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1. RECIPROCAL DIFFUSIONS

One of the most beautiful parts of modern mathematics is the rich
and wonderful interplay between Markov diffusion processes, linear
parabolic partial differential equations and stochastic differential
equations of first order. We shall describe the foundations of a
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parallel theory involving reciprocal diffusion processes, nonlinear
conservation laws and stochastic differential equations of second
order.

Let (Q,#,Pr) be a probability triple consisting of a sample space
Q, g-algebra of events # and probability measure Pr. Let E denote
expectation with respect to Pr. Throughout we let x(t) denote a
stochastic process over this triple defined for te[0,7] and taking
values in R**1, We assume that

T
Ef |x(t)|* dt < 0.
0

Given 0=Zt,<t, =T, let T (to,t,), &(to,t;) and B(ty,t;) be the o
subalgebras of # generated by x(t) interior to, exterior to and on
the boundary of the interval defined by 1, and ¢,. In other words

T (to, t))=0{x(t): te[to, 11}
&(to, 1) =0{x(1):te[0,t5] L [t;, T1}
Blto,t)=0{x(to), x(t)}.

We denote by J (to,t,), &(to.t;) and H(te,t,) the space of square
integrable random variables which are measurable with respect to
T (to.ty), E{to,t,) and B(ty,t,) respectively.

The concept of a reciprocal process was introduced by Bernstein
[1] following ideas of Schrddinger [2,3]. A process x(t) is reciprocal
if on every subinterval of [0,77], the interior and exterior are
conditional independent given the boundary. More precisely, if
ped (to,t,) and Ye&(ty,t,) then

E(@y | B0, 1)) =E(¢ | Blto, 1)) EW | Blto, 1))

We refer the reader to [4-17] for more detailed discussions of
reciprocal processes. The have also been called quasi Markov or
Bernstein processes. They are closely related to conditionally Markov
processes. Following Schrédinger’s original motivation and Nelson’s
stochastic mechanics, Zambrini [20-22] has related reciprocal
processes to quantum mechanics.
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It follows immediately from the definition that Markov processes
are reciprocal but not vice versa [5].

To define reciprocal diffusions we must introduce some notation.
Given a process x(t) and a small time increment dt>0, define the
centered average evaluation X, centered first difference dx and
centered second difference d*x as

(e di) = x(t+dt) -2+ x(t—dt)

x(t +dt) — x(t —dt)

dx(t;dt)= 5

d2x(t; dt) = x(t + dt) — 2x(t) + x(t — dt).

Frequently when the context is clear we suppress the argument dt as
in X(t), or both t and dt as in dx. We also have the forward d* x and
backward d "~ x first differences

d* x(t;dt) = x(t + dt) — x(2)

d ™ x(t; dt) = x(t) — x(t — dt).

In contrast to the standard conditional expectation of Markov
theory,
E(")=E.(")=E(:|x(t)=x)
we shall utilize
E{)=Ezqan(")=E(: | x(t;dt)=x)
and occasionally the stronger conditioning
E; s(')=E (sa()=E( I x(t+dt)=x+vdt)

= E(-|X(t; dt) = x,dx(t; dt) = v dt).
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We now give the second order analogs of the Feller postulates for
a first order diffusion. A stochastic process x(t) is a second order
diffusion if there exist functions fix,?), g:{x,t), hu(x,t), ufx,t) for
i, j=1,...,m such that

Eddx)=ufx,t)dt +o(dt) (1.1a)
Eddx;dx;)=3hy(x, 0 hy(x, 1) dt + m;{x, t) dt* + o(dt)>  (1.1b)
EL{d®x) =(fi{x, 1) + g:{x, hux, 1)) dt> + o(d1)? (1.1c)
ELd*x;d*x;) = 2hy{x, )hy(x, t) dt + o(dt)? (1.1d)
E(d*x;dx ;) =3gu(x, ) h(x, Yhyy(x, 1) dt? + o(dt)? (L.1e)

The higher conditional moments of dx and d?x agree
to the lowest nonzero powers of dtr with those of
Gaussians with the above first and second moments. (1.1f)

In the above we have utilized the summation convention. Con-
ditioned on x(t;dt)=x for fixed x,t, the expression o(dt)* is a
deterministic quantity y(dt;x,t) which vanishes faster than dt* as
dt—0 uniformly in x and t. In other words for every ¢>0 there exist
0>0 such that \y(dt; x,t)| <edt* for all dt<é,xeR" and te(0, T). We
denote by 0(dt)* a quantity y(dt;x,t) for which there exist ¢6>0
such that |y(ds; x, f)| <edt* if dr <.

If x(t) is both a reciprocal process and a second order diffusion
then we say it is a reciprocal diffusion.

