectory that lies in the boundary of the small-time
reachable set is bang-bang. This is an easy but slightly technical argument. We will
do it here rigorously since we will need the computations later on anyway. The point
is that we do not have a priori knowledge about regularity properties of the controls,
¢.g., that they are piecewise constant. This is the case if and only if the zero set Z(¢)
of the switching function ¢ is finite. If it were infinite, then the set N, of limit points
of Z(¢) would be nonempty. In fact, it is a closed, nowhere dense, perfect set. (If
t, < t. are points in N(¢) then, since ¢ cannot vanish identically, ¢ is different from
zero somewhere in (f,, t,) and by continuity it is different from zero on a whole interval.
It is perfect, i.e., every point t€ N(¢) is a limit point of points t, € N(¢), t, # t, since
N{(¢) cannot have isolated points. We can see that this is so, since we know already
that bang-bang trajectories with more than three switchings do not lie in the boundary
of the small-time reachable set!) Suppose t, <t are times in N(¢). There exists
a ic(1,t) such that ¢(F)#0. Let 7 i=sup([r,,f]NN(¢)) and let L=
inf ([7,, -] N($)). Then i, < f», f;€ N(¢), and Z(¢) N[, &,] is finite. This implies
that y contains subarcs of the form *B- and - B+, where B denotes a bang arc (X or
Y), - stands for any switching, and * stands for a junction in N(¢). Observe that
$(1)=0if re N(¢p). We will now show that none of these concatenations can lie in
the boundary of the reachable set and this will prove the lemma.

Without loss of generality we consider a concatenation of the form * X+ with
switching points p, and p, and let ¢ be the time along X. Then, if X is the value of the
adjoint vector at the switching time corresponding to py, we have

(A, X(po))y = (A, Y(po)) = (A, [X, Y(po))=0.
Also (X, exp (—tad X)Y(p,)) =0 and so by nontriviality of A we again get
0=XAYALX, YIAY—[X, Y]+ (X, [X, Y]+ O(t)

9)
( =1+ 0(O)X A YALX, YIALY [X, Y]], .

This cannot hold in small time. Analogously it follows that no * B or - B* concatenation

can lie in the boundary of the small-time reachable set if 8 # 0. This proves the lemma

(and note that the argument is valid in general under assumptions (A) and (B)). O
It is now clear that the surfaces ['* and I', must be as follows:

I'*={pexp(s,X)exp(s;Y)exp(s;X): 5,20, small},
I,={pexp(,Y)exp(;X)exp(Y): t, =0, small}.

I'* and I, are three-dimensional surfaces with common boundary C that has precisely
the structure of the boundary of the small-time reachable set in dimension three. It is
the union of two two-dimensional surfaces made out of XY- and YX-trajectories
respectively, glued together along the X- and Y-trajectories.

We will now show that I'* and I', do not intersect away from C, in particular that
they enclose an open region that will be the interior of the small-time reachable set.

DEFINITION. We say a point g is an entry point (respectively, an exit point) of
a (closed) set S for a vector field Z if for some £ >0, S {q exp (tZ): —e=1=0}={q}
(respectively, if SN{gexp (1Z):0=t=¢e}={q}).

Lemma 2. For sufficiently small T the points in I'* are entry points for the small-time
reachable set from p for [ Y,[X, Y1]. The points in I, are exit points.

Proof. If g is an exit (entry) point for Reach(p,=T) that does not lie in
Reach ( p, T), i.e., exit or entry is not due to the time restriction, then the corresponding
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trajectory is extremal and the adjoint multiplier satisfies the transversality condition
ALY [X, Y]gh=0 (4, [Y,[X, Y11(¢))=0). We claim that necessarily

gel'y (gerI™),
Recall that the second derivative of the switching function is given by
B0y =((0), [f+gu, [f, g1l(x(6)))
(10) =3l u(O)A [X,[X, Y]I(x(1)))
I+ u()A LY, [X, Y]I(x(1))).

Expressing [ X, [ X, Y]] in terms of X, Y,[X, Y], and [, [X, Y]], we get a linear
combination of terms A, X), (A, Y), (AL [X, YD, and ALY X, Y1D), where the
coefficient at (A, [ Y, [X, Y]] is

21 =) +5(1+u) = Min (1, ) > 0.

whereon [0, T], T = L+ 6+t For sufficiently small T these functions will be bounded
in absolute value on [0, T] by any & > 0. Because of (B) kA (1), [ Y, [X, YT)(x(¢)))| can
be bounded away from zero on [0, T). By choosing &, ie, T small enough,
(ALY, [X, Y]]) dominates all other terms in (10), that is, we have in small time: ¢
has constant sign equal to sign ((A, [ Y, [ X, YID). But (A, [ Y, [X, Y]] >0 allows only
for XYX-trajectories and ALY [X, YID<o permits only YX Y-concatenations. This
proves our claim.

We still need to show that points in ['* and [y in fact have these optimization
properties. Suppose y is a XYX trajectory. Then the tangent space at the endpoint is
spanned by X, exp (—t,ad X)Y and exp (-1, ad X)exp(—t,ad Y)X. Note that
[Y,[X, Y]] always points to one side of the tangent space since

X nexp (—t; ad X)Y nexp (—t,ad X)exp(—t,ad Y)X ALY, [X, Y]]

exp(-tad Y) )X

:~t2<X/\exp(—t;adX)Y/\exp(—t3adX)( ;

(1) ALY X, Y]]
=L(XAY - 0[X, Y]+ O(2) A[X, Y1+ O(T)alY,[X, Y]])
=L+ O(T))(X A Y A[X, YIALY,[X, YT])).

If we write the defining equations for I'* and 'y in terms of canonical coordinates
of the second kind, that is, as products of the flows of the vector fields X, Y,[X, Y],
[Y,[X, Y]] in the form

(12) P exp (x,.X) exp (x,Y) exp (x;[ X, Y exp (x[Y,[X, Y]]),

then this implies that we can think of ™ as the graph of a function x, = W(xy, x5, x3).
It also follows from (12) that the integral curve of [Y,[X Y]] through p and the
compact set Reach (p, T) are disjoint for small positive T. Therefore, given T, there
exists a 7= T with the following property. Any integral curve of [Y,[X, Y]] that
passes through a point on I'*(T), the set of all trajectories in I'* of total time < T, does
not meet Reach (p, T). This implies that the points on *(T) are entry points for the
small-time reachable set. For, if ge I'*(T) is not an entry point, then by compactness
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there exists an entry point of Reach (p, =T) of the form g exp r[ Y, [X, Y]]. Since this
flow does not meet Reach (p, T) this point must lic on I'* and this contradicts the
graph property. Analogously the result follows for I',. 0

An easy computation shows that, if [* and I', would intersect away from C, then
it would have to happen transversally. This would contradict Lemma 2.

