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Abstract—In this paper, discrete-time Gaussian reciprocal processes
are characterized in terms of a second-order two-point boundary-value
nesrest-neighbor model driven by a locally correlated noise whose cor-
relation is specified by the model dynamics. This second-order model
is the analog for reciprocal processes of the standard first-order state-
space models for Markov processes. It is used to obtain a solution to

the smoothing problem for reciprocal processes. The resulting smoother

obeys second-order equations whose structure is similar to that of the

Kalman filter for Gauss-Markov processes. Finally, it is shown that lhg

smoothing error is itself a reciprocal process.

I. INTRODUCTION

ONCAUSAL random processes, or random fields, occur in

many areas of science and engineering. These processes are
usually indexed by space, instead of time. In this context, the
concepts and models which were developed to study causal pro-
cesses, such as the Markov property, Markov diffusions, or first-
order Gauss-Markov state-space models, are no longer appli-
cable. It is of interest to acquire equivalent tools for noncausal
. systems. In several dimensions, the concept of Markov random
field [1]-{3] does not require any causality assumption. Specifi-
cally, a random field x(7) with 7 € RY is said to have the Markov
property if, given an arbitrary closed domain D and its boundary
T', the values of x(7) inside D are conditionally independent of
the values outside D, given the values of x(-) on the boundary,
i.e., given {x(3); §eT}.

Somewhat surprisingly, Markov random fields do not reduce in
one dimension to Markov processes, but to reciprocal processes.
These processes were introduced in 1932 by Bernstein [4] and
have been studied in detail in [5]-[11]. In the discrete-time case,
a process x(k) defined over Z is reciprocal if, given an arbitrary
interval [K, L], the values of x(-) in the interior and exterior of
this interval are conditionally independent given x(K) and x(L).
A.consequence of this definition is that if x(k) is a Markov pro-
cess, it is necessarily reciprocal [6], but the converse is not true.
Examples of reciprocal processes which do not have the Markov
property can be found in [5]-[12].

The first significant step towards the development of stochastic
models for reciprocal processes was undertaken recently in [12],
where a theory of reciprocal diffusions was proposed. In this

context, it was shown that unlike Markov diffusions, which are -

described by first-order stochastic differential equations driven by
the uncorrelated increments of a Wiener process, reciprocal dif-
fusions are modeled by second-order equations driven by locally
correlated noise increments. However, a number of issues related
to the structure of the driving noise and the selection of boundary
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conditions were not completely resolved in [12]. One goal of the
present paper is to shed some light on these unresolved issues by
considering the simple case of discrete-time Gaussian reciprocal
processes. The case of continuous-time Gaussian reciprocal pro-
cesses presents a few added difficulties, which are examined in
[13].

To motivate the study of reciprocal processes from an engi-
neering point of view, it is worth noting that the solutions of
1-D stochastic boundary-value systems of the type considered in
[14]-{16] are all reciprocal processes. This means, for example,
that the steady-state distribution of the temperature along a heated

_ring or a beam subjected to random loads along its length can be

modeled in terms of reciprocal processes. The ship surveillance
problem considered in [17] provides another good example of
the applicability of reciprocal processes. In this context, given a
Gauss-Markov state-space model of the ship’s trajectory, it was
desired to assign a probability distribution not only to the initial
state, but also to the final state, corresponding to some predictive
information about the ship’s destination. This had the effect of
modeling the trajectory as a reciprocal process, a feature which
was exploited only indirectly in [17). This suggests that the re-
sults of this paper will be of use for a wide variety of noncausal
1-D estimation problems.

In this paper, it is shown in Section II that discrete-time Gaus-
sian reciprocal processes can be described by a second-order
nearest-neighbor model driven by a first-order moving-average
process whose correlation structure is determined by the model
dynamics. This model is the analog for Gaussian reciprocal pro-
cesses of first-order state-space models for Gauss-Markov pro-
cesses. It also has the same form as a model proposed in [3] for
discrete Markov random fields. This second-order model is used
in Section III to obtain a complete characterization of Gaussian
reciprocal processes. The special case of Markov processes is
examined in Section IV, where the second-order model satisfied
by these processes is constructed directly from their first-order
state-space model. A recursive solution procedure for second-
order reciprocal models is developed in Section V. This proce-
dure relies on a white-noise representation for the driving noise
and on the fact that a reciprocal process, when conditioned with
respect to its final value, is a Markov process and can therefore
be generated causally. ’

To illustrate the applications of second-order nearest-neighbor
models of Gaussian reciprocal processes, we consider the fixed-
interval smoothing problem in Section VI. It is shown that the
smoothed estimates satisfy second-order recursions whose struc-
ture is similar to that of the Kalman filter for Gauss-Markov
processes. These recursions are noncausal, but by factoring the
smoother dynamics into first-order components which are, re-
spectively, forward and backward stable, it is shown that the
smoother admits a double sweep implementation similar to the
Rauch-Tung-Striebel smoothing formula [18] for Markov pro-
cesses. Finally, a second-order model is constructed for the
smoothing error, which is used to show that the error is itself
a reciprocal process.

II. Nearest-NeiGHBOR MoDELS OF RECIPROCAL PROCESSES

A. Model Construction

Consider a zero-mean, Gaussian, reciprocal process x(k) de-
fined over the interval I = [0, N} and taking values in R”. Since
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x(-) is reciprocal, x(k) must be conditionally independent of the
values of x(-) in the exterior of the interval [k — 1, k + 1], given
x(k — 1) and x(k + 1). Thus,

Elx(k)lx(s), s € I — {k}] = E[x(k)|x(k — 1), x(k + 1)]
=F_(kx(k-D+F (kxtk+1) Q2.1

for 1 < k < N —1. This identity implies that the residual process

dk) =x(k) —F_(k)x(k — 1) - Fo(k)x(k +1) (2.2)

has the orthogonality property

dk) L x(s) fors #k. 2.3)
In the above construction, it is interesting to note that the matri-
ces F 1(k) and the residual process d(k) are independent of the
interval I, as long as this interval contains the point k£ and its two
nearest neighbors kK — 1 and k + 1.