A stochastic process x(t) satisfies the second order stochastic
differential equation

d®x = f(x,t) dt® +g(x, t) dx dt + h(x, t) d*w (1.2)

where w(r) is a standard m dimensional Wiener process if x(t) is a
reciprocal diffusion satisfying (1.1a—f). Actually (1.2) is a mnemonic
description of (1.1) in the same way that the first order stochastic
differential equation

d*x=f(x,0)dt+h(x,0)d*w (1.3)

is a mnemonic for the axioms of a first order diffusion.
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E(d*x)= f{x,t)dt + o(dt) (1.4a)

E(d7x;d” x;)=hy(x, )hy{x, 1) dt +o(dt) (1.4b)

all higher centered conditional moments of dx vanish
like o(dt). (1.4¢)

In particular (1.1c) asserts that conditional mean acceleration
equals f+gu where u is the conditional mean velocity given by
(1.1a). Note the difference between the conditional expectations in
(1.2) and (1.4). Conditioning on %(t;dt)=x is an essential part of the
second order stochastic calculus. If we were to condition on x(f)=x,
we would find that generally E (d?x) is order dt rather than dt2. In
fact it is precisely this conditioning which distinguishes our work
from that of Nelson [18] and Zambrini [20-22]. In Nelson’s
stochastic mechanics the order dt part of E(dx) is a vector field
v(x,1) called the current velocity while the order dt part of 1/2E (d*x)
is another vector field u(x, t) called the osmotic velocity. In our work
the order dt part of Efdx) is a vector field u(x,t) called the
conditional mean velocity. For a Gaussian process with a smooth
covariance, Nelson’s current velocity equals our conditional mean
velocity and we suspect that this is true whenever both exist. On the
other hand in our theory E{d*x) is postulated to be of order dt.
Hence the coefficient of dt? can be viewed as an acceleration. For
this reason it differs from Nelson’s osmotic velocity. Zambrini’s work
also uses the Nelson framework.

We call the nx 1 vector field u(x,t) the mean velocity. The density
of x(t) is denoted by p(x,t). The nxn tensor field p(x,t) n(x,t) is
called the momentum flux tensor. A related nxn tensor field, p(x,t)
0%, 8) = p(x, ) (ufx,t) ufx,t)—m;{x,1)), is called the stress tensor. The
reason for these names will become apparent in Section Four.

Formulas (1.1,2) suggest that the random parts of dx and d2x
conditioned on x(t;dt)=x are given by

—
dx=dx — E{dx) =dx—u(x,t)dt
2% = d?x — E {d?x) = g(x, )% + h(x, t) dw.

We use x* denote the transpose of x and x** to denote the
symmetric square or outer product, x*?=xx*.

STOCH. E
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Note that u(x,t) and n(x,t) from (1.1) do not appear explicitly in
(1.2). As we shall see in Section 4, this is because these quantities and
the density p(x,t) satisfy a system of nonlinear conservation laws
determined by f, g and h. This system of four first order partial
differential equations is very similar to the equations of fluid and
continuum mechanics. They express conservation of probability,
balance of momentum and balance of a tensor form of work in two
time scales. They replace the familiar Fokker—Planck equation for a
first order diffusion (1.3,4).

Equations (1.1a—¢) assert that the conditional moments of dx and
d*x can be expanded in powers of dt as shown. These formulas give
names to the coefficients. The only constraints on the coefficients are
found by comparing (1.1b,d and ¢). Equation (1.1a) asserts that the
conditional mean velocity exists and gives it a name u(x,t). Equation
(1.1b) describes the variance of dx. The order dt part arises from the
fluctuation of the second difference d2w (t;dt) of the Wiener process
that appears in (1.2). The factors of 1/2 and 2 in the dt part of
(1.1b,d) are explained by

E{dw)** =11 dt
E{d*w)**=21 dt.

The second order part ndt? of (1.1b) has a deterministic contribution
u*?>dt*> from (l.1a) and a stochastic contribution —odt*>=
(n—u**)dt* from the noise throughout [0, T].

The immediate question that arises is “Are there any second order
or reciprocal diffusions?”. We answer this in the affirmative in the
next section by showing that under mild technical assumptions
Gaussian processes with smooth covariances are second order dif-
fusions, and Gaussian reciprocal processes with smooth covariances
are reciprocal diffusions. Of course the latter includes Gauss—Markov
processes. We derive explicit formulas for the quantities appearing
in (1.1) in terms of the covariance matrix of the process.

In Section Three we explore how second order diffusions trans-
form under change of variables and in Section Four we derive the
conservation and balance laws which are described above. In Section
5 we verify that Gaussian reciprocal processes of Section 2 satisfy
these laws.
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2. RECIPROCAL AND GAUSSIAN PROCESSES

Let x(t) be a Gaussian process defined on [0, T] and taking values
in R"*!. For convenience we assume x(f) is zero mean and we
denote by R(t,s) its covariance matrix,

E(x(1))=0
E(x(t)x*(s))=R(t,s).

We shall assume that R(t,s) is a smooth (C*®) function of t,s in the
triangle 0<s<t<T and the limits of R and its partial derivatives
exist and are continuous on the closed triangle. Because
R(1,s)=R*(s,t) we need only consider R in this triangle.

We shall also assume that

R(t, =1 (2.1a)
! R* -
[ (t+n,t=1) :| is nonsingular for small 1 >0 (2.1b)
R(t+1,t—1) I
R OR*
2R .~ OR* ‘ 2.1
o B+ (60<0 (219

All evaluations of R and its partials at t=s are limits of values in the
interior of the triangle 0<s<t<T Notice that (2.1a) is merely a
normalization assuming R(t,?) is invertible. Moreover (2.1c) essen-
tially implies (2.1a,b) holds for almost all ¢.

