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Abstract A first degree approximation by a linear system is the
standard approach for treating most nonlinear systems. Exact
transformation of certain nonlinear systems into linear systems is
possible under nonlinear state feedback and coordinate change, as
shown by Jakubzcyk and Respondek [13] and Hunt and Su [10].
The approximation of nonlinear systems to higher degrees by
linear systemns has been treated in [16] and recently in {17]. In this
paper, we develop a method of solution to find such higher degree
approximations by reducing the linearization problem into the
solution of a set of linear equations. We suggest a solution that, in
some sense, minimizes the error in the approximation.

1. Introduction

"In the analysis of scientific and engineering systems, one often
encounters situations which do not lend themselves to exact
solutions by conventional methods. The assumption of linearity in
most control system models, for example, is an oversimplification
at best, and it reflects the difficulties one would rather avoid in
dealing with an otherwise nonlinear model. Seldom a technique
can be found to solve a given nonlinear problem exactly. Since
the control system designer is equipped with powerful methods
and tools for attacking linear control systems, the motivation for
“linearizing” a nonlinear problem is clearly very strong.

Therefore, whenever possible, a nonlinear control problem
must be suitably ransformed to bring it into an appropriate form
that enables the implementation of linear conirol design
techniques. However, the systematics of such modifications by
transformation are usuallly not self-evident. The simplest of
these modifications is a first degree linear approximation by
calculating a series expansion at a nominal operating point. The
validity of this approximation depends on the relative size of the
second degree terms. In systems where nonlinearities are strong,
the higher degree terms cannot be neglected, and the
approximation fails.

The earliest example on the question of whether a
nonlinear system can be equivalent to a linear system under some
group of transformations such as change of coordinates was
solved by Poincaré [19]. Various researchers in 6,8,9,15,20,21]
discussed the question of when a nonlinear control system can be
transformed into a linear system by a change of state coordinates.
Jakubczyk and Respondek [13}, and Hunt and Su [10,11,12]
independently considered the full state feedback and coordinate
change problem. Related work also appeared in {2,22,23,24]. In
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[16], Krener investigated an approximate linearization considering
the second and higher degree terms in the truncated series
expansion of a the vector field, and proved a weakened version of
the Hunt-Su linearization condition. In [17], further results in an
attempt to solve for the resulting transformations were presented.
An application for nonlinear observers also appeared in [4].

The objectives of this paper are to: 1) Present a solution to
the approximate linearization problem, 2) Suggest a method to
solve the Homological equations to minimize the error in the
approximation in some sense. For further work see {14].

2. Higher Degree Approximations to Autonomous
Systems: Normal Form Theorem
In this section, the normal form theorem of Poincaré will be
introduced. The approximate linearization problem for a control
system will be formulated later in a similar spirit. As a reminder
of the connection between the two, we continue to use the term
“Homological Equations” (after Amold [1]).

Let us consider an autonomous system:
x = f(x) (1a)
x(0) =x". (1b)
where x € R” and the system is assumed to be at rest at the
origin, i.e. f(0) =0. Without loss of generality we will assume
x° = 0. First, consider the linearization of (1) at x":

x=Fx (2a)
3

Lo (2b)
dax

We will seek a coordinate change for (1) of the form identity plus
higher degree terms, such that the resulting system will agree with
(1) up to an error of degree O()c)p"1 where p is the degree of
approximation. The following treatment is for p = 2. The results
can be easily generalized to any arbitrary degree p by induction.
We assume a transformation of the form:

2=x-0"W @
where z denotes a new set of coordinates. ¢(2)(x) is a polynomial
of degree 2. The function f{x) in (1) is expanded in a series:
f0 =P + £ P + 0w’

= Fx+f P + 0w’ @
The goal of the transformation (3) is to choose ¢(2)(x) such that in
2 coordinates the dynamics of the system is represented by



c=Fz + O(:)3 &)
namely the second degree terms in the series expansion (4) vanish
under the coordinate change. We take the time derivative of (3)
and using (la), (4) and (5) evaluate each side by ignoring O(x)3
and higher terms:

Fx-020) = Fr+ £ P

0% ©
ox

Now we introduce some notation. The Lie bracket of two vector
fields £, g is another vector field defined by:

(7.¢) =3—if—§£g @
Rearranging and cancelling terms in (6), and using (7) we obtain