The geometric structure of the small-time reachable set is now clear. It is the exact
analogue of Figs. 1 and 2 in four dimensions. Its boundary consists of the surfaces I,
and I'* that match up along C, the set of points reachable by a bang-bang trajectory
with at most one switch. The open region enclosed by I'* and I', is the interior of the
reachable set. A stratification of its boundary is given by S, and S, , for n=1,2,3
{see § 3).

Remark. This qualitative structure of the small-time reachable set for a totally
bang-bang system generalizes to arbitrary dimensions under the conditions of Krener’s
and Sussmann’s nonlinear bang-bang theorem [19]. Suppose that the vector fields f
and ad' f(g), i=0,---,n—1 are independent at p and that for i=0,---,n—1 there
exist smooth functions «,; and B; with | B:(p)| <1 such that

[5.0d' /()] = £ o, ad'f(g)+ B2 f(g).

Then it follows that for sufficiently small-time T all trajectories that lie in the boundary
of the reachable set from p are bang-bang with at most n switchings. A stratification
of the boundary is given by the strata S;={p} and S, ., k=1,---,n. In particular,
points in S, , are exit points of the reachable set for (~1)"""ad""' f(g), points in S,
are entry points. Given the results on the structure of trajectories in the boundary, this
is a straightforward generalization of the argument above. All the difficult work has
been carried out by Sussmann in [19], specifically in the proof of Lemma 3 there.

4.2. The bang-bang singular case: 8 <0. This case is a nontrivial extension of
Lobry's result. Here not all the extremal trajectories actually lie in the boundary of
the small-time reachable set. It is therefore not clear how we should choose I'* and
[',. We now use the structure of the small-time reachable set for the corresponding
free nilpotent system as a guide. The only reasonable nilpotent approximation to
choose is one where all brackets of orders greater than or equal to 4 vanish. Note that
f. ¢, [f g), and [g [ f, g]] are always independent in this case. Since we want to work
with a system as simple as possible, we also assume [ f,[f, g]]1=0. This is an equality
relation in the third-order Lie jet, but in a slightly more general setup (weighted Lie
algebra) this would be a free nilpotent system. Therefore we refer to this system as
the “free” nilpotent case. We will first analyze a model of this “free” nilpotent case,
and then we will show that the general case has the same qualitative behavior.

4.2.1. The reachable set in the “free” nilpotent case. To simplify some computations
we restrict ourselves to the following model X:

. . . 1.2
(13) Xo=1, Xy=u, X=X, X;=3X|.

Note that [g, £ ](x) = (3/3x,) + x,(3/x3),[ g [& f1]1=9/3x; and all other brackets vanish
identically. It is clear that the qualitative structure of the reachable set from the origin
at any time is the same as for the smali-time reachable set: one is a rescaling of the
other. (If u is a control defined on [0, T] and x is the corresponding trajectory, then
the time ! reachable set can be obtained from the time T reachable set by letting
a(t)y:=u(t/T)and 5(1):=T'x(t/T) fori=1,2,3.) To determine the reachable set it
therefore suffices to look at time slices T = constant, and without loss of generality we
can assume T =1.
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If A =(Ao, A, A5, A5) " is an adjoint vector for an extremal trajectory x(-), then
Ay is the switching function and

/\1: —Ar—Asxy, /.\z:(), )-\320,

and in particular X'l = Ayu, Le., u=0 is the only singular control. Note that, if A, =0,
then A, is a linear function and the extremal trajectory is uniquely determined. By a
theorem of Bressan [2] this implies that the reachable set is convex in direction of
(0,0,0, )" or equivalently in the direction of [g, le./11=3(X,[X, Y]]; that is, if
(po, py, p>,a) and (Po, pi,p2, b) lie in the reachable set, then the whole segment
{(po, P\, P2, €): a=c=b}lies in the reachable set. It is therefore clear what the surfaces
I'* and I', have to be: I'* consists of trajectories which are exit points for [ X, [ X, Y]]
and I', of those which are entry points. Equivalently, we can speak of trajectories that
maximize/minimize the coordinate X3.

For extremal trajectories that give rise to entry/exit points for [X,[X, Y]], an
additional transversality condition was to hold. One of the directions £[ X, [X, Y1
can be separated from an approximating cone to the reachable set at this point. In
our case these conditions simply say that A3 =20 for trajectories that minimize x, and
A3 =0 for those that maximize x;. In particular A3 =0 for those that do both and these
trajectories are bang-bang with at most one switching. So again the common boundary
of I'" and I', will be a set C that has the structure of the boundary of the small-time
reachable set in dimension three.

We now determine I',. We can assume Ay>0 and without loss of generality
normalize A; to 1. Thus, A, = —u and so Ay is strictly convex and positive along X,
strictly concave and negative along Y. Singular controls satisfy the generalized
Legendre-Clebsch condition [13]: Mg [f, g]l)=-1,<0. It follows that the only
extremal trajectories are concatenations of a bang arc, followed by a singular arc and
another bang arc. We now restrict to the time slice T = 1. Define

I' . ={0exp(5,X) exp (s2f) exp (5;X): s, =20, st s, +s =1},
oo ={0exp (5, X) exp (s5.f) exp(s;Y):5,20,5 +s,+5;=1},
oo ={0exp (1, Y) exp (6,.1) exp (£, X): 20,6+ =1},
Uioi={0exp (1, Y)exp (tf) exp (1,Y): 1, 20,6, +6,+1=1.

We will show that these are two-dimensional surfaces with boundary which match up
and together form I', with

aly ={0exp (s, X)exp (5,Y): 5,20, s, +5,= 1}
U{0exp (1, Y) exp (,X): ,20, t,+1,=1}.