In [15] we showed that any stationary reciprocal Gaussian
process satisfying (2.1) has a C* covariance in the above sense and
moreover the covariance R(t—s)=R(t,s) satisfies a pair of second
order matrix differential equations

R=GR+FR (2.2a)

R*= — GR*+ FR*. (2.2b)

We now extend this to the nonstationary case. We refer the reader
to [14,15] for full details.
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Let 0<s<t<T then by the Gaussian and reciprocal properties
the covariance R(t,s) satisfies for 7>0 sufficiently small

R(t, s)=[R(t,t—r)R(t,t+T)][ I R*(t+r,t-z):|‘1

R(t+1,t—1) I
R(t—1,5)
. 23
><|:R(t+t,s):| 23
We define K(t,7) in the obvious fashion so that this becomes

R(t,s)=[K,(t, 1)K (t,7)] [R(t -1, s)]

R(t+1,5)

We differentiate this twice with respect to t to obtain

62
s2RE=1.9)
0= [Kl(t’ T)KZ(t’ T.')]

0* R
o (t+1,9)
- |
oK, 0K, K=o
+2 T(I,T)T(t,f) P
T T —R(t+1,5)
| Ot
2’K | ’K, [R(t—1,5)
+[ ot? (&) o1® (t’T)] LR(t—I»‘r,s)jI'

By (2.1) and arguments similar to those of [15] we verify that the
limits of K(t,7), 6/0tK(t,7) and (8/0t)*K(t, ) exist as t—0. In particu-
lar K(t,0)=1I and so we obtain for all 0<s<t<T

j;Ra, s)=G(r)a§(t, $)+ F(OR(t,5) 24)

where

G(t) = —2<6K1(t, 0)— 953(@ 0)) (2.5a)
0t 0t
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’K, °K,
F(t)= —<-512(t, 0+—" 0))- (2.5b)

But notice in our derivation of (2.4) we did not use the fact that
t>s, we only used the fact that te(t—rt,t+71) and s¢(t—r1,t+1).
Hence (2.4) must also hold for 0<t<s<T Since R(t,s)=R*(s,t) we
conclude that for 0<r<s<T,

2 *

OR .
aTZR*(s’ t)=G(1) o (s,t)+ F(t)R*(s,1).

By interchanging the symbols ¢ and s, we see that for 0<s<t<T
we have

2 *

%2 R*(t,s) = G(s) %—s, (t,5) + F(s)R*(t, ) (2.6)

By continuity (2.4) and (2.6) must hold for 0<s<t<T We also
obtain alternative formulas for G(t) and F(t), namely

0*R O0*R* R OR* -1
G(1) =( (t,t)— r——a—sT(t, t)) ( (&L ——I(t, t)) (2.7a)

o ot s
%R JR O*R* OR*
F(r) =57 (t,t)—G(1) S (t,n)= W(t’ 1)—G(1) s (t,t) (2.7b)

We define H(t)H*(z) by

0 JR*
H(t)H*(1)= —<;(t, t)— a—s(t, t)). (2.7¢)

We have proved

THEOREM 2.1 Let x(t) be a zero mean Gaussian reciprocal process
with smooth covariance R(t,s) satisfying (2.1). Then R(t,s) satisfies the
matrix differential equations (2.4) and (2.6) on 0<s<t<T where F(t)
and G(t) are given by (2.7a,b).

Every Gauss—-Markoy process x(t) with a smooth covariance is an
Ornstein—Uhlenbeck process, ie., a solution of a first order linear

STOCH. F
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stochastic differential equation of the form
d*x=F(t)xdt+ H(t)d* w.

The next theorem shows that every Gaussian reciprocal process x(t)
with smooth covariance satisfying (2.1) is a solution of a second
order linear stochastic differential equation

d*x=F(t)xdt* + G(t) dx dt + H(t) d*w.

THEOREM 2.2 Let x(t) be a Gaussian process with smooth covariance
R(t,s) satisfying (2.1). Then x(t) is a second order diffusion. If x(t) is
also reciprocal then it is a reciprocal diffusion. In either case
f(x,ty=F(t)x, g(x,t)=G(t) and h(x,t)=H(t) of (2.7) and u(x,t), ©(x,t)
are given by

u(x,)=U(t)x (2.8a)
1/6R OR*
U(r) =2<6t(t’ t) +K(t, t)) (2.8b)
7(x, t) =u(x, Hu*(x, t) — o(x,1) (2.8¢)

*

a(x,)=0(t)= — ;(6 R (t.1) +%-IE- (t, t)> +U@UXt). (2.8d)

2
0t 0s t Os

Proof The proof of this theorem is a straightforward exercise in
computing conditional expectations of Gaussian random variables.
We shall sketch the details.

By assumption (2.1)

E(x(t)**=R(t,t)=1 (2.92)

SO

R dR
= — 2.
0 o (t,t)+6s ¢ (2.9b)
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and

O°R 0’R 9’R
= (tLO)+2—(t,)+——(t,0). 29
0 o Lo+ 6tas( )+as2( ) (2.9¢)

In particular (2.9b) insures that HH* (2.7a) is symmetric and U(?)
(2.8b) is skew symmetric.
Next

E(dx(t))** =4(R(t +dt, t +dt)— R(t +dt, t —dr)
—R*(t+dt,t—dt) + R(t—dt,t —dt))

By Taylor series expansion and (2.9) we obtain

sa_ _L(OR . OR*
E(dx(1))* = 2<at‘(t,t) 2 (t,t))dt

1/3R O*R* R .
{=— - . (210
+2<at aS(t, t)+ 305 (t, t)> dt* +o(dt)*. (2.10a)