£ P = Fx0P ) @®
Equation (8) is called the Homological Equation [1]. In (5], a
similar derivation is also presented. The Lie bracket operation in
the above defines a mapping

(Fr. 1:6%00 = (Fre ) ©
Obviously, (9) represents a linear mapping from nz(n + 1)/2

)
(ﬁ)(x) to an

dimensional parameter space of the coefficients of 0
nz( n + 1)/2 dimensional parameter space. The question is whether
fm)(x) in the range of this mapping, i.e. can we always find a
0(2)(x) that will satisfy (8)7 This problem was first solved by
Poincaré [19). In the following, we present a slightly modified
proof that closely follows [1,5]:

Suppose F has a full set of linearly independent

eigenvectors. Then we can take the right eigenvectors of F as a set
of basis vectors, and the left eigenvectors as a set of coordinates,
which are defined by
FE=apf (10a)
w,F =hw, (10b)
where v¥e C"* 1, w; e C!'*"and A; Ae €. We define a basis
for n-dimensional vector valued polynomials of degree 2 as
follows:
o’f-j(x) = vk(wgc)(wft) forj,k=1,..,n; i=1,...J. (11
Using this basis for the polynomials in Eqn. (8), we evaluate the
Lie bracket:
[Fx0f 0l = G + 4= A8k (12)
The mapping (9) is onto if (A; + lj —A.) # 0 for all
j, k=1, ..,n; i=1,...J. In the literature, this is called the
resonance condition. We note that this is only a sufficient
condition. A general proof for the case when F does not have a
full set of independent eigenvectors may be found in [1].

The above can easily be extended to an arbitrary degree of
linearization p. We present the final form:

(Fxdf ,001= 0+ +h —Rof ;@ (13)
with (7»,-1 +oo+ )‘ip —A;) # 0 the condition of no resonance.

3. Higher Degree Approximations to Control Systems
In this section we will seek a solution to the problem of
linearization for control. Full state observability is implicitly

assumed. Consider a nonlinear system affine in control:
x=fx)+ gx)u (14a)
x(0) =x". (14b)
where xe R” and u € R™. The system is assumed to be at rest
at the nominal operating point (x*; «” = 0). Again, we will assume
x° =0. First, consider the linearization of (14) at x":

x=Fx+Gu (152)
of

F==(0), G=g(). (15b)
dax

We want a coordinate change for (14) of the form identity plus
higher degree terms, such that the resulting linear plant will agree
with (14) up to an error of degree O(x,u)p+l (i.e. terms of
O(x)p+1and O(x,u)p) where p is the degree of approximation.
When p =1, the first degree approximation (15) is obtained.
Similar to the previous section, the case for p = 2 will be derived
first, and the results will be generalized to an arbitrary degree p by
induction. First, the functions f and g are expanded in a series:

1) =P + P + oy’

=Fx+ 7P + 0wy’ (16)
g0 =200 + 00 + O’

=6+ + 0w’ an
and the nonlinear system (14a) is rewritten as
i=Fx+ P + (G + ¢V 0)u + 0w (18)
We assume a transformation similar to the one proposed in Sec. 2:
z2=x- ¢(2)(x) (19)
In addition, a new input v is chosen as
v=aP@ + 1+ P 0)

2
where 0.( )(x) is an n x 1 vector of second degree polynomials,
1

and I + B( )(x) is an m x m identity matrix plus first degree
terms with nonsingular B(x). Now we want the system to
become, in z coordinates,

1=Fz+Gv + O(zv) @1)
We take the time derivative of (19), and introducing (18), (19),
(20) and (21) we obtain:

@ @), . 2

@ =[Fxo O]+ Ga( )(x) (22a)

1 2 1
g( )(x)u = [Gu,¢( )(x)] + G|3( )(x)u V constant u. (22b)
Because of its similarity to the homological equations derived in
the previous section, we call (22) the Generalized Homological
Equations. For a detailed derivation of (22), see {17]. In the
same reference, the above approximation is extended to an
arbitrary degree as
P = Fr6P 01 + 6P ) (23a)
g(p—l)(x)u = [Gu,q)(p)(x)] + GB(p-])(x)u V constant u. (23b)
The resulting system is accurate up to degree p:
1=Fz+Gv+0@w 4)
Once a higher degree linear approximation is obtained, one

of the important issues is the stability of the closed loop system.