The relation (2.2) can be viewed as specifying a nearest-
neighbor model for x(k), where the driving noise is the residual
process d(k). In this context, the orthogonality pr(}perty 2.3)
implies that the noise covariance D(k, /) = E[d(k)d” (/)] is such
that

1) Dk,ly=0 for k—1]>1 (2.4)
2) Dk, k+1)=-Dk, K)FT (k +1)
=-F. (k)Dk +1,k + 1i. (2.5)

The property 1) indicates that d(k) is a first-order moving av-
erage process and 2) imposes a constraint on the projections
matrices F () and noise variance D(k, k), since it shows that
they cannot be specified independently of each other. The proof
of (2.5) relies on the observation that

Eld(k)d™ (k + 1)] = —E[d(k)xT ()FT (k + 1)
= —F (k)E[x(k + DdT (k + 1]

where
D(k, k) = E[d(k)d" (k)] = Eld(k)x" (k)).

The second-order nearest-neighbor model (2.2) differs from
state-space models of Markov processes by the fact that the driv-
ing noise d(k) is not white, but locally correlated. The rela-
tion (2.5) shows also that the model dynamics, i.e., F +(-) and
the noise variance D(k, k) specify entirely the local correlation
D(k, k +1) of the driving noise. These features may appear sur-
prising at first, but it is worth noting that a model with precisely
the same structure was proposed in [3] for Markov random fields.

Another consequence of the orthogonality property (2.3) is
that the covariance R(k, s) = E[x(k)xT (s)] of the process x(k)
satisfies the second-order difference equation

R(k,s) —F _(k)R(k - 1,8) — F . (kK)R(k + 1, )
= D(k, k)o(k —s) (2.6)

where (k) denotes the Kronecker delta function. This equation
is the discrete analog of the second-order differential equation
obtained by Krener [12], [13] for continuous-time Gaussian re-
ciprocal processes.

Specializing (2.6) for s = k — 1, k + 1, we find that the pro-
jection matrices F 4 (k) can be obtained by solving

[F (K FL(KPk) =[R(k,k — 1Rk, k +1)] (2.7a)
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where

Rk—-1,k-1) Rk-1,k+1)
P(k) =

(2.7b)
Rk+1,k—-1) Rk+1,k+1)

is the variance of

T (k) =IxT(k — X7 (k + D).

The existence and unicity of F 4 (k) is therefore guaranteed if the
variance matrix P(k) is positive definite for all k. Given F 1(k),
by setting s = k in (2.6), we find that the error variance is given
by i

D(k, k) =Rk, k) —F_(k)R(k — 1, k)
—F (k)R(k +1,k). (2.8)

From (2.7)-(2.8), we can immediately conclude that when x(k) is
stationary, i.e., when R(k, s) = R(k —5), the matrices F .. (k)
and D(k, k) are constant, and (2.2) is a linear time-invariant
system.

B. Boundary Conditions

The second-order model (2.2) with noise structure (2.4), (2.5)
does not specify completely the process x(k) over the interval
I = {0, N]. Some boundary conditions must also be imposed at
both ends of I. It turns out that there is more than one way to
select a satisfactory set of boundary conditions. We consider here
Dirichlet and cyclic boundary conditions, since both will be of
use in subsequent developments.

Dirichlet Conditions: By construction, the residual process
d(k) for 1 <k <N —1 is uncorrelated with x(0) and x(N).
Thus, we can select

{ x(0) } [ b; }
=b= ~ N(0, Pp) (2.9a)
X(N) by
with
R(0,0) R0, N) ]
= (2.9b)
R(N,0) R(N, N)

where b is independent of the noise d(k) as boundary condition
for the model (2.2).

Cyclic Conditions: Since x(k) is reciprocal, x(0) is condi-
tionally independent of the values of x() in the interior of interval
[1, N1, given x(1) and x(N). Thus,

E[x(0)|x(s), s € I — {0}]
=F_(0O)x(N) + F(0)x(1). (2.10a)

Similarly, x(N) is conditionally independent of the values of x(-)
on the interval [0, N — 1], given x(0) and x(N — 1), so that

E[x(N)|x(s), s € [ — {N}]

=F_(N)x(N - 1)+ F (N)x(0). (2.10b)
Then, if we introduce the residuals
d(0) = x(0) — F_(0O)x(N) — F . (0)x(1) (2.11a)

d(N)=x(N) - F_(N)x(N - 1) - F.(N)x(0) (2.11b)
at both ends of interval I, we have the orthogonality relations
s#0
s#N.

d0) 1 x(s), (2.12a)

d(N) L x(s), (2.12b)
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The relations (2.11)-(2.12) have the effect of extending cyclically
the model (2.2), as well as the noise structure (2.4), (2.5), and the
second-order covariance equation (2.6), to the whole interval I =
[0, N1, provided that in these identities, kK —1 and k+1 are defined
modulo &V + 1. There exists, however, one important difference
between the relation (2.2) for points £ in the interior of I, and
relations (2.11a) and (2.11b) for the end points. Namely, unlike
the case of interior points, the boundary matrices F +(0), F +(N)
and residuals d(0), d(N) depend on 1. If the interval I is extended
or reduced at either end, all the boundary matrices and residuals
are affected. In other words, the cyclic conditions (2.11a) and
(2.11b) have the effect of wrapping around the interval J onto a
circle, but the wrapping procedure needs to be modified as the
interval I is increased or decreased.

C. Well-Posedness

Given the model (2.2) with the noise structure (2.4), (2.5),
and the Dirichlet boundary conditions (2.9), or cyclic conditions
(2.11), it is now possible to determine whether the resulting sys-
tem is well posed.

For the Dirichlet model, the relations (2.2), (2.9) can be
rewritten as a single matrix equation
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When the covariance matrix R > 0, the variance D(k, k) of the
noise d(k) must be positive definite for all k. Otherwise, there
exists a vector v # 0 such that v” d(k) = 0. But from (2.2), this
implies that a linear combination of x(k — 1), x(k), and x(k +1)
is identically zero, which contradicts the assumption that R > 0.
This implies the following.

* Lemma 2.1: If the covariance matrix R of x(k) is positive
definite, the Dirichlet-model (2.2), (2.9) is well posed.