In a similar fashion we obtain

1/0R

w2y, LfOR OR*
E(x(t)) —I+2<at (t,t)+ 2s (t,t))dH—o(dt) (2.10b)

E(d?*x(1)*? = —2<~- (t,t)— (t B ldt+o(dt)®>  (2.10c)

) 1 /4R
E(dx(t)x(t)*)=< (t,0)+ (z t)>

o dt + o(dt) (2.10d)

2 2px*x

E(d*x()x(1)*) =~ @:j (t, t)+aa:; « z)) dt® +o(d)® (2.10e)

1/8°R 0°R*
E(d*x(t) dx(t)*) = — 2<6TZ (t, t)— 7sT(t, t)) dr?
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1/ &R R*
= t dt® +o(dt)*. (2.10f
+2<6s0t2(t’)+6t652) +otdr)”. (2100

Therefore we obtain

E{dx)= E(dxX(t)*)(E(x(1))**) " 'x

1

oR OR*
> <E(t’ 1) +E—(t, t)) xdt+ o(dt)
=U(t)x dt + o(dt) (2.11a)

and in a similar fashion

1
E{d*x)==

d*R 0*R*
2

EF (t, t) +W (t, t)>x dtz + O(dt)z

=(F(t)+ G()U(t))x dt*+ o(dt)%. (2.11b)
One can also show that
E; i (d*x)=(F(t)x + G(t)v) dt? + o(d1)%. (2.11¢)
To obtain the conditional second moments of dx and d2x, we
utilize the particular property of Gaussian random variables that the
conditional variance is independent of the conditioning and so
E{dx — E{dx))** = E(dx — E {dx))*2.

Hence

E{dx)*? = E(dx)*? +(E {dx))*? — E(E{dx))**
1/0R OR* 1/8°R O*R*

+ U (xx*=1) U*(t)) dt* +o(dr)?
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=3H(t) H*(t) dt + n(x, t) dt? + o(d)>. (2.12a)

In a similar fashion we conclude that
E{d*x)** = E(d*x)** + (E{d*x))*? — E(E {d*x))*?
=2H()*? dt + o(dr)? (2.12b)

E; o (d*x)*2 =2H(1)*? dt + o(dt)? (2.12¢)

and
E{d*x dx*)= E(d*x dx*)+ E{d*x)(E {dx))*
— E(E{d*x)(E{dx))*)

1/8°R 0?R* 5
=— §<W(t,t)— W(t,t})dt

1/ &R J3R*
+§<as a2 B0 F 5552 (00
+(F()+ GOU®)(xx*—1) U*(t)> de® +o(dt)®

=1G()H()H(t)* dt® + o(dt)*. (2.12d)

If x(t) reciprocal then by utilizing the sum of partials of (2.4) and
(2.6) with respect to s and t respectively we obtain

Edd?x dx*) =L1G(t)H(t) H(t) de®
+((F(O)+ GO U@D)xx*U*(t)
— G(t)o(1)) dt® +o(dt)>. (2.12¢)

Of course (1.1f) follows from the Gaussian assumption. Q.E.D.

It is enlightening to apply the above formulas to particular classes
of reciprocal processes. For example suppose x(t) is a stationary
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Gauss-Markov  process  satisfying (2.1) with  covariance
R(t,s)=R(t—s). It is well-known that R(t)=exp(Ar) where the
spectrum of A lies in the open left half of the complex plane and that
x(t) satisfies on [0. o] the first order stochastic differential equation
d*x=Axdt+Bd*w (2.13a)

x(0)~ N(0, I) (2.13b)

where w(t) is an n dimensional standard Wiener process independent
of x(0) and the fluctuation-dissipation relation is satisfied,

A+ A*+ BB*=0. (2.13¢)

By the above discussion this process also satisfies the second order
stochastic differential equation

d*’x=Fxdt* + Gdxdt+ H d*w (2.14a)
where

F=A2—GA (2.14b)
G=—(A*—A*)(HH*) ! (2.14¢)
HH* = BB*. (2.14d)

Moreover
U=44—- 4% (2.15a)
o=3A2+ A*)+ UU* (2.15b)

The stationary Gaussian reciprocal one dimensional processes
have been completely classified [7,8,11]. See also [15]. The covar-
iance R(t) must satisfy (2.2) which in the case of scalars reduces to

R=FR.

There are three cases F>0, F=0 and F<O0. If F>0 there are after
various normalizations only 3 possibilities.
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l.a) Ornstein-Uhlenbeck Process: R(tf)=e™’, t>0, which satisfies
the second order equation.

Px=xdi?*+./2dw  x(0)~N(0,1)

and U=0, ¢ =1. Of course this is also Markov and satisfies the first
order equation

d*x= —xdt+\/§d+w.

1.b) Cosh Process: R(t)=cosh(}—t)/coshi for 0<t<1 which
satisfies

d*x=xdt*+./2tanhid’w  x(0)=x(1)~N(0,1)

and U=0, g=1. This process is not Markov but it does have a
realization by a stochastic differential equation with an independent
boundary condition [15].

l.c) Sinh Process: R(t)=sinh(}—t)/sinhi for 0<t<1 which
satisfies

d*x=xdt*+./2cothid’w x(0)= —x(1)~N(0,1)
and U=0, 6=1. Again this is not Markov but can be realized by a

stochastic differential equation with an independent boundary con-
dition [15].

