Journal of Mathematical Systems, Estimation, and Control © 1991 Birkh&user-Boston
Vol. I, No. 2, 1991, pp. 197-207

Observation of a Rigid Body from
Measurement of a Principal Axis*

Wei Kang Arthur J. Krener!

Abstract

The spacecraft attitude control has been studied before, see [3].
In this note, we give a method of observing the attitude of a freely ro-
tating spacecraft by measuring one of its principal axis. The problem
is solved in §2 and §3. In §4, a method of determining the angular
velocity by the trajectory of one of its coordinates is given.

Key words: Nonlinear systems, nonlinear estimation, rigid body, nonlinear ob-
servations

1 Introduction

In the following, we consider a freely rotating rigid body with no external
torques acting on it. Let {e;, ez, e3} be a set of orthonormal axis fixed in
the spacecraft, with the origin at the center of mass and each axis parallel
to one of the principal axis. A second frame {r;,r; r3} is an inertially
fixed basis. In page 445 of [2], Symon describes the motion of a freely
rotating body as follows. Fix an ellipsoid on the spacecraft, which can be

represented as
3 3
(S awes 13 107 = 1}‘
i=1 i=1

It is called the inertia ellipsoid. There is a fixed plane, P, which is called
the invariant plane. As the spacecraft is rotating freely, one can imagine
that the inertia ellipsoid is fixed on the spacecraft and it is rolling on the
invariant plane without slipping and its center is fixed at the origin, see
Figure 1.
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tnertis ellipsoid

/lnvartan( plane

Figure 1. The inertia ellipsoid rolls on the invariant plane.

Suppose r is the vector from the origin to the point of contact between
the ellipsoid and the invariant plane. Then, the angular velocity w satisfies

w =br

where b is a constant. The following equations describe the evolution of
the spacecraft’s attitude

11{—"—)1 + ([3 — Ig)wgws =0

Igd)z + (11 ad 13)W1LU3 =0
I3ws + (12 — Il)wlwg =0

. sin cos

o= — wwl + — Ipwz

sin 8 sin 6

sin ¥y cos 6 cos i cos 8

; 1= ;
sin 0 sin @

Y=

0 = cosPwy —sinYpws

wy + w3

where (¢, %, 0) are Euler angles (see [3]), and

3
w = E W;Cy
i=1
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is the angular velocity. The intertia tensor is

L 0 0
I=10 L 0
0 0 I3

2  Observability

Suppose the output of system (1.1) is the position of the third principal
axis, es(t), in inertial coordinates. We consider the observability of the
model, 1.e., whether the complete motion can be determined from the time
history of es(t) in inertial coordinates and the equations of motion (1.1).
Rewrite the system as follows:

d)l = (Wwal3g
d)g = ﬁwlw;; (21)
w3 = ywiws
¢ Ty BTy O] [
Y| =1 —sintpctgd —costpctghd 1 wo i . 2.2
- g g
0 cos Y —sin ¢ 0] | ws

The incrtial coordinates of es(t) are the observation and are given by

V1 — cos? #sin ¢ hi(6,¢)
y=|—V1-—cos?bcos¢ | = | hao(6,¢) | . (2.3)
Ii cos @ :l i:ha(ﬂ,qb)}
Here
a:IQ—-Is ﬂ:I:;-——I] vzi—_IQ
L L I3

Theorem 2.1 The system (2.1-2.3) is observable iff a + 3 # 0 and (8 +
Dw? + (a - w3 # 0.

Proof. To prove this system is observable, using the method of [1], we need
to find the dimension of the distribution C(r) generated by {dy, Lrdy, ..

L% 'dy}. Because
hy = +1/1 — h? 4 h3

the dimension of C(r) can be determined by:

-y

dhy, Lpdhy,. .., Ly tdhy

dhy, Lpdhy, ..., L 'dhs.
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But L’}dh,-, it = 1,2, are complicated. To determine the dimension, we
make a change of coordinates in the output space. Let
Ohy Bk
A= [ 26 09 ]
T | 8hy  Bhy
56 06
Then, det(A) = cos@sind; and A is nonsingular whenever 8 # kT" The
angle § depends on the choice of the inertially fixed basis. We can chose
suitable basis to avoid the case § = kT" in a local neighborhood. Therefore,
by change of coordinates in the output space we can take 6§ and ¢ the
output. The observability of (2.1-2.3) is equivalent to the observability
with respect to the output
0
e M '

By calculation, we know that

Lpd = wicosy —wosiny
. 1
Lr¢ = (wisiny +wscosy))—
sin 8
L%H = sinfcosO(Lr¢)* — wasinO(Lre)
+ awawsz cos Yy — Pwiwsg sin P
s 0 Lp6
2 _ cos
F¢ ctg Q(LF(,‘ZS)(LFH) + ey (LpaLF(f)) +(.U3Sin€
sin 5
I/)ozwfzwa; + C(.)Swﬂwlwa
inf sin @