Proof: If R > 0, we have shown that D(k, k) > 0 in the
interior of I. Furthermore, the matrix P, formed by the four
corner blocks of Ap is invertible, since it is a principal minor of
R, so that Ap is invertible. From (2.15a), this implies that Fp
is invertible. : [ |

The well-posedness of the cyclic second-order model (2.2),
(2.11) can be characterized in the same way. In this case, the
identity (2.13) takes the form

ch =dc (2.163)
with ’

dl =[d" ) d"(1) d'(N-1) d"(N)] (2.16b)

r I —F ,(0) —-F_0) 7
—F_(1) I —F+(1) 0
Fc = (2.16¢)
0 -F_(N-1) I~ —-F (N-1
L—F +(N) —F _(N) I |
Fpx =dp (2.13)  and the orthogonality property of the residuals implies
with | FcR = Ac (2.173)
T =T X7 xT(N-1) xT(N)] (2.14a) with
dp =Ib] d'(1)---d"(N—-1) b} (2.14b) Ac = diag{D(k, k)}. (2.17b)
-7 0 -
—-F_(1) I —F. 1) 0
Fp = (2.14¢)
0 —-F_(N-1) I —-F (N-1)
L 0 I |

The well-posedness of the second-order model (2.2), 2.9) is
therefore equivalent to the invertibility of Fp. But the orthogo-
nality property (2.3) of the residuals implies

FpR =Eldpx"]1 = Ap (2.15a)
where R = Exx”], and ’
" R(0,0) R(O,1)
D(, 1)
Ap =
0 0
LR(N,0) RN, 1)

Then, when R >0, it is easy to check that D(k, k) > 0 for
0 <k < N, so that the cyclic model (2.2), (2.11) is well posed.

From (2.17), we see also that if x(k) is a nonsingular (i.e.,
R > 0) reciprocal process over [0, N], its covariance R has a
cyclic block tridiagonal inverse. This property will be used be-
low to obtain a characterization of reciprocal processes.

R0, N) 7

RO, N -1)

(2.15b)

DIN-1,N-1)

R(N,N-1) R(N,N)]
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III. CHARACTERIZATION OF RECIPROCAL ProcEesses

Up to this point, we have shown that if a process is recipro-
cal, it admits a nearest-neighbor model (2.2) with noise structure
(2.4), (2.5), and with either Dirichlet or cyclic boundary condi-
tions. However, we have not yet shown that the mode! (2.2) and
(2.4), (2.5) captures completely the structure of reciprocal pro-
cesses. In other words, we have not proved that the solution x (k)
of such a model is necessarily reciprocal. It turns out that this is
the case, but instead of considering directly the nearest-neighbor
model (2.2), (2.4), and (2.5), we introduce a renormalized ver-
sion of this model which is simpler to analyze.

A. Second-Order Descriptor Model
Specifically, we consider the second-order descriptor system

Mo(k)x(k) — M _(k)x(k — 1) — M (K)x(k +1) = e(k)

3.1
such that
M (k) = MT (k +1) (3.2)
with Dirichlet boundary conditions
x(0) b;
=b= ~ N(0, Pp) 3.3)
X{(N) by '

and where the input noise e(k) is a Gaussian process uncorrelated
with b, whose covariance E(k, /) = E [e(k)eT (1)) is such that

) Ek,1)=0 for |k 1| >1 (3.4a)
2) E(k, k) =My, Etk,k+1)=~M, (k). (3.4b)

In the above equations, x(k) €R", and My, M 4. are square ma-
trices of size n. Furthermore, it is assumed that the descriptor
model (3.1)-(3.3) is well posed, i.e., that it admits a unique
solution.

To see how the descriptor model (3.1)-(3.4) is related to the
nearest-neighbor model (2.2) with noise structure (2.4), (2.5),
assume that x(k) is a reciprocal process with full rank residuals,
i.e., such that D(k, k) is invertible for all k in the interior of
I. We have seen earlier that this is ensured by R >0. Then,
multiplying (2.2) on the left by D~'(k, k), and identifying

Mqo(k) =D~"(k, k), My(k)=D""(k, k)F 1(k) (3.5a)
e(k) = D~V (k, k)d(k) (3.5b)

the nearest-neighbor model (2.2), (2.9) is transformed into the
descriptor model (3.1), (3.3). Furthermore, the noise structure

(2.4), (2.5) for d(k) implies that the descriptor model satisfies -

(3.2) and that the covariance of the normalized noise e(k) obeys
(3.4). This shows that any nonsingular reciprocal process x(k)
admits a well-posed descriptor model of the form 3.1)-(3.4).

The descriptor model (3.1)-(3.4) has several advantages over
(2.2). The first one is that the noise structure is displayed more
clearly. Specifically, the relations (3.4a) and (3.4b) show that the
noise covariance E(k, /) is totally specified by the descriptor dy-
namics. The matrix My(k) is positive definite, and (3.2) indicates
that the matrix functions M, (-) and M _ () can be specified from
each other. Thus, as in the Markov case, only two functions, say
Mo(-) and M (-), are needed to describe the model. Another ad-
vantage of (3.1)-(3.4) is that the constraint (3.2) between M_(")
and M, (-) implies that the second-order difference operator as-
sociated to (3.1) is self-adjoint, as will be shown below. This
last feature is, in fact, the primary motivation for the introduction
of the renormalization 3.5).

Now that we have shown that a nonsingular reciprocal process
X(k) admits a well-posed descriptor model (3.1)~(3.4), our goal
in this section is to prove the converse, i.e., that the solution

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 9, SEPTEMBER 1990

x(k) of a well-posed descriptor system (3.1)-(3.4) is necessarily
reciprocal. ,

B. Solution

The first step of our analysis consists of introducing a Green’s
identity and Green’s function, which will be used to express x(k)
in terms of the input noise e(k) and boundary vector b. Thus, let

A=MyK)] ~M_(k)Z2~' -~ M, (k)Z (3.6a)

be the difference operator associated to (3.1), where Z denotes
the forward time-shift

Zf(k) = fk +1). (3.6b)
A maps n-vector functions defined over the interval 7 = [0, N]
into n-vector functions defined over the interior [1, N — 1] of this

interval. Consider now the space S of n-vector functions defined
over the interior of /, with the inner product

N-~1
(rre) =" "r(s)e(s). 3.7
s=1

Then, the following Green's identity is satisfied:

x(0)
(r, Ax) = (Ar, x) + [T (0) rT(l)]Ei[ }
x(1)
X(N)
+rT(N) rT(N—l)]Ef[ J (3.8)
x(N =1
with

E =

0 M (0)
-M_(1) o0

[ 0 Mn(N)J
E; =

3.9
where, as was indicated earlier, a consequence of (3.2) is that
the operator A is self-adjoint.