LEmMA 3. Each of the sets T'.,. is a two-dimensional surface with boundary. For
any two of them the images of the open simplices are disjoint. Furthermore,

g O go=T_o={0exp (s, X) exp (5:0):5,20,5,+5,=1},
ooy =Ty ={0exp (s,f) exp (5,X): s, z0,s;+s,=1},
oo Mo =Ty ={0exp (s):0=s=1}=T o, AT,,_,

Uil =T, ={0exp (s,f) exp (s, Y): s, z0,s,+s,=1},
Fio N1 =T.,={0exp(s,Y) exp(s.f): 5205 +s,=1}

Graphically, these relations can be illustrated as shown in Fig. 4.
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The proof of the lemma consists of straightforward computations that we shall
only illustrate in one case. It is easy to see that all the maps are regular with rank 2
in the interior, and it is clear how the maps behave on the boundary. So the I, are
two-dimensional surfaces with boundary. To prove that the images of the open simplex
under different maps are disjoint, we choose a way that does not use the specific form
of the equations, but works with a basis provided by the vector fields f, g, [ f, g1, and
[g, [/ g]]- This also gives an idea how the analogous argument in the general case
runs. We rewrite the defining equations in terms of canonical coordinates of the second

kind as products of the flows of the vector fields f, g [f, g1, and [g, [/, g]]. Since in
this case

(14) exp(ft+g)=exp([g [f, g]l/3)exp([f, g1/2) exp (g)exp (f),

we get, for instance, for [',4,:
Oexp (1,(f+g)) exp (ff) exp (:(f +g))
=0exp ((itilg [f, g11) exp (311l £, g]) exp (1,8) exp (1, +1,)/))
xexp Gt3[g [ g1]) exp G130/, g1) exp (1:8) exp (£:.f)
=0exp ((s(t,+ 1) + 6604 +36)) 8 L 21D exp (Gl + 6)7+ 66) f, g1)
xexp ((t, +1;)g) exp ().

Analogously we have for I'_,,:
0exp (s,(f—g)) exp (s2f) exp (s:(S +g))
=0exp (557~ 5183 +353+35253— 515:85)[ & Lf, 21D

xexp ((—3s1+3s3+ (s +52)53)0f; g1 exp (55— 51)g) exp ().

A simple computation shows that the equations we obtain by equating the coordin-
ates have no positive solution. Similarly this is shown for all pairs of surfaces. The
statements about the intersections are"then clear. 0

This shows that I, is a two-dimensional stratified set with its one-dimensional
relative boundary dI'y, made out of bang-bang trajectories with at most one switching.
Figure 4 gives a precise description of the stratification. We now show that the points
on I', are, in fact, the points that have the smallest x; coordinate among all points of
Reach (0, 1) with a fixed (x,, x{, X,).
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Let us first compute the tangent spaces to the surfaces I'.,.. Note that in each
case the' pullback of the tangent space to the endpoint of the singular arc simply
consists of the space spanned by the vectors g and [ f, g] evaluated there (remember
that we are working in the time slice T = 1). This implies that [ X, [ X, Y]] = 2[g.{g, 1]
always points to one side of the tangent space. In fact,

exp(—tad(frg)lgnexp(—tad (f£))f glale [f gll=1gnlf glrlal/ gl

In the limit this also holds for the one-dimensional strata. Therefore [ g, [g, /1] always
points to one side of the stratified surface I'y. It is easy to see that, in fact, we can
think of I, as the graph of a piecewise defined function X3 =4(x,, x,). (The projections
of the images onto (x,, x,) intersect only along the projections of the intersections of
the surfaces I',, .) Since we have exhausted all possible extremal trajectories that can
minimize the coordinate x, with Iy, it is now clear that given (%,, Xy, %;)el’, any
other point (x,, x,, x;) € Reach (0, 1) with x, = %, and x, = X, must satisfy x; > x,. This
concludes the analysis of T'.

Next we will determine I'*. Here we can assume A;=~1 and so Xl =u, i.e., the
switching function ¢ is convex when ¢ is negative and concave when ¢ is positive.
This clearly suggests bang-bang extremals. However, now the situation is significantly
different from all previous cases: it will turn out that the times along bang arcs are no
longer free, which in turn will mean that we cannot a priori exclude bang-bang
trajectories with a large number of switchings. In general, it is a very difficult problem
to eliminate extremal trajectories with a large number of switchings (cf. [4] or [16]).
It turns out that in our approach we do not even have to address this issue.

Let us start by showing that the times along bang arcs can no longer vary freely.
Suppose we have a concatenation of a Y-trajectory followed by an X-arc with switchings
at the beginning and the end (-XY-). Call the switching points p,, p,, and p, and let
s and ¢ be the times along X and Y, respectively. Then p,, p,, and p, are conjugate
points and therefore

O=exp(—sad X)Y A XA Yaexp(tad Y)X

w(exp(—sadX)—l exp (r ad Y)—I)X
) t

)Y/\X/\ Y/\(
=XAYA[X, Y]+s[g [fgllnlY, X1-1[g [ g]]
==X AYA[X, YInlg[fg]D).

Hence s =1 and the same is true for a - YX--concatenation. Therefore, so as not to
violate the Maximum Principle, and since we do not expect any degeneracies in the
structure of the reachable set, we restrict ourselves to the following two surfaces:

~’={0 exp (s;X) exp (s, Y) exp (5;X): 5,=0, Sitsts=1,5=s,,5=s,},
I ={0exp (1,Y) exp (,X) exp (1, Y): LZ0, 6+ 6L+ 65=1,6=1,, ,=1,).

Our aim is to build I'* out of trajectories from I"* and "~ However, as they are at the
moment, we still have too many extremal trajectories. The surfaces [~ and " have a
nontrivial intersection y. To see this let us rewrite the defining maps in terms of
canonical coordinates as follows:

Oexp (s:.X) exp (5:Y) exp (53X) =0 exp (5,5:(5,— 5,)[g, [f; g1]) exp (s,5.[ X, Y1)

xexp (5, Y) exp ((s, +55)X),
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Oexp (1, Yyexp (LX) exp (1Y) =0exp (6-6:20, -6+ 6)[g, [ f, g]lD exp (L[ X, Y]
xexp ((t;+1:)Y)exp (1,X).

It we equate the coordinates, it follows easily that s, = t;, s, =1, and s; = ¢,. It follows
that I'" and [ also intersect along the one-dimensional curve

y={0exp (sX)exp(Y/2) exp((i—-s)X):0=s=3
We need to analyze the intersection more closely. Let
qg=0exp (s, X)exp(s,Y)exp(s:X)ev.