2) Slepian Process [4]: R(t)=1—2t for 0<t<1 which satisfies
d*x=2d*w
x(0)=—x(1)~N(0,1)

and U=0, ¢=0. This is not Markov and again has a stochastic
boundary realization [15].

3.a) Cosine Process: R(t)=cost for —oo <t<oo which satisfies

d?x=—xdt>  x(0)=—x(m)~N(0,1)
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and U=0, 6= —1. This is not Markov but the sample paths are
completely determined by x(t,), x(t,) where ¢, —t, is not a multiple
of 7.

3.b) Shifted Cosine Process: R(t)=cos(t+1)/cost for 0<t<n—21.
To be a covariance, © must satisfy 0<t<n/2. The process x(t)
satisfies

d’x=-—xd®+ . 2tantd®w  x(0)= —x(n—21)~N(0,1)

and U=0, o=1. This process is not Markov and cannot be realized
by a scalar first order stochastic differential equation with initial or
boundary condition.

We close this section with another interesting example. The
Brownian bridge or pinned Wiener process x(t) is obtained from a
standard Wiener process by conditioning that x(0)=x(1)=0.
Another representation is x(t)=w(t) —tw(1) where w(t) is a standard
Wiener process. This is a zero mean Gauss-Markov process with
covariance R(t,s)=s(1—1) for 0<s<t<1. It satisfies the first order
differential equation

d+x=(T_3)'df+d+W x(0)=0

and also satisfies the second order differential equation
d*x=d*w x(0)=x(1)=0.

Note that this is essentially the same differential equation as that of
the Slepian Process.

3. CHANGE OF VARIABLES

In this section we develop some formulas that we shall need in the
next. Suppose x(t) is a second order diffusion satisfying (1.1) and
(1.2). Let ¢(x,1),¥(x,t) be C® scalar valued functions and define
d(t)=d(x(t), ) Y(t)=y(x(t),t). We compute the centered mean, first
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difference and second difference of ¢(t) using the identities

dx(t) = +(x(t +dt)— x(1)) (3.1a)
d*x(t) = 2(x(t) — x(¢)). (3.1b)
Now
Fo)= ot + dt);— P(t—dt)

= P(xX(1), 1) + 2(P(t + d) — P(X(1), 1) + P(t — dt) — P(X(1), 1))

2
&) = Pp(x(1), t)+1 ¢ (X(1), 1) dx; dx; + O(dx)*+ O(d1)*.  (3.2a)
2 0x;0x;

The symbols O(dx)* and O(dt)*> denote quantities that go to zero as
fast as |dx|* and dr* respectively. Next

db= o1 +dr) ; Pt —dr) L #.0) ; ¢(x(1).1)

By a similar Taylor expansion we obtain

=a—(ZS (x(1), 1) dx; +@(i(t), t)dt
0X; ot

d¢

1 3p(x(1),t
+ ;—qﬁ( ( 1 ~) dx;dx;dx,
6 ox,;0x;0x,

1 3% p(x(1), 1)
- 8 g, dx, dt
2 oxoxar N

N &> p(x(1),1)

> ooz dudt

I 0° p(x(1), 1)

I a4 dx;dx;dx, dx,dx,,
120 0x; 0x;0x, 0x,0x,, a2 B A

+ 0(dx)® 4+ O(dx)* O(dt) + O(dx)* O(dt)? + O(dr)* (3.2b)
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and

2
d*¢ =%(g(1), d*x; + 8. ;ﬁxv(i(t), t) <dx,- dxj—idzxidzx])

0x; 0x;

209 (%(2), £) dx, dt + %ig (%(2), 1) de?

L 3*9(5(1),1)

24 0x;0x;0x,

2 2 2
dx;d*x;d*x,

1 0*¢(x(1), 1) 1
i ’ dx.dx. _ 2. g2, 2. 42
12 3, 0x, 0%, 0%, < x;dx;dx, dx, 16d x;d*x;d*x, d x,)
L 30,0

_ OONOY 4y dxdx, dt
3 0x; 0x; Oxg ot P

1 0° p(x(t), )
1920 0x; 0x; 0x, 0x; 0%,

292 g2 g2 12
d*x;d*x;d*x, d*x,d*x,,

+ O(d*x)® + O(dx)® + O(dx)* O(dt) + O(dx)> O(dt)* + O(dt)* (3.2¢)

Hence it follows from (1.1) that

1 0%
E_ = — . . .
CBO)=9+ 4 5o i+ ofd) (33a)
5, 0
EJd¢) _o¢ u; dt+—¢dt+o(dt) (3.3b)
0x; ot
2 o 2
E{d*¢) =_5_(x~ fi+gijuj) dt
¢ 2 ¢ 2 o2 2 2
+mnik dt +2at aXi Uu; dt +‘67dt +0(d[) (33C)
op oY | »n, 00, 2
= 1h h. - - — 3.3d
E{d¢ dy) 3%, O, shahy dt+n;dt®) + 3t ot dt® +o(dt)* ( )



RECIPROCAL DIFFUSIONS 41‘1

¢ 0
EJd*¢ d*y) =2£ a—ghi,hj, dt + o(dt)? (3.3¢)
i J
1 0¢ oy oy
2 = —g LAt + ——uh b, dt?
E.i(d ¢dl//) 2 axi 5xjglkhkrh1r dt +axjuk ir'tjr

3¢ o
— —Zh, h, dt? dr)?. 3.3f
5t ax, o, whj dt* +o(dt) (3.3f)

The right sides of the above are evaluated at (x(1),t)=(x,t). Note
that these are not in the form of (1.1) in that the mean differences of
¢(1) are conditioned by x(f) rather than ¢(t).