The Green's function associated to A is given by

AT(k, s) = I8(k —5) (3.10a)
', s) =T(N,s)=0 (3.10b)

with 1 <5 <N — 1, where since A is self-adjoint
T(k, s) =T7 (s, k). (3.11)

Note that I'(k, 5) depends on the interval of definition J = [0, N},
so that it should be really denoted as Ik, s; I.

Solution: Applying the Green’s identity (3.8) to the case
where x(s) satisfies (3.1)-(3.3), and r(sy = I'(s, k)a where a
is an arbitrary vector of R", we find

N—-1
a’ er(s, ke(s) + T7(1, k)M _(1)b;
s=1

+IT(N = 1, )M .(N — )b, — x(k)] =0. (3.12)

Since a is arbitrary, and taking into account (3.11), the solution
of (3.1)-(3.3) is therefore given by

N-—1
x(k) = ZF(k, s)e(s) + Tk, DM _(1)b;

s=1

+I(k, N = DM (N - Db,. (3.13)
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Orthogonality Property: The expression (3.13) can be used
to show that if the noise e(k) in (3.1) has the covariance structure
(3.4), then the solution x(k) is such that

x(k) 1 e(s) for k #s. (3.19)
This can be checked from )
N-—1
Elx(k)e” () = Y Tk, $)E(s, 1)

s=1

= T'(k, DMo(l) — Tk, | — HMT (1)
=Tk, I + DM ()

=18(k - 1) (3.15)

where we have used the definition (3.10) of the Green’s function,
as well as the self-adjointness relation (3.11).

Covariance Description: The orthogonality property (3.14)
has important consequences. In particular, if we substitute thé
expression (3.13) for the solution x(k) inside the covariance
R(k, 5) = E[x(k)x7 (5)], and take into account the orthogonality
property (3.14), we find that R(k, 5) can be expressed in terms
of the Green’s function ['(k, s) as

R(k, s) =T'(k, s)
+ [Tk, DM_()T(k, N — DM (N - D]P,
MT(HIT (s, 1)

. . (3.16)
MU(N - DIT(s, N - 1)

This provides the following stochastic interpretation of the

Green’s function I'(k, 5). Let xo(k) be the pinned process over

[0, NJ which is obtained by solving (3.1)-(3.4) with zero bound-

ary conditions, i.e., with b = 0, or equivalently P, = 0. Then,

according to (3.16),

Exo(k)x{ ()] = Ro(k, 5) = T(k, 5) (3.17)

so that the Green’s function I'(k, s) is the covariance of the
pinned process xo(k). This implies that I'(k, s) is a nonnegative
operator. By applying the operator A on both sides of (3.16), we
also find that the covariance R(k, §) satisfies the second-order
difference equation

Mo(k)R(k, s) — M _(k)R(k — 1, 5)
—M_ (K)R(k +1,5) =18k —5) (3.18)

which, except for the fact that we are considering here a descrip-
tor model, is identical to (2.6). Note, however, that while (2.6)
had been derived under the assumption that x(k) was reciprocal,
up to this point, we have only assumed that x(k) is a solution of
3.D)-(3.9).

From the above discussion, we see, therefore, that the Green’s
function I'(k, 5) and covariance R(k, s) of model (3.1)-(3.4)
satisfy the same difference equation and differ only by the choice
of boundary conditions.

C. Main Result

We are now ready to prove the following.

Theorem 3.1: Let x(k) be a zero-mean Gaussian process
. whose covariance is nonsingular, i.e., R > 0. Then, x(k) is re-
ciprocal if and only if it admits a well-posed second-order de-
scriptor model of the form (3.1)-(3.4). :

Proof: Necessity was proved in Section ITI-A. To prove suf- -

ficiency, we must show that the solution x(k) of (3.1)~(3.4) given
by (3.13) is reciprocal. Thus, let J = [K, L] be a subinterval of
I, and let / and k be two points such that

0<I<K<k<L<N,
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i.e., { and k are, respectively, in the exterior and interior of J.
To prove that x(-) is reciprocal, we only need to show that
X(k) = x(k) — E[x(k)|x(K), x(L)] L x{). (3.19)

Solving (3.1), (3.2) over the subinterval J, with boundary con-
ditions x(K) and x(L), yields

-1

x(k) =" T(k, s; De(s)

s=K+1
+ Tk, K +1; HIM_(K + D)x(K)
+ Tk, L = 1; HM (L ~ 1)x(L)

where I'(k, s; J) denotes the Green’s function for the system
defined over the subinterval J. But the orthogonality property
(3.14) implies that e(s) L x(K), x(L) for K <s < L, so that

Elx(k)|x(K), x(L)] = Tk, K + 1; HM (K + D)x(K)
4Tk, L — 1; HMA(L - Dx(L) (3.20a)

L—1

(k) = Z [(k, I; J)e(s).

s=K+1

Using the orthogonality property (3.14) and expression (3.20b)
for X(k), we can conclude that ¥(k) L x(/), so that the process
x(k) is reciprocal. O

Remark: It is worth noting at this point that since the nearest-
neighbor models of reciprocal processes that we are discussing
here can be viewed as a specialization to the 1-D case of Markov
random field models considered in [3], the characterization of
reciprocal processes that we have obtained in Theorem 3.1 is in
some sense implied by the earlier results of [3]. However, the
analysis of [3] was restricted to the scalar stationary case, and
several issues, such as the solution of the models, were not ex-
amined. Furthermore, the application of nearest-neighbor models
to the study of estimation problems, which is considered in Sec-
tion VI, is entirely new.

D. Cyclic Model

The characterization of reciprocal processes that we have just
derived is expressed in terms of a second-order descriptor model
with Dirichlet conditions. It is possible to obtain an equivalent
characterization for a cyclic model, where the Dirichlet condi-
tions (3.3) are replaced by cyclic conditions. This means that the
descriptor equations (3.1), (3.2) and the noise structure (3.4) are
now assumed to hold for all & € I, provided that we define k — 1
and k + 1 modulo N + 1.

The steps which can be used to convert the characterization
of Theorem 3.1 into an equivalent result for cyclic descriptor
models are as follows. First, observe that if x(X) is a nonsingular
{R > 0) reciprocal process, its cyclic nearest neighbor model is
well posed, and the noise variance D(k, k) >0 for all k € 1.
Therefore, by applying the transformation (3.5), we obtain an
equivalent well-posed second-order cyclic descriptor model.