Then the tangent space to [ at ¢ is spanned by (recall that s;=1—s5, —s,)
exp(—syad X)exp(—s,ad V)X - X =5,([X, Y]+ 2s;—s2)[g [ f 21D,
exp(—s;ad X)Y — X =2g — ;[ X, Y]-s3(g [ f, g]].

The point ¢ also lies on [ anda tangent vector to " at q is

t=exp(—nad V)X -Y="2g+4[X, Y]-tilg [/ 2]l

In the intersection f,=s,='s, s,=5and s,=5—s. Thus

T,0 nt=AQgn[X, Y]rlg [f 1)

where

Hence ' and I’ intersect transversally except at the endpoints of 7 (s=0, s =3
Observe that the endpoints are characterized by the condition that the conjugate point
relation s =t (=3) holds. We need to know which surface has a larger x;-coordinate.
It follows from

T,0 alglef1]=-2gr[X Yialg[f gl

that ¢ and [g,[g, f]] point to the same side of [ at g. Observe that x, =0 for points
on v. Since the coefficient of ¢ at g is negative, the points of ™ for which x, <0 have
a larger x;-coordinate than those points on . Conversely for x, > 0 the x;-coordinate
of points on Tl is larger. Therefore we define

={0exp (s, X) exp (s:Y) exp (5:X): 5,20, s, +5,+5;,=1, 5,23},
Y= {0exp (, Y)exp (LX) exp (£,Y): 1, =0, L+nb=1, 25

Observe that [ has the Y-trajectory in its boundary and that the X-trajectory lies in
the boundary of ['". Define I'*:=T"U r “. It follows from above that [X, [X, Y]]l=
2[ g, [g, /1] always points to one side of I , and similarly this holds for I'*. Since x, =0
for points in I'”, x, =0 for points in T'* and x, = 0 exactly on the intersection, it follows
that I'™* is a piecewise defined function x; = ¢(x, x,).

It is obvious that 3aT'* consists of all trajectories that are bang-bang with at most
one switching, i.e., 31 =aI', . Graphically, the structure is illustrated in Fig. 5.

By dxrectlonal convexity it is clear that the whole set R between I'y and I'* lies
in Reach (0, 1). We need to show that if lies nowhere else. The pomts of I and I~
that we deleted lie in the interior of R. (We deleted those points on I , respectively,
[" that lie below [~ , respectively, ["* in the direction of [ X, [ X, Y1].) But this implies
that the endpoints of bang-bang trajectories with more than two switchings lie in the
interior of the reachable set. Suppose we have an extremal XYXY-trajectory with
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times s,, s, s, and s, along the trajectories. Then s,=s, by the conjugate point
relation, and thus s, < s, +s,. By the invariance of the structure of the reachable set
it follows that 0exp (s,X) exp (5, Y) exp (s,X) € int Reach (0,5, +5,+s,). (This is a
point of the type we deleted!) Hence the trajectories that define I'* and I'” are the
only extremal trajectories that can lie on the boundary of the reachable set. This proves
R =Reach (0, 1).

Summary. For every time ¢ the time —¢~ reachable set is a stratified set that is
topologically a sphere. Its boundary consists of two hemispheres ['*(¢) and I, (1) whose
common relative boundary aI'*(¢) consists of all points reachable in time ¢ by a
bang-bang trajectory with at most one switch. I'*(t) consists of all bang-bang trajectories
with at most two switchings for which the time along the intermediate arc is greater
than or equal to the sum of the times of the adjacent arcs. I' (¢) consists of all trajectories
that are concatenations of a bang arc, followed by a singular arc and another bang
arc, where the times along these trajectories are free subject to 0=time=r The
stratification of its boundary is given in Figs. 4 and 5.

4.2.2. The general case. We now show that the qualitative structure of the small-
time reachable set does not change in the general case. Clearly, some of the arguments
will have to be adjusted: for instance, the correct generalization of the arguments using
directional convexity now use the integral curves of [ X, [X, Y]]. However, finding a
general version for the explicit computations in the analysis of the bang-bang extremal
trajectories is crucial.

We first define I',. Recall that the singular control is given in feedback form as
u=(8+1)/(8—1) and since 6§ <0 we have no problems with u hitting the control
constraint |u|=1 in small time. Let p=1/(1-8), pe(0,1), and let S:=
SfHE+D)/(8-1)g=pX +(1 —p) Y, be the singular vector field. Define

Iy ={pexp (s X)exp(s,S) exp (5;X): 5,20, smali},
I' v={pexp(s,X)exp (s,5) exp (s;Y): s, =0, small},
Fioo={pexp(1,Y)exp (5,5) exp (£X): 1, =0, small},
Uivi={pexp (£, Y)exp (£,5) exp(t;Y): 1,20, small},
Fe=I'., Ur_ur,, ur,,,.

If we replace f by S in Lemma 3, then the statement stays true verbatim for I',
instead of I',,,. (The computations are a straightforward though somewhat messy
extension of the computation in the “free” nilpotent case and we omit them.) So again
I’y is a stratified two-dimensional surface; its one-dimensional relative boundary 4I',,
is made out of the bang-bang trajectories with at most one switching.
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Lemma 4. For sufficiently small T the points on I, are entry points of Reach (p, =T)
tor [ X, [ X, Y]]

Proof. The strategy is the same as in the proof of Lemma 2. We first show that
the extremals on I', satisfy the necessary transversality condition for entry points
(which are not due to the time constraint). Then we show that I, actually is a graph
with the coefficient of the flow of [ X, [ X, Y]] as dependent variable. As in Lemma 2
this suffices to prove our result.