4. CONSERVATION LAWS

Suppose x(t} is a Markov diffusion satisfying the first order stochas-
tic differential equation.

d*x=fdt+hd*w. (4.1)

The probability density p(x,t) of x(t) satisfies the Fokker-Planck
equation,

é 0 1 0
- ) — = ——(phyhy)=0. 42
P P73 e Pk (4.2)
This is a second order parabolic partial differential equation.

Suppose x(t) is a strongly reciprocal diffusion satisfying the second
order stochastic differential equation.

d*x=fdt* +gdxdt+hd*w (4.3)

then we shall demonstrate that the density p(x,t), mean velocity
u(x,t) and momentum flux tensor pn(x,t) satisfy, at least in the weak

sense, a system of conservation laws, very similar to those of
continuum mechanics,

G,
o+ (pu) =0 44
atP + 7%, (pwy) (4.4a)
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¢ G
—(pu)=p(fi+guth) — 5 () (4.4b)
ot 0xy

a (phyhy) = ) (gahihy + gjhighy) — a;k (pughih,). (4.4¢c)

In addition we shall show in Section 5 that at least for the
reciprocal Gaussian processes of Section 2 an additional conser-
vation condition must hold

b3 )

.

({ (pmiy=p(fa;+u; fi + G + Tk juo)

-~

o

- T(P(uiujuk_Uij“k_aikuj_ajkui))- (4.4d)
Xk

Since o;;=uu;—m;, (44a,b,d) appear to be a complete set of
equations for the unknowns p, u, 7= in terms of f and g in the
Gaussian case. But, we doubt that (4.4d) holds for all reciprocal
diffusions.

Before we derive these equations, let’s take a look at their
meaning. Equation (4.4a) express the conservation of probability
under the mean flow described by u. This corresponds to conser-
vation of mass in continuum mechanics. A similar equation relates
the density and current velocity of Nelson [18].

Equation [4.4b) expresses the balance of momentum pu. If we
integrate the left side over a volume in x-space we obtain the time
rate of change of momentum within the volume. The integral of the
right side of (4.4b) has contributions from two sources. The first
integral involving p( f;-+guu,) is the change of momentum due to the
mean acceleration of the particles inside the volume, the random
acceleration produces no net change of momentum. The integral of
the second term over the volume can be converted to a surface
integral over its boundary by Stokes’ Theorem. The integral over the
surface bounding the volume of prn; contracted with outward unit
normal is the total flux through the boundary. Recall the definition
(1.1b) of nY as the di* part of Efdx;dx;). This tensor has a
deterministic and a random component, p7;;= puu;—po;; and each
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contributes to the momentum flux. Notice that the order dt part of
E{dx;dx;) in (1.1b) does not contribute anything to the momentum
flux. Intuitively this is because these changes are so fast and so
random, they cannot transport momentum.

In continuum mechanics the contraction 3pn; describes the
density of kinetic energy. This has two parts, the first Spuu; due to
deterministic part of the velocity and the other —(p/2)g;; due to the
random part. The latter is frequently called the internal energy
density.

The tensor 3pm;; describes the density of kinetic energy in every
component of the x process. If 4; is a constant n vector then the
scalar valued process z(t) = 4;x{x) has kinetic energy density given by
3pm;;AA;. For this reason we call $pn;; the tensor kinetic energy.

There is an alternative definition of =; as JEJ{d*x;d x;+
d* x;d”x;)=m;;d* +o(dr)* which reduces to the standard one for
smooth process. Based on this and Eq. (4.4c) which we discuss in a
moment, we define the kinetic energy density to be (p/2)m;. This
definition of kinetic energy is similar in spirit but different from that
of Guerra-Morato [19]. It is interesting to note that some of the
examples of Section 2 have negative or zero kinetic energy. For the
Ornstein—Uhlenbeck, Cosh and Sinh process, n=—1, and for the
Slepian process m=0. The Brownian bridge has both negative and
positive kinetic energy depending on x and ¢t.

Equation (4.4d), which may hold only for Gaussian processes, is a
tensor form of the balance of kinetic energy and work. In other
words Eq. (4.4d) expresses the balance of kinetic energy and work
for every scalar process z(t)=A4;x;(t). The momentum flux
or tensor kinetic energy is (p/2)m;;, the dt* part of (p/2)E{dx;dx;).
The tensor part of the rate of work done or power is the dt? part of
(0/2)E{d*x;dx;+d*x;dx;) which explains the first term on the right
side of (4.4c). The second, flux term represents the flow of tensor
kinetic energy across the boundary of the volume under consider-
ation. This flux has contributions both from the deterministic and
random parts of the motion. The first term uuu, represents the flux
due to strictly deterministic motion, the others due to a mix of
deterministic and stochastic motion. In continuum mechanics,
(p/2)a,u, is the flux of internal energy and po,u; is the flux of energy
due to viscosity or stress. In our stochastic model, (p/2)o,;u, is the
flux of random Kinetic energy transported by the mean velocity and
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poyu; is the flux of energy due to the random motion of particles
between regions of differing mean velocity.

