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.-~ 3. Diff. ‘ Abstract The Brunovsky (or Controller) form is a useful normal form of linear

systems under the group of linear state coordinate changes and linear state

5 feedbacks. We discuss normal forms of quadratic systems under quadratic

: change of coordinates and quadratic feedback modulo cubic and higher terms.
We discuss the relationship of these normal forms to the Generalized

Legendre—Clebsch of Singular Optimal Control.

1. Linear and Quadratic Normal Forms We begin by reviewing the
well—known Brunovsky or controller form of a linear system [Br}. For

simplicity of exposition we restrict our attention to scalar input systems.

Consider a linear system of the form

(1.1) E=F{+Gp

where ¢ is n dimensional, s is one dimensional, and F, G are sized

accordingly. Assume that (F,G) is a controllable pair, i.e., the smallest F

invariant subspace containing the vector G is all of 81, We consider

transformations of (1.1) under linear change of coordinates.

(1.2) x = ¢le)
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where 4[1](5) is an invertible linear transformation from &% to R" and also :

under linear state feedback

(1.3) w = dlle) + A%

where am(g) is a linear functional and ﬂIO](ﬁ) a nonzero constant. (We use

superscript [k] to denote a matrix valued function each entry of whichis a
homogeneous polynomial of degree k in its arguments).

The totality of transformations of the form (1.2) and (1.3) is called the
linear feedback group. Brunovsky [Br] showed that a controllable linear ﬁ

system (1.1) could always be transformed into the form

(1.4) x=Ax+ Bu

when

(1.5) A=(01. B=(0
L
0 0 1

“

by some element (1.2,3) of the linear feedback group. The normal form (14,5 =

is unique but the particular transformation that achieves it is not.

If (1.2,3) transforms (1.1) into Brunovsky form then so does

(1.6) x = c o)

(1.7) p=calle) + e p
where c# 0. Conversely all such transformations taking (1.1) into

Brunov

quadrat

(1.8)

where (
T

(1.2,3) p.

quadrati

(1.9)
and quad

(1.10)

The actio:
modulo ct
(18) Can ¢
transform:
(L11) 7=

where

(112)

The transfo
(16,7) a re;
real parame
[K‘K] for tl
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Brunovsky form differ by (1.6,7) for some ¢ # 0.

We consider the generalization of this to nonlinear, in particular,

o quadratic systems of the form

> ) [22 [1% 3
(1.8) =1 +e(u=Fé+Gu+1f (&) +g (Ou+ 0w
2 where O( {,p)3 indicates a quantity that is cubic and higher in (¢,4). Again

taz:. (We use §dRmd, ueR' and we assume (F,G) is controllable.

fwichisa The quadratic feedback group consists of the linear feedback group 4

3 (1.2,3) plus
) 1s called the -: 3 quadratic changes of state coordinates. i
le I:mear

(2
E 3 (1.9) z=x—¢ (x)
-3 4 and quadratic state feedback

(1.10) v= alzzx) + 4 [lzx) u

The action of these transformations on quadratic systems (1.8) is considered

modulo cubic and higher terms. In [K—K] it is shown that a system such as

(1.8) can always be changed by linear (1-2,3) and quadratic (1.9,10)

$w

i n TR ey TR - ar—— M :
s 3 > & g

2 transformations into the form
a2t form (1.4,5)

; . [2 3 «
1. (111) 2=Az+Bv+ ¢ z) + ¢(z,v)
: where
[22 1B 2
= 1 1.12 . = ..2.7 . i=1,.. -1
: ( ) ¢l z) §J£1+2 01] ZJ 1 3oy I

The transformation taking (1.8) into (1.11) is not unique, there is as before

(1.6,7) a real parameter ¢ # 0 associated with the linear part and also one

real parameter associated with the quadratic part. We refer the reader to
[K—K] for the full details.
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The [n - 1] parameters aij; j=jenn=1 j=i+2..0 are a complete

2
controllable nonlinear systems (1.8) under t

set of invariants of he quadratic

feedback group (1.2,3,9,10).