Next, consider a well-posed cyclic descriptor model. Its solu-
tion x(k) can be computed as follows. Let Ac be the operator

(3.20b)

- obtained by replacing Z by the cyclic shift

Zcof(ky = f((k + )mod(N + 1)) (3.21)
in (3.6a). Note that the range of Ac is now the set of n-vector
functions over the whole interval I. Then, if the inner product
(3.7) is defined over I instead of its interior, the Green's identity
(3.8) becomes

(rs Acx) = (Acr, x). (3.22)
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If we define the cyclic Green’s function as the solution of

AcTc(k,s)=I6k —s) fork,sel ~ (3.23)
the solution of the cyclic descriptor model is given by
N
x(k) = Tc(k, s)e(s). (3.24)

s=0

Taking into account the noise structure (3.4), we see imme-
diately that the orthogonality property (3.14) is satisfied for all
k, s €I with k # s. This property can then be used to show that

R(k’ S) = FC(k’ s)) (3.25)

i.e., the covariance R(k, ) of the solution x(k) is identical to the
cyclic Green’s function I'c(k, s). This implies that the covariance
R(k, s) satisfies (3.23). Another consequence of the orthogonal-
ity property (3.14) is that ’

x(0), x(N) L e(s)

for 5 in the interior of I. This shows that the original cyclic
descriptor model can be converted back to a Dirichlet model,
whose solution is then guaranteed to be reciprocal. Thus, we
have proved the following.

Corollary 3.1: Let x(k) be a zero-mean nonsingular Gaus-
sian process. Then, x(k) is reciprocal if and only if it admits
a well-posed second-order cyclic descriptor model (3.1), (3.2)
with noise structure (3.4).

Since the covariance R(k, s) of a cyclic descriptor model sat-
isfies (3.23), we obtain also the following result.

Theorem 3.2: R >0 is the covariance matrix of a reciprocal
process if and only if its inverse covariance R ™! has a cyclic
block tridiagonal structure, i.e.,

[ Mo(0) —-M.(0) -M_(0) 7
—M_(1)  Mo(l) -M,(1) Y
R (3.26)
0 ~M_(N—-1) MuyN-1) -M, (N-1)
L —M (N) -M_(N) My(N) |
This characterization of the covariance of reciprocal processes x(k +1) = A(k)x(k) + w(k) (4.1a)

is extremely convenient. It is the key to the derivation of the
smoothing results presented in Section VI, and it is, in fact, the and initial condition
primary motivation for the introduction of cyclic models.
E. Conjugate Process x(0) =bi ~ N(, IL,) (4.10)

An interesting feature of the cyclic descriptor model (3.1),
(3.2), (3.4) is that its input e(k) is the conjugate process of
x(k). The notion of conjugate process was originally introduced
by Rozanov {19, ch. 2] and Masani [20, sect. 2] for the predic-
tion and interpolation of stationary Gaussian processes, and was
subsequently applied to stochastic realization theory in [21], [22].
The conjugate process of a nonsingular process x(k) defined over
1 is the unique process e(k) with k € I such that:

1) Elx(k)ye™ (D) =18k —1) fork,l el, 3.27
and 2) E = X, where E and X denote the Hilbert spaces of
random variables spanned, respectively, by e(k) and x(k) for
k € I. For the cyclic descriptor model that we consider here, the
biorthogonality relation (3.27) is a consequence of (3.14) and of
the renormalization (3.5b) that was used to define e(k), and the
equality of X and E is implied by expression (3.24) for x(k).

From (3.27), we see that the covariance of the conjugate pro-

cess e(k) is R, and Theorem 3.2 just states that a zero-mean
nonsingular Gaussian process is reciprocal if and only if its con-
jugate process has a cyclic tridiagonal covariance. The previous
characterization of Gaussian reciprocal processes can also be ex-
tended to the case where x(k) is a stationary Gaussian process
defined over the whole line, instead of a finite interval. In this
case, assume that the covariance R(k) of x(k) is summable, so
that x(k) admits a spectral density S(\), i.e., x(k) is a regular
process. Assume also that

/ trS™'O\ AN < o (3.28)

hat &

which guarantees that the conjugate process is well defined [19],
i.e., that it has a finite variance. The spectral density of the con-
jugate process is S ~!(A) [19]. Then, if we let the length N of the
interval I tend to infinity in the cyclic descriptor model (3.1),
(3.2), (3.4), and observe that R(N) — 0 as N — oo implies
that M _(0), M. (N) — 0 in (3.26), we find that a zero-mean
Gaussian stationary process x(k) is reciprocal if and only if its
conjugate process admits a spectral density of the form

S7T'N) =My - Mie ™ — M_e. (3.29)

It turns out that this result is well known for Markov random
fields [8], [23]. In the context of reciprocal processes, it is of
limited interest, since regular Gaussian reciprocal processes de-
fined over Z are necessarily Markov [8], so that (3.29) is really
a characterization of stationary Gauss-Markov processes.

IV. Markov ProcEssEs

Since Markov processes are reciprocal, they admit a second-
order description, which, as shown below, can be constructed
directly from the first-order state-space model that they satisfy.
Thus, let x(k) be a zero-mean Gauss-Markov process with state-
space model

where w(k) is a white Gaussian noise (WGN) uncorrelated with
b; and with intensity Q(k):

Efw(k)yw (] = Q(k)s(k = 1). (4.1¢)

The solution of (4.1) is given by

k—1
x(k) = ®(k, O)b; + Z«p(k, s + Dw(s) 4.2)

s=0

where ®(k, §) is the state-transition matrix

fork >s

Pk, s) =

{A(k -1 A(s)
(4.3)

for k =s.
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The state variance TI(k) = E[x(k)x7 (k)] satisfies

Nk + 1) = AWIIKAT (k) + Q(k) (4.4)
with initial condition I1(0) = Il,, and the state covariance R(k, g)
is given by
Ok, HI) fork >s
Rk, s) = . 4.5)
k)P (s, k) for k <s.
The second-order model of x(k) can be constructed as foliows.