But (4.4d) only expresses a balance between tensor Kinetic energy
and tensor work terms of size dt>. The quantities involved also have
terms of size dt and the balance of these is expressed by (4.4d). We
view ph,h, /4 as the tensor form of the hyperkinetic energy due to
hypervelocity part of dx, namely, dx=0(dt)'2. The tensor
(P/2(guchirhj + g uhishsy) is the hyperpower and (p/2)h,hju, is the flux
tensor of hyperkinetic energy. Of course this extra equation leads to
an overdetermined system of equations for p, u, and = but if we
consider h;h;, as an unknown also, this problem disappears. An
interesting question which we don’t address is that of boundary
and/or initial conditions for (4.4).

In particular, (4.4c) implies that we cannot find processes satisfying
the second order stochastic differential equation (1.2) for arbitrary
choices of f, g and h. Notice that if h is constant in x and t, (4.4c)
and (4.4a) imply that the tensor field g(x,t) is skew-symmetric
relative to the symmetric tensor field h**(x, 1), ie.,

ghh* + hh*g* =0. (4.5)

We shall derive Eqs. (4.4a,b,c) using no a priori assumptions of
conserved quantities. Rather they shall follow from basic mathemati-
cal facts. We warn the reader that our derivation is somewhat
formal, we shall interchange limiting operations, neglect small quan-
tities, etc. In the next section we shall verify that the reciprocal
Gaussian diffusions treated in Section 2 satisfy (4.4a,b,c) and also
(4.4d).

Before we start we list some basic formlulas about centered
differences that will be useful. Let x(t), y(f) be n-dimensional
processes defined on [0,T]. Suppose O<ty,<t,<T and f,=1,+
(r—%)dt, 1, =ty+1dt. Then

fj dx(t,; dt) = %(1; dt/2) — (1o} dt/2) (4.6a)
=1

r

i d?x(t,; dt) =2(dx(t; dt/2) — dx(zo; dt/2)) (4.6b)
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d(xy*)(t; dt)=x(t; dt) dy*(¢; dt) + dx(t; dt) y*(t; dt) (4.6¢)

dx(t; dt) =dx(t; dt) =1 dx(t; 2 dt) (4.6d)
d(dx)(t,dt) =1 d*x(t; 2 dt) (4.6¢)

d(dx dy*)(t; dt) = 1(dx(t; 2 dt) d>y*(¢t; 2 dt)
+d2x(1; 2 dt) dy*(t; 2 dt)). (4.6f)

Let x(t) be a second order diffusion satisfying (1.1a—f) with density
p(x,t), mean velocity u(x,t), momentum flux p(x,t) n(x,t) and stress
p(x,t) a(x,t). We assume that as |x|—>oo, p goes to zero faster than
every rational function of |x| uniformly for all te[0, T]. We also
assume that |u|, |n| and |o| are bounded above by some polynomial
in |x| for all te[0, T]. Let ¢(x,t) be a smooth scalar valued function
also bounded in norm by a polynomial in |x| and suppose ¢(t,x)
vanishes off some closed subinterval of (z,,7,). Finally we assume
that density p(x,t,dt) of x(t;dt) converges to the density p(x,t) of x(¢)
as dt—0.

Using (4.6a) we have

N

0=E } do(t;d)= Ei Ed{d¢(1,; dr))
1

r=1

We employ (3.3b) and let dt—0 to obtain

_ 0 0
0= Jj(am u,,+at>pdtdx

Integration by parts yields a weak form of (4.4b),

dp 0
0= L :
fjd)(at +6kau,‘>dtdx

In similar fashion (4.6b) yields

| . 1
0=$ Erz‘l d*¢(t,; dt) = EY E(d*¢(t,;dt))
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We employ (3.3¢) and let dt—0 to obtain

¢ ¢ ¢ ¢
o= | (S S mer2 o o

Integrating by parts yields

0 b 0 0 0 J
0= J J ai(ﬂ(f&g.,tt,) o (oma) (M)—;(-azpuﬁ;)dtdx

By (4.4a) this reduces to a weak form of (4.4b),

[ (o0 d é
0—jj‘5x‘l <p(fi+gijuj)_ o, (p7a) — 6t(pu)>dt dx.

Finally we start with (4.6f) applied to ¢, which we sum and divide
by dt to obtain

=Sdt Z d*¢(z,; 2dt) dep(z,; 2 dt)

r=1

Z E{d*¢(z,; 2 dt) do(z,; 2 dt)).

T8dt 4
So by (3.3f)

N 2

d¢ ¢ “¢ 0
— hyhdt + hyh, dt

; a glk k' i axi 8xk axl . Uhy,

o' ¢h g dt dr). 4.7

3t dx, 6 ol '

As dt—0 we obtain

1 o¢ 6¢ 0% 6¢ 0% 0
0= ; hih;
‘[J‘<2 6 a xk kr ;r+6 axk a uk ir' r+

20 @k, pdtdx.
atax; ax; ,,>p ¥
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We symmetrize this with respect to i and j,

L([(106 0
D) = — — (@uhihy + gahish:
0 2JJ<2 axi axj(gtk kr jr+gjk kr tr)

3 (04 0¢ o (3¢ 06
. hohyp+— |~ — Yh,h, \pdtd
T ox, <ax,. ax,.>“" W ot <6xi ox, ) et | P AN

and integrate by parts

1 0p 0¢ (p
0 :i J~J‘ A (?2 (gikhkrhjr + gjkhk"hi')
G,

0x; 0x;

0
(pukhirhjr) - a (phirhjr)> dtdx

o,

which we recognize as a weak form of (4.4c).