If y is any trajectory containing a singular arc then, for sufficiently small time,
(AL LXC X, YT will dominate (A, X), (A, Y), and {A,[X, Y]), in particular, it has
constant sign. Along the singular arc (A, [ X, [ X, Y] =26/(1-8) (A, [g [ X, Y])) and
the generalized Legendre-Clebsch condition implies that (A, [ X, [X, Y]]} is positive.
This shows that points in ', satisfy the necessary transversality condition. An argument
analogous to the one made in the proof of Lemma 1 shows that, in fact, any extremal
trajectory for which (A, [ X, [ X, Y]]) is positive has to be of the form BSB, that is, we
have exhausted all possible candidates. To prove that indeed each point on I'y has
the entry property, we show again that we can think of Iy, as the graph of a piecewise
defined function x; = (x,, X,, X,), where (x,, x;, X,, X3} are canonical coordinates of
the second kind, and x; is the coeflicient at the flow of [ X, [ X, Y']]. Let us consider,
for instance, I',, . It is easier to compute the pullback of the tangent space to the
endpoint of the singular arc. It is spanned by X, S, and exp (—t, ad S)X. Note that
S=pX+(1+p)Y and it follows by induction that ad" S(X)=a, X +8,Y +y.[X, Y]
with smooth functions «,, 8,, v.:

[S,ad" ' S(X)]=[pX +(1-p)Y, @, \ X +B, Y+, .[X, Y]]

= Y (XX, YIIH(1-p)L Y, [X, Y]I) +f, g or [ f, g] terms
=p(aX +BY +y[X, Y]).
Also [S, X]=[pX+(1—p)Y, X]=2L.(p)g+(p—1[X, Y]. Therefore
XAaSnexp(—1,ad )X =(1-p) 61+ 0(t,) - (fagnalX, Y]).
Now if we take the wedge-product with [ X, [ X, Y]] pulled back along X, ¢, this yields
X naSnexp(—t,ad S)X aexp(ad X)X, [X, Y1)
=(1-p)’6+0(T)) - (frgnalfigln[ X, [X, Y]]

and there are no problems with dominance since ¢, factors. Hence [ X, [ X, Y]] always
points to one side of I'; ;_ in the interior. Analogously it follows for the other surfaces.
By continuity this also follows for the one-dimensional strata. Straightforward but
slightly more tedious computations show also that the projections of the relative
interiors of the sets I', ;. onto (x,, x,, X,)-space are pairwise disjoint. Therefore I' is
a graph in canonical coordinates. This proves the lemma. g

The analysis of the bang-bang extremals is more difficult. We start by computing
the conjugate point relations. Suppose vy is a - X YX--concatenation starting at p with
junctions at p, p,, p», p; and times s,, s,, s; along the respective trajectories. Then we
have (the vector fields are evaluated at p,):

exp (—s, ad X)~1) YA<€XP(52 ad Y)—l)X

-5 82

0=Xn Y/\(
(16) =XaAYr[X, Y]—%sl[X, [X,VY]]+O(ST‘)/\ - X, Y]—%SZ[Y,[X, Y]]+ O(s3)

=20 (X A Y ALX, YIALY.OX, YD,

where g (s;, 52) = —5,6 —s5,+ O(2).
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The equation &(s,,s,) =0 has a unique solution 5(s,) and in general XYX-
trajectories only satisfy the necessary conditions of the Maximum Principleif s, = 5,(s,).
Note that ¢ (0, s,) <0 and so this is equivalent to ¢g(s,, s,) =0. (Using an argument
analogous to (9) it can be shown that extremal trajectories do indeed have switchings
at s, ='s;, but we will not need this.) Furthermore,

exp(—s,ad Y)—1

0=X(p,)n Y(Pz)/\< )X(Pn)

$>

A(exp(s3adX)~l
53

>Y(l73)
=XaAYar-[X, Y]+%SZ[Y,[X, YII+---a[X, Y]+%s}[X, [X, Y]+ --

:é&(sz, sSHX A YA[LX, YIALY,[X, Y1DI,.

where G (s,, 5;) = —s,— 5,8 + O(T?). ,

Again the equation ¢(s,, 5;) =0 can be solved by 53(s,), and YXY-concatenations
only satisfy the Maximum Principle if 53 =55(s2). Since &(s,,0) <0 this is equivalent
to a(s,, §5) =0.

Therefore we define

= {pexp (s, X)exp(s,Y)exp(s;X): 5,20, small, s, is free,

(s, $)=0, 6(s,, 53) =0},

Analogously we must compute the conjugate point relations along a - YX'Y--concatena-
tion which yields

= {pexp(t,Y)exp(,X)exp(,Y): 1, =0, small 1, is free,
7, L) 20 L= H(6)7(, ) 209 L= 1(1)}
where
(i, ) =—6-68+O0(T%),  #(ty,t)=—68—1,+O(T?)

and f, and 7, are the solutions of 7=0 and 7=0, respectively. I'" and [ are three-
dimensional surfaces with relative boundary made up entirely of bang-bang trajectories
with at most one switch.
LEMMA 5. The surfaces '™ and T* intersect along a two-dimensional surface .
The intersection of T' with the relative boundaries ol and al'* are the Sollowing
one-dimensional curves:

Y={pexp(si.X)exp(s;Y): 5,20, small, s, = 5,(s,)},
y={pexp(t,Y)exp (6,X): t,=0, small, t, = t (1)}

(i.e., the trajectories corresponding to the conjugate points). Away from y and y the surface
entirely lies in the relative interior of 1~ respectively, I* and there the intersection is
transversal.

Proof. We want to solve the equation

(17) pexp (s;:.X)exp (s, Y) exp (5:X) =pexp (£, Y) exp (,X) exp (£, Y).
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Suppose a point g in the relative interior of ['' or I lies on . We claim that (16)
can be solved in terms of ¢, and t, near g. This follows from the Implicit Function
Theorem if the Jacobian with respect to (s,, 2, S5, {3) is nonsingular at g. If we compute
these derivatives and pull the vectors back along X we get

exp({—ssad Y)X A YA Xnexp(s;ad X)Y
—-s,ad Y)—-1 syad X)—1
:SJS;(X/\ Y/\(exp( 22 ) )XA<M_) Y)

-85 AX!

1 . .
:;S?s‘s . (r(sla SX)(‘X A Y[Xa Y] A [ Y; [X’ Y]])Ip_yr'p exp (s X)exp(s2¥Y)-

But in int (') s, and s, are positive and also o (s, s;) <0 since the conjugate point
relation does not hold. So we can solve in terms of ¢, and ¢,. This computation shows
also that ['" and [ intersect transversally in int (I'") or int (f ).