In (4.1a), the noises w(k) and w(k — 1) are uncorrelated with
the past states, Le.,

w(k), wik —1) Lx(s), 0<s<k-1. (4.6)
Their correlation with future states is given by

E[w(k — )xT (5)] = Q(k — NP (s, k) (4.72)

Ew(k)xT (5)] = Qk)® (s, k + 1). (4.7b)

Consequently, for the full rank ﬁoise case where Q(k) > 0, the
process

e(k) = Q7' (k — hw(k — 1) - AT()Q ' (kyw(k) (4.8)
has the orthogonality property

e(k) 1 x(s) fors #k “4.9)

which, as was seen earlier, characterizes the driving noise of
second-order models of reciprocal processes.
Second-Order Model: Substituting (4.1a) inside (4.8) gives
e(k) =[Q7"'k — 1) + AT()Q (k) A(K)Ix (k)
- Q7 'k = DAk — Dx(k — 1)

- AT(k)Q " (kyx(k + 1). (4.10)
Denoting
Mo(k) = Q7 'k - 1) + AT(K)Q ™' (k)A(k) (4.11a)
M. (k) = AT(k)Q ™" (k) (4.11b)
M_(k) =Q~'(k - DAk — 1) (4.11¢)

and observing from (4.8) that the covariance E(k, [) of e(k) has
the structure (3.4a), (3.4b), we find, therefore, that (4.10)-(4.11)
is the desired second-order descriptor model of the Markov pro-
cess x(k).

Consider the difference operator

Q=1-Ak-1Z"!
and operator Q = Q(k — 1)/. The dual operator of Q is

(4.12a)

W =I1-ATk)Z (4.12b)

and
Q'0'Q=A (4.13)
is an anticausal times causal factorization of the operator A asso-

ciated with the descriptor model (4.10)-(4.11). Furthermore, by
observing that

ek) =0 'wk - 1) (4.14)
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the second-order model (4.8) can be rewritten in operatgr form
as

Q*Q [ (k) —w(k — D] =0 (4.15)

which clearly shows how it is derived from the state-space model
(4.1a).

Boundary Conditions: The Dirichlet conditions (2.9a),
(2.9b), which were derived for general reciprocal processes, re-
main valid for Markov processes, provided that we take into ac-
count the covariance structure (4.5) inside expression (2.9b) for
the boundary variance P,. To obtain cyclic conditions, we need
only to observe that

e(0) = II; ' x(0) — AT(0)Q ' (O)w(0)

= Mo(0)x(0) + M, (0)x(1) (4.16a)
e(N) =0 (N - Dw(N - 1)

=M_(N)x(N — 1) + Mo(N)x(N)  (4.16b)

with
Mo(0) = I, + AT (0)Q 7! (0)4(0), (4.17a)
My(N)=Q YN -1) (4.176)
M. (0) = -AT(0)Q~'(0), (4.18a)
M_(N)=-Q "(N-DAN -1) (4.18b)

satisfy the orthogonality rel.ation (4.9) for k =0, N, respectively.
These boundary conditions are separable, in the sense that the
states at each end of the interval [0, N] are decoupled, i.e.,

M_(0)=M,.(N)=0. (4.19)

Observing that M _(0) and M, (N) are the two matrices ap-
pearing in the off-diagonal corners of the cyclic block tridiagonal
inverse of R in (3.26), we see, therefore, that the inverse co-
variance of a Markov process must be block tridiagonal. It was
shown in {24, sect. 2] that this property characterizes Markov
processes. Thus, one difference between Gaussian reciprocal and
Markov processes is that their inverse covariances are cyclic block
tridiagonal and block tridiagonal, respectively.

Since Gauss-Markov processes satisfy both first- and second-
order models, which are, respectively, causal and anticausal, it
is of interest to determine when one model should be used in-
stead of the other. As a general rule, the usual first-order model
should be used for causal estimation and stochastic control prob-
lems, whereas the second-order nearest-neighbor model is better

-adapted to the study of noncausal estimation problems, such as

smoothing (see Section VI), interpolation, or noncausal stochas-
tic control problems.

V. RECURSIVE SOLUTION PROCEDURE

The solution (3.13) of the descriptor model (3.1)-(3.4) has the
disadvantage of being nonrecursive. We describe in this section
a recursive procedure which relies on decomposing the solution
x(k) into a Markov process which can be computed recursively,
plus a component depending only on the end boundary condition.

Noise Representation: The first step is to obtain a first-order
moving average representation of the form (4.8) for the driv-
ing noise process e(k). In this representation, w(k) will be a
WGN process with intensity Q(k) which is uncorrelated with
the boundary vector b appearing in (3.3). Then, the relations
(3.4) for the covariance of e(k) imply that the matrices 4 (k) and
Q(k), appearing in the representation (4.8), must satisfy (4.11a)
and (4.11b). Eliminating

A(k) = Q(k)M", (k) (5.1)
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from these two identities, we see that Q(k) must satisfy the back-
ward Riccati equation

Q7 '(k — 1) = Mo(k) — M, (k)Q(k)M", (k)
forl <k <N -1.

Since we want the solution Q(k) to be a covariance matrix,
it must be nonnegative. To see how this can be achieved, note
that if n(k) = Q~'(k)w(k), the noise representation (4.8) can
be rewritten as a single matrix equation

e=0n (5.3)
with
el =1e"(1)---eT(k)---eT (N - 1)] (5.4a)
nT =[n"Q)---n"(k)---n" (N = 1)] (5.4b)
rl —AT(D)
I -AT(2) 0
o = (5.4¢)
0

I -AT(N-1

where €2 is just the matrix representation of operator (4.12a).
Note that in (5.3), n has one more block entry than e, and ac-
cordingly £’ has one more block column than rows. From (3.4),
the covariance E = Efee”] has the structure

52)
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rewritten as (4.15). But (4.15) can be decomposed into two cou-
pled first-order equations

2k = 1) = AT (k)z(k), 1<k<N-1 (58
x(k + 1) = A(k)x(k) + w(k) + Q(k)z(k),
0<k<N-1 (5.8b)

with boundary conditions (3.3). These two equations propagate
causally in the backward and forward directions, respectively, but
the boundary conditions (3.3) make the overall system noncausal.
Now let zps(k) and x (k) be the solution of (5.8) with

(N -1 =0, xpm(0) = b;. (5.9)
Since (5.8a) is undriven, we have z)s(k) = 0, and consequently,
xum(Kk) is a Markov process which can be computed recursively
by propagating (5.8b) in the forward direction. This process sat-
isfies (3.1) and the correct initial condition, but its end value
xm(N) is different from the boundary vector by of (3.3). If
['(k, s) is the Green’s function defined in (3.10), the solution
x(k) of (3.1)~(3.3) is therefore given by

x(k) =xp(k) + Tk, N = DM (N — Dby — xp(N)].
(5.10)

Thus, x(k) is obtained by first computing recursively the Markov
solution xas(k) and then adding to it a term correcting the mis-
match of the end boundary condition.