In dL%.¢ and dL%0, all the terms containing df, dg, dLr¢ or dLp0 can be
cancelled. The dimension of C(3) is the same as the rank of the following
matrix:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 —wy sin Y —wz cosy —cosy —siny 0
0 0 Wy cosY—wasiny sin ¥ cos Y 0
0 0 —owowasiny—Pfuwiwscosyy —Pwasinyg awscosy Pi
0 0 awaws cos Y —Bwiws sin Bwsa cosy awasiny P2

where P1 = (a—1)wzcosy—(B+1)w,siny and P2 = (a=1)wzsinP+(f+1)w; cosy.
The determinant of this matrix is

(8 + Dw? + (o = Dwil(a + ).
Therefore, this is not zero if and only if C(3) has full dimension.

Remark 1 (84 1)w? + (a — 1)w? # 0 implies that w; and w2 can not be
zero at the same time. If w; = ws = 0, then the spacecraft turns around
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es, the output is a constant vector and it is impossible to determine e;, e,
from the trajectory of es(t).

Remark 2 The condition a + 3 # 0 implies I} # I,. If I} = I, then the
spacecraft is symmetric with respect to e3. We can not tell the difference
between e; and e;. Moreover, e; and e, are not uniquely defined. So it is
impossible to determine the position of ey, es.

3 Attitude Determination

In this section, we assume that Iy > I > I3 and wg # 0. If wg = 0,
then wy # 0 (see [3]). So, from the similar method in this section, we can
determine the attitude by measuring e;.

From [3] and the introduction, we know that the motion of the space-
craft is totally determined by the following three constants.

(1) The direction of L, which is the normal vector of the invariant plane
P.

(2) The distance, d, from the origin to the tangent plane P.
(3) The energy T.

As the inertia ellipsoid rolls on P, the vector ez turns around the axis
L. Suppose that the coordinates of ez(t) in the inertially fixed basis is
(2(t), y(t), 2(t)), it is expressed by Euler angles in (2.1-2.3). Imagine that
the curve described by e3(t) has mass with the density at constant 1. Then
L is a vector passing through the center of this mass. So the coordinates
of L in the inertially fixed basis are

132 z(s)ds v = 32 y(s)ds S = 152 z(s)ds

Sp S0 ' 80

Ty =

(3.1)

Where s is the length of the curve described by e3(¢) at time ¢t. The number
sg s the length of the smallest closed curve described by es(t) if e3(t) moves
in periodic. If it is not periodic, we must take the limit of these integrals
as the length sy goes to co.

To find d, we consider L - e3. Let’s take the inertia ellipsoid as

L2 4 Lrd 4 Izrd = 1. (3.2)
So, the vector L is parallel to

Iyriey + Israey + Izrae;
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where r = Z?=1 rje; is the vector from the origin to the point of contact
between the ellipsoid and the invariant plane. Therefore

L= M (3.3)
Z?=1 Ifr}
and ) ) )
d:L-r:Ilr1+I2r2+13r3= 1 .
Z?:l I’r} V Z?:l Ir}
So
ey L= —L = T','Iid. (34)

3 2.2
Z;=1 Iir;

The function ez - L| has its maximum value if and only if |rs| has its
maximum value. From the first three equations of system (2.1-2.3), we can
casily prove

2 2
w w
=2 _ 23 - constant.
By

So (wa(t),ws(t)) describes an ellipse. In [2], it was proved that r = bw,
therefore (rz,r3) is also on an ellipse. The function |ra(t)| has the maxi-
mum value implies ry = 0. The equation (3.4) implies that |r3(¢)| has its
maximum value if and only if |L - eg| has its maximum value. Denote this
maximum value of |L - es| by A. So |L-e3| = A implies r; = 0. From (3.2)
and (3.3), we obtain

Lri4 Iri=1 (3.5)
_ hirie; + Isrses

L 3.6
VI oo
so, L is in the e, ez plane
L-e; = +y/1 - (Le3)? = +/1 — A2. (3.7)
The equations (3.4) and (3.7) imply
rihd = ++/1— A2
rzlsd = A.
Therefore S
1 — A? A
ry = i“h—d, vt (3.8)
Substitute (3.8) to (3.5), we have
147 A
5L d? Ld? —
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From this, we obtain

— A2 2
-4 4 (3.9)

d= .
I I3

Now, we try to determine the energy T by the frequency of es. Suppose

X = (z1(t), z2(t), z3(t))

is the solution of

L1 = aXaxs
s = fzz3
:i'3 = Y173

such that the initial condition is on the inertia ellipsoid and

1

d= —(—
Z?:l (E?I?

Its period is ag. Consider
w; = Azr;(At).