Next we show that points g of this type exist. For that we rewrite both sides of
(17) in terms of canonical coordinates of the second kind. A short computation (cf.,
for instance, [16]) shows that

pexp (s;X)exp (s;Y) exp (s3X) = p exp (3515:(5:8 + 5, + O(SNY, [ X, Y]])
cexp (5,5 (1+O(SNHIX, YD
~exp ((s;+O(S)) Y) exp ((s,+ 55+ O(5%)) X),
pexp(t,Y)exp (6, X)exp (t;Y)=pexp (36626 + (;+ 1,8+ O(THIY, (X, YT
cexp (LL(L+O(THLX, Y]
cexp (6, + 6+ 0(T*) Y) exp (1, + O(T) X)

where O(S*) or O(T*) stand for terms of order greater than or equal to k in the total
time, S =s,+s,+s,, T=1t+16,+1;,and § is evaluated at p. Equating coeflicients we get

(i) s,+5+0(S)=06,+0(T),

(il) 5.+ 0(SY=1,+1,+0(T?),

(i) §,5:(1+ O(8)) = tr45(1 + O(T)),

(iv)  5,55(5,8 + 55+ O(S%)) = 6,126, + t,+ 1,8 + O(T?)).

(18)

If we assume that all switching times are comparable, i.e., of order T, then (18(i), (ii)),
and

(iv) s8+5+0(8)=20+1+1,8+0(T?)

can easily be solved for s in terms of t+ modulo higher-order terms:
1
s = t2+g t+O0(T?,
(19) s2= 4+ 6+ 0(TY),
1 . 2
5y = —g t,+0(T).

With these times the conjugate point relations cannot hold since

(20) G(55,83) = —$,— 58+ O(TH) = -1, + O(T?)
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is negative. So the corresponding point g lies in fact in the relative interior and therefore
it is possible to solve for 1y in terms of t, and t,:

2n ty=—1,=8t,+ O(T?).

This gives a solution to (18). Note that
2 T )
(22) L=pT+ O(T~):ﬁ+ o(T?).

As long as (1, t,, t;) are bounded away from the boundary of the simplex
Hi+i,+ ;= T, the times are comparable, these computations are Justified, and we get
a two-dimensional intersection that we can parametrize by ¢, and t,. The problem is
whether it extends all the way to the boundary. But the equations (19) and (21) are
well defined for t,-0 (in a time-slice Lhtnh+t6=T it follows that t;—> =8t,+ O(13),
i.e., to alimit of order T By (20) this implies that the two-dimensional surface defined
by these functions of (1, t,) stays away from the conjugate point condition a(s,, 5;)=0.
Hence the implicit function theorem is still applicable.) Therefore [ extends all the
way out to ¢, =90, i.e, to the XY boundary surface.

A precise characterization of "' N N {pexp(s,X)exp(s,Y): $; =0, small} is
possible. Clearly these are points such that ¢, =0, L=3$,, 3=5,, and 0=s5,. Since
(s1,5,0)edom ™ we have a(s,,5)=0, and since (0,5,,5,)edom ™ we have
7(s,, 5,) 2 0. But in this case a(s,, s)) =7(s,, s,) (cf. (16) and the analogous formula
for 7). Therefore g(s,, s,) =0, i.e., s, =5,(s,), the conjugate point relation.

This proves that T N T extends all the way out to the XY-boundary surface and
that the intersection with the X Y-surface is the one-dimensional curve y consisting of
the conjugate points.

Analogously we can show that (17) can also be solved in terms of s; and s, in
int (f‘ '). Using these formulas we can show that - NI extends all the way up to the
YX-boundary surface and that the intersection of I'" NI with the YX-surface consists
of the curve v. 0

Note thatin a time-slice t+t,+t;= T the qualitative geometric structure of I'~ U **
is exactly as in the free nilpotent case. Only the condition t,=T/2 is replaced by
L=(1/(1-8)) T (modulo higher terms) which shifts T away from the center. This is
illustrated in Fig. 6.

The surface [ bisects [ and '™ and only one of the two components has the Y-,
respectively, X-trajectory in its boundary. We define ' and I'* to be these components

Xy (b<-1

-+ b7
X Y
+

YX Y

b Y

-
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and let I =T"UT . It is then clear that ['* is a three-dimensional stratified surface
whose relative boundary consists of all bang-bang trajectories with at most one
switching, i.e., sl'* =4l .

LemMma 6. The points in T* are exit points of the small-time reachable set for
[X,[X, Y]]

Proof. 1t is easy to see (cf. (10)) that, for sufficiently small time, all extremals on
I orl” satisfy the necessary transversality condition (A, [X, [X Y] =0.

We show first that the points that we deleted from I and ' are not exit points
(see Fig. 7). Let

g=pexp(siX)exp(s,;Y)exp(s;X)=pexp(t,Y)exp (t,X)exp (1Y)

be a point in the relative interior of {. T and I'* intersect transversally. It follows as
in the proof of Lemma 2 (cf. (11)) that the XYX- and YXY-surfaces are graphs
xy = ¥r(x, X5, X3) in canonical coordinates of the second kind with x, the coeflicient
at the flow of [ X, [ X, Y]]. This inherits on [ and . To prove that the parts of I
(respectively, f') that we delete are not exit points, it suffices to show that these parts
lie below I (respectively, I'7) in direction of [ X, [X, Y]].

X, [X,Y1]

=1

o

FiGg. 7

The tangent space to I at g is spanned by X, exp(—s;ad X)Y and
exp (—s; ad X)(exp ((—s,ad Y)—1)/—s,)X. To show that the part of ["" that we deleted
lies below [ near q it suffices to show that [ X, [X, Y]] and a tangent vector ¢ to i
that is oriented toward the sector of I'* that we deleted point to opposite sides of T,,F .
We get such a vector ¢ if we lengthen the time along the last Y leg. (We delete the
piece that contains in its boundary the trajectories corresponding to the conjugate
point relation £ = #3(1,).)