The above solution procedure relies on the observation that

[ Mo(1)  -M.(1) 7
-M_(2) M2 -M.(2) 0
E = (5.5)
-M_(N-2) MyN-=-2) -M.(N-=-2)

L —M_(N-1) MyN-1) |
and from (5.3), we find given an initial condition x(0) and a second-order model (3.1),
there is exactly one end condition at K = N for which the solution
E=0707'Q (5.6a) of (3.1), (3.2) has the Markov property [7]. The selection of this
. specific end condition is accomplished here by setting zas(N —

with 1) =0.
Q= diag{Q(k)} (5.6b) VI. SMOOTHING PROBLEM

which is the matrix representation of the operator factorization
(4.13). The covariance matrix E is positive definite, since it is a
principal minor of the inverse covariance R ™! given by (3.26).
Then, if we select

QIN-1)=0 (5.7
which corresponds to deleting the last block column of Q7 , the
factorization (5.6a) is just the standard UDL factorization of E,
so that Q ~!(k) > O for all k. In this context, the recursions (5.1),
(5.2) can be viewed as the standard backward Cholesky recur-
sions for the UDL factorization of the block tridiagonal matrix
E. Thus, the proper initialization of the Riccati equation (5.2) is
(5.7.

Recursive Solution: The solution of (5.1), (5.2) yields both a
representation of the form (4.8) for the noise e(k) and a factoriza-
tion (4.13) for the operator A associated to the descriptor model
(3.1), (3.2). Note, however, that this factorization involves only
the interior points, and does not include the boundary conditions.
In the interior of I, the descriptor system (3.1) can therefore be

“Consider a reciprocal process x(k) defined over I = [0, N1,
with descriptor model (3.1), (3.2), noise structure (3.4), and
cyclic boundary conditions. We are given the observations
0<k<N

y(k) = H(k)x(k) + v(k), 6.1

where v(k) is a WGN uncorrelated with e(k), with intensity V (k)

Elv(kw™ (1)) = V(k)s(k —1). (6.2)
We seek to compute the smoothed estimate
X(k) = Elx(k)|Y] (6.3)

where Y is the Hilbert space of random variables spanned by
{y(s), 0<s <N}
Equation (6.1) can be rewritten in matrix form as

y=Hx+v (6.4)
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where
yI=0TO) -y (k) YT (N)] (6.52)
xT =T -xT (k) - xT(N)] (6.5b)
b = [T (0)- T (k) o (N (650
H = diag{H(k)}. (6.5d)
Denoting
=TTk 2T (N)] (6.6a)
R =ExxT], V =Epv] (6.6b)

the solution of the static estimation problem (6.4) is given by
R~"+H"V-'H)1 =HTV"y
or equivalently

R =HTV-'(y — H%). (6.8)

Second-Order Smoother: But it was shown earlier that R~
has the cyclic tridiagonal structure (3.26). From (6.8), we see,
therefore, that the smoothed estimate X(k) obeys the cyclic
second-order descriptor recursions

Mo(K)x(k) - M_(kxk - 1) - M, (kxk+1)
= H'(k)V =\ (k)y(k) — HK)x (k)] (6.9)

for 0 <k <N, where k — 1 and k + 1 are defined modulo
N + 1. The smoother (6.9) has a structure similar to that of
the Kalman filter for Gauss-Markov processes, since the left-
hand side of (6.9) is obtained by applying the operator A to the
smoothed estimate X(k), and the right-hand side consists of a
gain H” (k)V = (k) multiplying the smoothing residuals

vs(k) = y(k) — H(k)x(k) (6.10)

which play here the role of the innovations for the Kalman filter.

The boundary conditions for the smoother (6.9) are cyclic.
However, when the process x(k) is observed exactly at both ends
of the interval /, i.e., when y(0) = x(0) and Y(N) = x(N), we
can use instead the Dirichlet conditions

x(0) = ¥(0),

which may be more convenient.

With either cyclic or Dirichlet boundary conditions, the
smoother 36.9) is noncausal. Nevertheless, by noting that the
matrix R~ + H"V ~'H appearing on the left-hand side of (6.7)
is positive definite cyclic tridiagonal, efficient solution techniques
can be used to solve (6.7). These include, for example, cyclic
block reduction {25, sect. 5.5], or iterative techniques such as
the SOR or preconditioned conjugate gradient methods.

Double-Sweep Solution: Alternatively, we can use the fol-
lowing double-sweep implementation, which relies on the same
operator factorization approach as the solution technique of Sec-
tion V. The first step is to note that in the interior of I, the
smoother (6.9) can be rewritten in operator form as

X(N) = y(N) (6.11)

Asx (k) = HT (k)V =\ (k)y(k) (6.12)
where
As = Mo (k)] ~M_(k)Z™' —~ M (k)Z  (6.13a)
with
Mos(k) = Mo(k) + HT (k)V ™' (K)H (k). (6.13b).

6.7),

1021

Then, using the factorization procedure of Section V, the operator
A can be represented as ‘

Ay = QOO (6.14a)
with

Q=I-Ak -1DZ7, Os =Qs(k — 1)I. (6.14b)
This implies that (6.12) can be decomposed into the two first-
order equations .

2ok — 1) = AT(k)zo(k) + HT ()Y = (k) y k),

1<k<N-1 (6.152)
x(k +1) = As(k)x (k) + Qs (k)zs (k),
0<k<N-1 (6.15b)

which propagate, respectively, in the backward and forward di-
rections. Let now zos(k) and Xo(k) be the solution of (6.15) with
boundary conditions

2s(N - 1) =0,

£0(0) = 0. (6.16)

This solution can be computed recursively by performing a dou-
ble sweep of interval [0, N — 1], where (6.15a) and (6.15b) are
propagated in succession in the backward and forward directions,
respectively.