Thus one may choose, for instance, a linear state feedback for the
approximate model



c=Fr+ Gy (25)
by setting v = Kz. The gain matrix K is chosen such that in the
closed loop the system gives the desired performance. If we
assume that the model has been linearized up to second degree,
using the feedback v = Kz and Eqn. (19) we evaluate (20):
Kx - k62w =P + (1+ 8V 0)u (26)
and calculate the feedback u as:
u=(1+ V) (kx - k6P - )

=kx - {BPwkx + k6P m + 0P} + 0w’ @
In the above, purpose of the feedback u becomes immediately
clear. In addition to the linear feedback, there are second degree
correction terms (inside curly brackets in (27)). While the
purpose of the feedback u = Kx is to achieve stability, pole
placement, etc. for the first degree approximation (15a) to get
x=(F + GK)x, (28)
the feedback (27) cancels certain second degree terms to achieve a
second degree approximation (accurate to second degree compared
with a linear model) toward the same feedback design goals:
i=F +GKx +f P + g wkx - 6B mkx

k6 Pm + P} + 0w’ 29)

An important feature of the feedback (27) and the resulting closed
loop system (29) is that one need not transform the state variables
into the new coordinates z that was introduced for the sake of
calculations. Feedback design can be performed in the natural
coordinates in which the system is originally presented. If some
of the states are not observable, one can estimate the unavailable
state variables by means of an observer, and apply the same
procedure. For further work on this problem, see [18].

4. Analysis of the Linear Mapping

In the homological equations (22) of Sec. 3, the second degree
terms f (2)():) and g(l)(x)u can be cancelled out under certain
solvability conditions by proper choice of ¢(2)(x), a(z)(x), and
B(l)(x). When the coefficients of the like terms in (22) are set

equal, a linear mapping is obtained as

¢(2)(X)

)
™
a(z)(x) — ( } 30

o) T

A simple count yields the dimensions of the domain and the range:
2 2
n(n+1)+mn(n+1)+ 2 __)n(n+1) 2

5 5 mn ——=——+n'm (€2))
To analyze the mapping, we make a table for the dimensions:
rm=1: Form =2
State State
Space Domain Range Space  Domain Range
n=2 11 10 n=2 20 14
n=3 27 27 n=3 42 36
n=4 54 56 n=4 76 72
n=5 125 125

Dimensions of the domain and the range become equal whenever n
= 2m + 1. However, this does not imply that the mapping is of
full rank. For example, when m = 1, n = 3 the rank is 26, not
27. In general, for a single input system, the rank of the mapping
is always one less than the dimension of the domain for n2 3.

We will restrict our analysis to the second degree
linearization problem with a single input u, i.e. m = 1. We will
start with the analysis of the linear mapping.

A necessary condition for finding a coordinate change-
feedback pair for a nonlinear control system is the local
controllability condition at the nominal point. For the system (18)
with a scalar input, this implies

rank {G FG ... F"™1G} =n. (32)
On the other hand, we define a 1 x n matrix K such that
. ) 0 1<i<n
KFi-1G/ = { (33)
1 i=n

Then, the following collection of one forms is of full rank:

rank {K KF...KF" 1} =n. (€2))
(32) and (34) together imply that we can define a basis for the
second and first degree monomials as follows. Define as a basis
vk = Fk_lG (35a)
and a co—basis

w, = KFi1 (35b)
Now we define a basis for second degree monomials as

000 =v"(wg)(wfr) forjok=1,..un; i=1,..4. (36)
and a basis for first degree monomials as

ok = viw,n) fork=1,...n; i=1,...n. G7)
Using the definitions (36) and (37) is a great convenience for
calculating the Lie brackets that appear in the generalized
homological equations (22). Calculation of (22a) gives

(Fx050 1 =

¢lf+1f¢",-j-l l<i<j=n;1<k<n (38)
_¢"i;1 i=j=n;1<k<n

In the evaluation of (38), when k = n, the expressions become
slightly more complicated. However, transforming the control
system into a Brunovsky canonical form [3] prior to the
linearization helps simplify the expressions [14].