5. RECIPROCAL AND GAUSSIAN PROCESSES
REVISITED

417

In this section we verify that the Gaussian (reciprocal Gaussian)
processes discussed in Section 2 satisfy the three (four) conservation
laws of Section 4. Let x(t) be a Gaussian process with smooth
covariance R(t,s) satisfying (2.1), (2.4) and (2.6) where F(t), G(t) and
H(t) are defined by (2.7) and u(x, t), n(x,t) and o(x,t) by (2.8). Since

R(t,t)=1I (2.1a),
p(x,1)=(2m) ™" exp — 4[]

which satisfies

dp
—=0
ot
dp
P ox
ox, PXy

consider the conservation of probability (4.4a)

STOCH. G

(5.1a)

(5.1b)
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8

—+-—(pUyx;)=0. (52)
Xk

By (5.1) and (2.8) this reduces to
p(x Uppx;j+ Up) =0
which holds since U is skew symmetric.

Next we return to the balance of momentum

0 G,
apUijxj=p(Fi+GirUrj)xj_ a—xk(pnik)' (5.3)

The left hand side is

p

d p(PR,; R, O°R; R,
U =F ij ij Ji Ji\
ar U 2< o2 " oras T dras T os? )x’

All evaluations of R and its partials are always at t=s. It is
straightforward to verify that

d
aU,-,-=[F+GU],-J»—J,-,-+[UU*],~J. (5.9

where [-];; denotes the i-j entry of the enclosed matrix. Hence the
left side of (5.3) equals

plF+GU—-o+UU*];x;.

The right side equals
0
pLF+ GU]ijxj+pxk([UxX*U*—a]ik)—pé;[UxX*U*]ik
k

=p[F+GU];x;— pGyxy

+pLUx](x*U*x) ~ p[Ux]U s~ p[UU]jx;
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which equals the left side by the skew symmetry of U.
Next we verify (4.4d) for reciprocal Gaussian processes. In this
case (4.4d) becomes

gipnijzp[Fxx*U*+ Uxx*F* +Gn+nG*];;

~

[
- é;- p(UirUijklxrxmxl - aijUerr
k

—oxUpx,—a3U;Xx,). (5.5)
It is convenient to break up each side of this equation into terms
that are time varying multiples of p and terms that are time varying
multiples of pxx*, there are no others. We refer to these as constant

and quadratic terms.
On the left side, the constant terms are

o[ @R &R &°R* R d
, ol Suur .
2[856t2+0t832+5s0t2+8t6s2 g Pl |,
By (2.4) (2.6) this equals
Pl (PR FRY\ (PR TR
2| “\avas Tavas ) T\avas T avas

+F 8R*+6R + 6R+6R* P
) M sy L ¥

aew)
By (2.8b,d) and (5.4) this equals
p[GIUU* —0)+(UU*—q)G*+ FU*+ UF*];
—p[(F+GU+UU*—-a)U*+ U(F+GU +UU*—0)*];;

=p[(U-G)o+a(U~-G)*];
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which equals the constant terms on the right side of (5.5)
The quadratic terms on the left side of (5.5) are

pdgt(Uxx*U*)ijzp[(F +GU -0+ UU*xx*U*
+Uxx*(F+GU -0+ UU*];
On the right side (5.5) the quadratic terms are
pl(F+GU)xx*U* + Uxx*(F + GU)*];;
+ px U, LUxx*U*];— pxi03 U jpx, + 03U, x,)
—pLUUxx*U*+ Uxx*U*U*];;
—pUlUxx*U*];;
=p[(F+GU —o+UU*xx*U*
+Uxx*(F+GU—o+UU**];
as desired to prove (5.5).
Finally we verify (4.4c) for Gaussian processes which reduces to
0 p 0
&(pHH*)zi(GHH"%HH*G*)— —a—x—k(pUk,x,)HH*. (5.6)

By (5.2) this becomes

o HH*=3(GHH* + HH*G¥).

By (2.7¢c) the left side equals

0%R + 0°R  0*R* 3%R*
ot  0tds  Otos 0s?

Since R(t,t)=1,d*/dt*?*R=0 and so
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1 8*R N R 18R
2 0t dtds 2 ost

This reduces the left side of the above to

1/8*°R  &*R 62R*+62R*
orr  os? 0s? ot?

which equals the right by (2.7,a,¢).

6. CONCLUSION

We have described a theory of stochastic differential equations of
second order and have demonstrated that the theory is not vacuous,
it includes the reciprocal Gaussian processes which satisfy some mild
assumptions. We have also demonstrated that the density, mean
velocity and momentum flux obey a system of nonlinear conser-
vation laws similar to those of continuum mechanics.

Obviously considerable work remains to be done including the
following.

1) A theory of stochastic integration for second order stochastic
differential equations.

2) Further study of nonlinear second order stochastic differential
equations and non-Gaussian reciprocal processes.

3) Possible applications in statistical mechanics, continuum and
fluid mechanics and quantum stochastic mechanics.
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