Instead of computing at g we pull back all vectors along X, s; and get

exp (+s;ad X)(T,I' ) nexp (+s;ad X)[ X, [X, Y]]

:<X/\ Y A (exp (zs5:ad Y)_1>X rexp (s;ad XX, [ X, Y]])

-5,

= _(6+O(T))(XA YA[Xa Y]A[Y’[Xv Y]])lpz “pexp (s X)exp(s;Y)»



SMALL-TIME REACHABLE SETS IN LOW DIMENSIONS 141

exp (s;ad X)(qu:")/\exp (s;ad X)Y
- - X)—1
:s1<X/\ Y/\(exp( s;ad Y) I)XA<exp (s;ad X) ) y)

-5 §3

=3 535 50X Y ALX, YIALY, (X, V1D,

But g is a point in [, and T lies entirely in the relative interior of T'~ except for the
obvious boundary curves 7 and y. In particular (cf. also the proof of Lemma 5) the
conjugate point relation s; = 5,(s,) does not hold, or equivalently, &(s,, s;) <0. So
these wedge-products have opposite signs, which proves our claim. This also implies
that the portion of I'~ that we delete lies below I, and since there is no other intersection
this holds for all the points we deleted.

The stratified sets ['* and I',, enclose a region R that lies in the small-time reachable
set. In particular, the portions of I'” and I'* that we deleted therefore lie in the interior
of the reachable set. Since these pieces contain the trajectories corresponding to the
conjugate points t; = f;(t,) and s, =55(s,), it follows that no bang-bang trajectory with
more than two switchings lies in the boundary of the small-time reachable set. Hence
the points in I'* are the only possible exit points of the small-time reachable set for
[X,[X, Y]]. It follows from the construction of I'" and I'* that I'* is also a graph.
Again, the projections onto (x,, x,, X3;)-space are disjoint. Therefore it follows as in
Lemma 2 that the points on I'* have the exit property for sufficiently small time. O

Finally, I'* and ', do not intersect in their relative interiors. It is now clear how
the small-time reachable set looks: It is the set of points enclosed by the two three-
dimensional stratified surfaces I'* and I',,.. I'* consists of bang-bang trajectories with
at most two switchings such that modulo higher-order terms

(23) L+ 8L+ =0
if ¢, t;, and t; are the consecutive times along a YXY arc and
(24) 5;0+5,+5;6=0

if s,, s,, sy are consecutive times along XYX. I',, consists of all concatenations of a
bang arc, followed by a singular arc and another bang arc where the time along the
trajectories is free. I'* and I'y have a common relative boundary C consisting of all
trajectories that are bang-bang with at most one switching. For sufficiently small-time
T a time-slice of the reachable set has exactly the same qualitative geometric structure
as for the free nilpotent system (13). Furthermore, if 8(-) is an integral curve of
[X,[X, Y]] such that 8(¢,) and 8(t,), t,<t,, lie in the small-time reachable set, then
so does the whole curve 8(t), t;,=t=t,. The points on Iy, are entry points for
[X,[X, Y]]; the points on ['* are exit points.

Remark. We emphasize that the result is not what might be expected intuitively.
From dimensionality we could conjecture the occurrence of bang-bang trajectories
with two switchings, respectively, BSB trajectories in the boundary of the small-time
reachable set. Also, this is essentially what was partially known from earlier results.
However, we see no simple reasoning that could explain why, in fact, some of these
bang-bang trajectories with two switchings are not a part of the boundary. This is only
revealed by our analysis.

4.3. Time-optimal control in dimension three. Our results have immediate implica-
tions on time-optimal control in dimension three. Suppose the triples (g, [f, gl [f+g
(£ glD) and (g [f g],[f—g, [/, g]]) consist of independent vectors at a point p in R’.
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Lquivalently, suppose that the constant controls u=+1 and 1= —1 are not singular.
If we augment the three-dimensional system X to a four-dimensional system X by
introducing time as a coordinate, X, =1, x,(0) =0, i.e.,

) )

then if a X-trajectory x(-):[0, T]>R’ steering p to g is time-optimal, the augmented
trajectory X lies in the boundary of the reachable set from p. The augmented system
S satisfies our assumptions (A) and (B), and therefore time-optimal trajectories are
bang-bang with at most two switchings or concatenations of a bang-arc, followed by
a singular arc and one more bang arc. Under additional assumptions this result was
obtained earlier by Bressan [4], who studied only trajectories emanating from an
equilibrium point of f and by Sussmann [22] and Schittler [17] who both assumed
in addition also that f, g and [ f, g] were independent. Our analysis shows that the
vector field f is irrelevant and we do not have to make any assumptions about it. Our
results are also more precise in the sense that we can exclude the optimality of those
bang-bang trajectories with two switchings that violate (23) (respectively, (24)) in the
bang-bang singular case. We summarize in the following corollary.

COROLLARY. Suppose the vector fields g, [ f, g] and [ f+g,[f, g]] are independent
near a reference point p € R>. Write

[f—&l[fgll=ag+bfgl+c[/+gl[f gl

and assume that c does not vanish. Then we have in small time:
(1) If ¢>0, then time-optimal trajectories are bang-bang with at most 2 switches.
(i1) If ¢ <0, then time-optimal trajectories are bang-bang with at most two switchings
or are concatenations of a bang arc, a singular arc, and another bang arc. Time-optimal
XYX (respectively, YXY') concatenations satisfy modulo higher-order terms

(s, +5,)+5,20 (resp., t,+ 13+ ct; =0)
where s,, 5., sy (respectively, t,, t., t;) are the consecutive times along the bang arcs.

5. A brief outlook to higher dimensions. We have outlined a general method to
determine the structure of the small-time reachable sets and proved its effectiveness
in nondegenerate cases in small dimensions. One of the difficulties that will become
more and more prominent in higher dimensions is that the necessary conditions of the
Maximum Principle will not restrict the class of extremal trajectories sufficiently enough
to give the candidates for I and T',,.

Underassumptions (A) and (B) in dimension four, we could overcome this problem
by taking a corresponding “free” nilpotent system of the same dimension as a guide.
We do not expect this to happen in general. In fact, for the five-dimensional system
3, where we assume that f, g, [ f g], [f,[f, £]], and [g, [ f, g]] are independent, the
small-time reachable set has extremal trajectories in its boundary that do not appear
in the analogous five-dimensional free nilpotent system. The reason for this lies in a
qualitatively different behavior of the singular controls, specifically, in the fact that
singular controls can now hit the control constraint |u|=1 and may have to be
terminated. Nevertheless, the free nilpotent system contains most of the information
about the small-time reachable set, though it does not characterize it completely. To
be more specific, we will briefly describe (without proofs) the structure of the reachable
set for the free nilpotent system in dimension five and how the general case differs
from it.