Next, we calculate (22b)
0 i,j<n

Go1=40  i<j=n (39)
n - .
2%, i=j=mn
These two formulas are used to compute the kernel and co-kernel

of the mapping
¢(2)(x) (2)~
fx
a(z)(x) —_ { o } (30)
g @)

L ﬁ(l)(x)J



@nd we now obtain a set of linear equations expressed in matrix
form:

Ll— :(21—’ - [f m] 40)

M
M
B

8
In (40), L is a constant coefficient matrix of nz(n+1)/2 + nz rows
by rxz(n+l)/2 + n(n+1)/2 + n columns that is found from the above
evaluation of the Lie brackets of the mapping. In
0(2) 2)
(2) s
a and
o g(l)
p

corresponding second degree terms are stacked in a consistent

] the constant coefficients of their

lexicographic ordering. For the single input linearization problem,
the column rank of L is (n2(n+1)/2+n(n+1)/2+n -1).

A solution to the linearization problem is developed as
tollows. First, we note that since the mapping (40) is deficient in
rank for n > 2, a control system with nonlinear termsf(z)(x) and
g‘ 1)(x)u will not, in general, have an exact solution to yield a
second degree linearization. In fact, the Hunt-Su result {9] (or

Krener's extension of the same to the approximate case in {16]) is
a test for precisely this conditdon. Consequently, Eqn. (40) will
not usually have an exact solution. For a system with n =3, m =1:
2P g2+ &=0 (4D
is the cqr_xdition for exact linearizability up to second degree. In
(1), fi represents the coefficient of an element of £ in the
basis ¢}fj(x) for second degree monomials obtained when the
system is in Brunovsky canonical form. Similarly, g,’; is the
coefficient of the corresponding element of g (1) in the basis ¢If for
first degree monomials. Eqn. (41) is called the co-kernel
equation.

When an exact solution does not exist, it is reasonable to
seek an approximate solution which will minimize the error in the
linearization with respect to some norm. In order to give a precise
meaning to this problem, first assume that we have adequate
knowledge about the operating regime of the control system and
the desired accuracy as determined by

p(x,u): A probability density function; typically uniform
over some compact set, or Gaussian.

@: A sensitivity matrix, positive definite.

And define the “error”

f(2> ( }42)) 2
g(l) §(1)
def 2) -~ 2
= _”lf( P QP dxd “@2)

~=(2)
We want to choose( (1)) such that the above error is
g

minimized. Note that this term is in the range of the mapping, i.e.
it satisfies the generalized homological equations

790 = 1Fro®P ) + 6P (43a)

- 1
g(l)(x)u = [Gu,d)(z)(x)] + GB( )(x)u V constant u. (43b)
(2)
¢
Furthermore, we wish to choose the smallest a(z) that will
B(l)

achieve the above. Again, we choose positive definite matrices S,
R and minimize

2
III¢(2)|§ « 1P + 8P u | (xrdxdu (44)

or one can take a weighted combination of the above. In fact, §
can be taken to be equal to Q of (42), but the choice is not limited
to this case. We illustrate the minimization in Figs. (1) and (2).

n(n + 1)

Fig. 1 represents the + n dimensional parameter space

for the range of the mapping. The coefficients of the second

degree terms in the control system define a point in this space,
2)
denoted by (f M ) The range of L is represented by a straight
g

line going through the origin. Those points in the range space of
L that exactly satisfy (40) will lie on this line. Among these

=(2)
infinitely many points we want to find the one (shown as(f (1))

on the figure) which will minimize, with respect to a norm as
defined earlier, the error between the actual system that is being
approximately linearized and a model which is exactly linearizable
(up to degree 2) by the coordinate change and feedback. Fig. 2
shows the nz(n+1)/2 + n(n+1)/2 + n dimensional domain space of
the mapping . and the minimization done in the domain space.

The numerical solution to (40) is found by linear algebraic
methods. For illustration purposes consider a mapping

A: RN orM (45)
and solve
Ax = b. (46)
If the mapping is not of full rank, it can be expanded as follows

I X N+M
(WDx—=()er @

where [ is the identity matrix of appropriate dimension. The
mapping (47) is always of full column rank. Now we solve for

[--8]

Then one can choose a metric G on RY *¥
Gy, O
¢ { 0 G “9
22
and find a solution to
x 2
min gyl (50)

xelR
The well-known solution of (50) is

x=(u aM6 [ 4 ])_1[1 a6 [P ] 1)