It can be proved that w;, ws and wg satisfy the first three equations in
(2.2). The energy

1 A2 A2

T = 5(.01“) = —2—(11.’13? + ]gl'% + ngg) foned -5—

The period of w is 52. Suppose the period of wj is a, then

2a = do _ %o
TN VAT
So )
ag
= —. .10
8a? (3.10)

Here, a is the period of wz, which is unknown. But we proved that

e3 - L = 7‘3[3d

rg = bwjs

where b is some constant. So, a is also the period of e3 - L.

Therefore, we can use (3.1) to determine L, (3.9) to determine d and
(3.10) to determine T'. From the proof, we could see that the center of the
curve described by es(t) is L, the amplitude of |es - L| determines d and
the frequency of |es - L| determines the energy T'.
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4 Angular Velocity Observation and the Observer
Normal Form

In this section, we study the observability of the following system:

W = Qawswgz
w2 = Pwiws
w3 = yuwws
y = wi. (4.1)

This is a subsystem in the spacecraft attitude problem which is related to
the angular velocity and the energy. In this section, we assume I} > Iy > I3
or ) < I < Is.

Theorem 4.1  IfIs # I (« # 0), wi # 0, w2 +w3 # 0, then sysiem
(4.1) is observable.

Proof. The following relations can be easily proved.

Lpdwl = Cl/w3dw2 + awgdw;;

L%dwl = aﬁwgduq + 20 fwiwsdws + a‘yw%dwl + 2aywiwadws.

Therefore, the dimension of the distribution generated by dwi, Lpdwi,
L%.dw, is the same as the rank of the matrix

1 0 0
0 aws QWwo
0 207&)1{4)2 2aﬁw1w3

Its determinant is

202w (fwi — ywi).
Because I1 > Is > I3 or I} < I < I3, we know that 8 and v have different
signs. So, the distribution has dimension 3 whenever o # 0, w; # 0,
w2 + w? # 0. The theorem follows.

Remark In the remarks after Theorem 2.1, we explained why the condi-
tion Iy # I> and w? + w? # 0 arise. This can also be used to explain the
condition on I, I3, ws and ws in Theorem 4.1. The condition w; # 0 is
necessary. From the following discussion, we can see that if w; = 0, then
w2, wa can not be estimated by y = w;.

Theorem 4.2 Under the same hypotheses as Theorem 4.1, then
B

w?="w?- g o max{w?} (4.2)
o

wi = lwf — 7o -max{w?}. (4.3)
«
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Proof. From (4.1), we have

ldwf_ ldw%_ 1dw§
adt ~ Bdt T oy dt’

Therefore,
2 2
wy _ v
e
B8 o
2 2
w3z Wi
S,
~ @

Because Iy > I, > I3 or I; < I < I3, the constants o and 8 have different
signs, the constants « and 4 have the same signs

wi  wi

X2 _.,

Ba
is an ellipse. So (max{w,},0) is on the ellipse. So,

¢1 = —a - max{w?}.

Since ) )

w w

wi_wi_ .,

¥ o

is a hyperbola, w; # 0 means that w? takes its minimum value if w3 = 0.
So

¢z = —a - minf{w?}.
Therefore, the formulas in Theorem 4.2 are proved.

In the following, we are going to find a kind of change of coordinates
so that (4.1) can be transformed to observer normal form, i.e., we want to
change (4.1) and make it look like

z Az + f(y,u)

y = Cez

where (C, A) is an observable pair.

In [1}, this method is discussed in detail. In Example 7.3 of [1], the
author proved a necessary and sufficient condition for a system like (4.1)
to be transformed to observer form. Unfortunately, it can be proved that
system (4.1) does not satisfy this condition. Therefore, we have to think
about this problem from another point of view.

In Theorem 4.3, we will find a family of changes of coordinates z =
z(w, ¢) such that for each output trajectory, there is a constant ¢y so that
z = z(w, cg) transforms (4.1) to an observer normal form, z(w, ¢) and the
observer normal forms are continuous with respect to c.
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Theorem 4.3 Under the same hypotheses as Theorem 4.1, we define

T = W)
o = (QWwag
3 = afuiw?+ aywiw? (4.4)
2
= 3(BY+ 8 +7")° — afyey
¢ = —af{max(y?)+ min(y?)}. (4.5)

Then z{w(t), c) satisfies

zy = 29
$2 = z3+ %(ﬂv + 6% +7%)y° + afyey (4.6)
i3 = 0

y = z.

Proof. Substitute (4.4) into (4.5), and use (4.2), (4.3).

In this note, we assume the spacecraft moves freely. An obvious question
is, how to observe the attitude when the system has nonzero input? This
is an important open question.

Another interesting problem is, for what range of the output, system
(4.1) can be estimated by Theorem 4.3 without changing the parameter c.

The results in this note are applicable to the rigid body problem, but
most recent spacecraft research is directed towards large flexible space
structures and the models are much more complicated. However, the rigid
dynamics are still interesting and important.
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