SMALL-TIME REACHABLE SETS IN LOW DIMENSIONS 143

We take as our model-

. . . . . 1
Xo=1, X =u, X=Xy, X=Xy, X, =ax.

[t is no problem whatsoever to carry out the analysis within our technique as in the
construction in § 4.2.1. Now the reachable set is convex in direction of (0, 0, 0,0,1)" =
[8.[g f]] and I'*, respectively, I, will consist of those trajectories that are exit,
respectively, entry points.

It follows from the generalized Legendre-Clebsch condition that [, contains
concatenations with singular arcs, whereas I'* will consist of bang-bang trajectories
only. Singular controls are constant, but now they can take on any value in [—1, 1].

Lee 'y =1, Ul ,, U I'.. Ul,,,, where

' ={0exp(s5,X) exp (s>(f+ug)) exp (5;X): 5,20, Sitsytsy=1uel-1,1]},

etc. (By the invariance property of the reachable set we can restrict to the time-slice
T'=1.) The points on [y are precisely the ones that minimize the coordinate Xq4.

For a fixed value u, of the singular control, —1 < u,< +1, the qualitative structure
of I'y ., =T, restricted to values u = Uo is precisely as in 4.2.2, Fig. 4 (see Fig. 8).

Foru,=+1,1"_,_ ' =1reducesto I"_,_and all other strata become trivial whereas
foruy=—-1,I,,, fu=—1=1,_, and the remaining strata are trivial. For each of these
two-dimensional surfaces (uy fixed) the relative boundary consists of all bang-bang
trajectories with at most one switching. The surfaces [y ., themselves interpolate
between I'__, for Up=—land I'_, for u,=1. Topologically I'y is a stratified sphere

FiG. 8

XYX

YX

A

Xy

YXY

FIG. 9
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with al’, =1" , UL, «, i.e., all bang-bang trajectories with at most two switchings
(see Fig. 9).

The surface 1'* consists of bang-bang trajectories analogous to the bang-bang
singular case in dimension four. Now

I ={0exp (s;X)exp(s,Y)exp (s;X) exp (s4Y): 520, 5,48+ 53+5,= 1,
5. =53, 54 = s,-conjugate point relations},

" ={0exp (r,Y)exp (LX) exp (6 Y) exp (6,X): 20, t,+ b+ L+, =1,
t = ty, 1, = t,-conjugate point relations}.

I' and I'" intersect in a two-dimensional surface I, which consists of those trajectories
for which

(s, + 53)2 — (85t 53)+25,5,=0,
respectively,
(t+6) = (t,+15) +24,4,=0.

The intersection is transversal except at those points that lie on the relative

boundary of T or I'". These points are again characterized by the conjugate point
relation

inr. ={0exp(;Y)exp (6X)exp(;Y) exp (1,X): 1,=0, t,= 15},
('NC, ,={0exp (1, Y) exp (,X) exp (,Y) exp (£sX): t, =15, t,=0}.

We define ' (respectively, I''} as the component of I (" containing the
YX-curve ={0exp (s, Y) exp (5;X): 5, =0, s+ s, =1} (respectively, the XY-curve) in
its boundary. Then I'*:=T " UT" consists precisely of those points that maximize x,
on the reachable set. Note that topologically T'* also is a stratified sphere with
al*=1", UI, ., the set of all bang-bang trajectories with at most two switchings
(see Fig. 10).

The key fact here is that it is still obvious that 9T'* and o'y, match up. They are
identical. It is therefore clear that Reach (0, 1) is the set of all points that lie between
and .

It is precisely this simple reasoning that breaks down in the general case. The
cause for this lies in the structure of the singular controls. The analysis of the bang-bang
trajectories carries over to the general case with only one minor change in the structure.
Whereas in the free nilpotent system the two curves N I'._, and N I'_,_ both have
points corresponding to the X- and Y-trajectories as endpoints, this need no longer
be true: NI, _, is a curve starting at 0 exp (1 - Y) but which in general no longer
ends in 0 exp (1 - X) but rather on a point in the XY-curve (respectively, YX-curve).
This distortion is due to the presence of fourth-order brackets. One possible case is
depicted in Fig. 11.

Still the relative boundary of I'* consists of all bang-bang trajectories with at most
two switchings. The structure breaks down in the analysis of the singular surface I',
for u near +1. The reason is that in the presence of fourth-order brackets the singular
controls are no longer constant, and thus the analogue of I'y ,, for u,=—1 does not
reduce to I', ., 1.e., to bang-bang trajectories with two switchings. For instance, it
may not be at all possible to start a singular control with u,= —1. This is the case if
1 < 0 at u,=—1, which happens under generic assumptions on fourth-order brackets.
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For the same reason, singular controls with u, close to +1 may have to be terminated
when they become one in absolute value. If the singular control becomes saturated
(i.e., hits the constraint and cannot be continued) then this determines the subsequent
structure of the trajectory and it is easy to see that concatenations such as BSBB or
BBSB, which are not present in the free nilpotent system, come into play. Therefore
Iy has trajectories in its relative boundary that contain singular arcs. The main challenge
in applying our technique to higher dimensions seems to be finding a way to decide
whether structurally different trajectories, such as a ban g-bang trajectory, and a concate-
nation that contains a singular arc steer a system to the same point. Once 8I'* and oI,
can be identified, it is clear that the set they enclose is the small-time reachable set.
Note, however, that this structural instability only happens nearI'y _, and ', .
The structure of most of the trajectories in the boundary is still the same as in the free
nilpotent systems. And it is intuitively clear that the structure of the exceptional
trajectories will come up in a higher-dimensional nilpotent system. Therefore, in our
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view, the study of the structure of the reachable sets for nilpotent systems will be the
key to the general problem.

6. Summary. We have described an approach to determining the qualitative struc-
ture of the small-time reachable set in a nondegenerate situation. [t is a nontrivial
extension of a construction done by Lobry in dimension three. In dimension four we
succeed completely in determining the small-time reachable set. For higher dimensions
obstacles still have to be overcome. However, they do not lie in the general structure
of our approach, but in the fact that too little is known about the structure of extremal
trajectories in higher dimensions. For instance, in the five-dimensional case, what is
the precise structure of extremal trajectories that contain a saturated singular arc? For
dimensions six and beyond, the crucial new ingredient appears to be the incorporation
of chattering arcs, another structure of extremal trajectories about which little is still
known.
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