Finaily, we note the following correspondence between the

dimensions and variables in (51) and in the linearization problem:
gl

on(n+ 1) 2

M > +n"; N:nz(n+1)/2+n(n+l)/2+n
‘—(D(Z)_\ @)
() f
X o ; b:
%0 ] U]
B : s
S 00
AL ; G| ORO
00 Q

5. An Example

In this section we linearize the following nonlinear plant using the
method outlined in Sec. 3.:

X, =x, + 0.5x2 + xu (52a)
,iz = X3 - X Xy Xl (52b)
Xy = u + 0.5x3+ x,u (52c)
Calculation of the coordinate transformation and feedback gives:

Z) =X - XXy (53a)
2, = X + 0.5x% — x,x, (53b)
23 =Xy 4 X)Xy — XXy — X3 (53¢)
V= xxy + L5xd - xpxg + (1 — Xy + X — 20)u. (54)

With the above, we obtain the exact linearization (implying that the
system (52) satisfies the Hunt—Su condition):

1 =2, (54a)
L= (54b)
Z; = V. (54¢)

A simple feedback design v = Kz that places the closed loop poles

at locations -1, -0.707 £ 0.707; yields the gains as ky=-1,k,=
ol

-2.4142, k; = -2.4142. Using v = K(x — ¢(h)(x)), (54), and

(27), the feedback u is evaluated. The nonlinear input is then

applied to the system (52). Note that this will introduce O(x,u)3
terms into (52). In Figs. 3 through 8, we present simulation
results and comparisons for the above linearization and feedback
problem. In all plots, continuous lines represent the time response
curves for a fictitious linear system equal to the linear part of (52)
with feedback u = Kx applied. The higher order linearization
method of this paper for the nonlinear system (52) is compared
against this exact linear model (dashed lines). A feedback design
based on a first order approximation (i.c. the feedback u = Kx),

and applied to the nonlinear model (52) is plotted with dotted
lines. Figs. 3, 4, and S show the responses to a step input X, =

0.4. In Figs. 6, 7, and 8 the response curves for a step input X, =
—0.4 is shown. The simulations demonstrate the advantage of the
proposed nonlinear feedback. The time response of the nonlinear
system with nonlinear controller is closer to the response of a
linear system (specifically, the linear system obtained from the
first order part of the vector field) than a control design basedon a
first order approximation. The effect and the improvement of this
nonlinear control on the stability bounds of a nonlinear system is
being investigated.

Conclusion

In this paper, we presented a method to solve the approximate
linearization problem of nonlinear control systems. The problem
is reduced to the solution of a set of linear equations as follows:

First, the generalized homological equations are derived. By

introducing an appropriate basis for expressing higher degree
monomials in the vector field, a set of equations linear in the
coefficients of the monomials are found. An exact solution to
these set of equations is not always possible. A least square
solution is proposed that minimizes, in a statistical sense as
defined above, the error in the approximation.

We note that in the equivalent linear map, the case when
the nonlinear terms to be cancelled are not in the range of the
mapping exactly correspond to the violation of the integrability
conditions in the Hunt—Su linearization theorem. In other words,
the given nonlinear system in this case is not exactly linearizable.
In the method developed here, we still find a “partially” linearizing
solution to this problem. The least square solution minimizes
precisely the error in such an approximation.

Especially for systems with higher dimensions and higher
degrees of approximation, the dimension of the system of linear
equations may become extremely large and difficult to solve. A
computer program that automates the solutions is under
development by the authors.

The multi~input case for the generalized homological
equations is slightly more complicated to derive. Research is
continuing for the description and solution of these equations in
the most general input—output setting, and for an arbitrary degree
of linearization.
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LEGEND FOR FIGURES 3 TO §:
(1) : ———— Fictitious linear model with linear feedbackcontrol.

(2) : — — — — Nonlinear system with nonlinear control (based
on the method of this paper)
(3) 1 e Nonlinear system with control based on first

order approximation (same control as the fictitious linear model).

0.5

. (1
0.4¢ 2)

0.3

x10.2

0.1

0 2 4 6 8 10
time, sec.

Fig. 3 Time domain response of state x;; Simulation 1.
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Fig. 4 Time domain response of state X,; Simulation 1.
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Fig. 5 Time domain response of state X3; Simulation 1.
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Fig. 6 Time domain response of state x,; Simulation 2.
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Fig. 7 Time domain response of state X,; Simulation 2.
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Fig. 8 Time domain response of state X5; Simulation 2.