The smoothed estimate £o(k) which is obtained by this ap-
proach does not satisfy the cyclic boundary conditions obtained
by setting £k = 0, N in (6.9). However, it satisfies (6.9) in the
interior of 1. Denote by

€(0) = HT(0)V " (0)»(0)
—[Mo5(0)%0(0) — M_(0)%o(N) — M (0)%o(1)] (6.17a)

&(N) = H (IN)V "{(N)y(N)
— Mos(N)Xo(N) — M_(N)xo(N — 1)

— M (N)xo(0)] (6.17b)
the mismatch between the true boundary conditions at the ends
of I, and the values associated to Xo(k). Then, if [cs(Kk, §) is
the cyclic Green’s function associated to the smoother (6.9), we
have

X(k) = Xo(k) + Tcs(k, 0)e(0) + Tes(k, N)e(N).  (6.18)

In other words, the true smoothed estimate £(k) is obtained by
adding to Xo(k) some correction terms representing the mismatch
of the cyclic boundary conditions at both ends of I.

The double-sweep recursions (6.15)~(6.16) are also applicable
to the case when the Dirichlet conditions (6.11) are imposed on
the smoother. However, the correction procedure (6.17)~(6. 18)
for handling the boundary conditions needs to be modified.
Specifically, the mismatch between the Dirichlet conditions (6.11)
and the values specified for £o(k) is now given by

€0) = y(0) = %0(0),  &(N) =p(N)—Xo(N) (6.19)

and the correction formula (6. 18) remains valid, provided that the
cyclic Green’s function I'c; is replaced by the Dirichlet Green's
function I's for (6.9). '

To summarize, the double-sweep smoothing technique re-
quires, first, the solution of a Riccati equation to solve the factor-
ization problem (6.14) for Qs(-) and A,(-). Then, the backward
and forward filters (6.15a) and (6.15b) are propagated in succes-
sion. Finally, the true boundary conditions are taken into account
by performing the correction (6.18), which requires the precom-
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putation of I'cs(k, 0) and T'e,(k, N), or of the corresponding
values of I's. As mentioned earlier, this smoothing procedure can
be viewed as an extension of the Rauch-Tung-Striebel smoothing
method for Markov processes, which relies on a similar double
sweep idea. A smoothing procedure of this type was also de-
rived recently for first-order two-point boundary-value descriptor
systems driven by white noise [26].

Smoothing Error: Subtracting (6.9) from the second-order
descriptor model (3.1) for x(k), we find that the smoothing error

x(k) = x(k) — (k) (6.20)

has the cyclic second-order mode)

Mos(K)x (k) — M_(k)x(k — 1)
—M(k)X(k +1) = e;(k) (6.21a)

with driving noise

es(k) = e(k) — HT (k)V =" (k)u(k). (6.21b)

Since e(k) and v(k) are uncorrelated, it is easy to check that
es(k) has the covariance structure (3.4) for model (6.21a). This
implies the following.

Theorem 6.1: The smoothing error process X (k) associated to
a reciprocal process x(k) with full rank noise is itself reciprocal.

This result extends to reciprocal processes a result which was
only shown a few years ago [27], [28], [24] for Markov pro-
cesses, namely, that their smoothing error is a Markov process.

Markov Processes: If x(k) is a Markov process described
by the first-order state-space model (4.1), it is known [15, p.
150] that the smoothed estimate X(k) satisfies the Hamiltonian
system

I -0k [#k +1) Atk) 0
0 A7) | |Rk+1) |  |HTRV-\0)HK) 1

x(k) 0
. + y(k) (6.22)
[x(k)] [—HT(k)V—'(k)J
for 0 <k <N —1, with boundary conditions
IT; '%(0) — \(0) =0 (6.23a)
NN) = HT (N)V Y (N)[y(N)
—HT(N)Y~H{(N)%(N)]. (6.23b)

Assuming that the noise variance Q(k) is invertible, and elimi-

nating A(k) from (6.22)-(6.23) yields the second-order smoother

(6.9), where My(k) and M (k) are the matrices obtained in
(4.11) and (4.17) for the cyclic descriptor model of a Markov
process. Thus, the smoothing results that we have derived for
reciprocal processes are consistent with earlier results for Markov
processes.

Interpolation Problem: The smoothing results that we have
obtained previously can also be used to solve the interpolation
problem [19, sect. 2,11}, [29] for x(k). Thus, assume that we do
not have any observation y(k) over a subinterval J = [K, L] of
1. The interpolation problem consists of finding the estimate % (k)
over this subinterval based on the remaining observations. It is
casy to see that the solution of this problem is obtained by setting
H(k) = 0 in the smoothing equation (6.9) over the subinterval
J. Note, that in this case, the double sweep solution technique
still needs to be applied to the whole interval J. This approach
should be contrasted with the one employed in [29] for Markov
processes, which relied on a two-filter approach. Specifically, it
was shown that the interpolated estimate X(k) at a point of J is
a linear combination of the forward filtered estimate % (K =1

and the backward filtered estimate %,(L + 1). The extension of
this implementation to reciprocal processes is currently under
investigation.

VII. ConcLusions

In this paper, a characterization of reciprocal processes has
been obtained in terms of second-order nearest-neighbor or de-.

scriptor models driven by locally correlated noise. This last
feature is consistent with earlier results of Krener [12] for
continuous-time reciprocal processes, and of Woods {3] for dis-
crete Markov random fields. By observing that the inverse covari-
ance of a reciprocal process has a cyclic block tridiagonal struc-
ture, we have also been able to derive a second-order smoother
whose structure is similar to that of the Kalman filter for Markov
processes, and which can be solved recursively by a double sweep
procedure. :

Since reciprocal processes are 1-D Markov random fields, the
results of this paper can be extended almost directly to mul-
tidimensional Markov random fields. In fact, in the 2-D case,
by considering 2-D nearest-neighbor models of Markov random
fields with locally correlated noise of the type considered here
and in [3], we have been able to show recently [30] that the
corresponding smoother satisfies a second-order nearest-neighbor
equation of the form examined in Section VI. This result should
be contrasted with the one obtained in [15], {31] for 2-D néarest-
neighbor models driven by white noise, where it was shown
that the smoother satisfies a Hamiltonian system consisting of
two coupled second-order equations, thus yielding effectively a
fourth-order smoother. This means that in spite of their apparent
complexity, which is associated with the local correlation struc-
ture of the driving noise, 2-D nearest-neighbor models of Markov
random fields lead, in fact, to simple estimators.
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