These parameters can be found in the following fashion. Given (1.8) where

(F,G) isa controllable pair, there exists a unique H ¢ Rlxn such that

k-1~ _ |0 k=1,..,0—1
HF G—{l k=n

then

o = 1 P [ad® I Dg, ad" (-0l )

(1.11) i

This is easily seen by noting that under the linear change of coordinates H is

transformed to the unit vector

(1.12) C=(100.0)
and

. . 2 . 2
(1.13) 0;=C A [ad® (-Az - ,M B, ad®t(-Az- ¢MB}

(0).

2. The Generalized Legendre Clebsch Condition.

Consider the probiem of minimizing some function of the final state
(2.1) g, (<(T))

subject to the dynamics

(2.1b) E=1(6) + &)

and boundary condition

(2.1¢c) & (x(0), x(T)) =0 e=1,.,k

R

T

Acc
opt
(24
whe
(2.2
For
(2.4
In:
At

ext

fow

(2

(2.
whi
Leg
tha
SySt

The




are a complete

the quadratic

n (1.8) where

such that

coc-dinates H s

-z - Jﬂm

fina: state
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According to the Pontryagin Maximum Principle, if £(t) and p(t) are

optimal then there exists an adjoint variable A(t) dRhm satisfying

(22) . G ONONO)

where the Hamiltonian is given by

(2.3) HQ, £, #) = MH(§) + 8(§)n),

For all admissible v , A(t), £(t) and p(t) must satisfy
(2:4) H(A(t), (1), (1)) 2 HOAC), £(t), ¥)-

In addition, A(0), A(T) must satisfy certain transversality conditions.
A triple A(t), £(t) and p(t) satisfying (2.1b), (2.2) and (2.4) is called an
extremal. If A(t) = A and () = £ are given then u(t) = p is usually

found by the conditions

26) 2HO, 60 <0
op

which follow from (2.4). The second condition (2.6) is classically known as the
Legendre—Clebsch Condition and it helps to distinguish between extremals
that are minimizing and those that are maximizing. Unfortunately for
systems such as (2.11) which are affine in 4, (2.6) is satisfied with identity.

The Hamiltonian H is linear in p and so

27) B e =0

does not depend on g. If there is no constraint on the size of the control and

(2.7) is not zero then the extremal control is unbounded, i.e., an impulsive

control. If there is a control constraint, e.g.

(2.8) || <c

B e ot B

p—
g o 0 :w»—rﬂf"-ﬂu!@)&i&'é-_ e

OOV i A e e
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then the extremal is called bang bang and p(t) is given by
(2.9) w(t) = c sign (A(t) B(&(L))

There is the possibility that along an extremal, (2.7) will be zero at an isolated

point in time, or at a sequence of isolated times leading to a limiting time or

over an interval of time. The isolated times where (2.9) is zero are associated

with switching of the sign of the bang bang extremal control according to
(2.9).
An extremal over an interval of time where

2100 B, o, s0) = M0 e =0, t et ty)

is called a singular extremal. If ther

where (2.10) holds then we have chattering, i.e. an infinite number of sign
switches of the control (according to (2.9)) occur over a finite interval.

Chattering frequently occurs at junctions between bang bang and singular

extremals.

We focus our attention on singular extremals. From (2.10) one cannot

directly determine the extremal p(t) as a function of A(t) and £(t). M we
assume (2.10) holds an {tg, t,] and we differentiate with respect to time we -

obtain
@) ST (@, &), o) = MO gl =0
and
& o8
1) Ly 5 O, €0 )

= AL gll(E) + Aelf, ell(6(t)) (t) =0

or [t t4)

k.

ge -

e is a sequence of times with limiting time

The fis

second

(2.13)

But ev
maxim
genera
Legenc
then t}
could }
on diff

The ge
[K—K-
time d

extrem

(2.14)

for t e

2k-1 :

(2.15)

The m
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The first of these quations (2.11) is no help in determining u(t) but the

second does determine u(t) when

2
213 G AW, €0, 6 = M) [elf, €& # 0

But even when it holds, (2.13) does not distinguish between minimizing and
maximizing extremals. To remedy this situation, Kelly [K] introduced a
generalization of the Legendre—Clebsch Condition, namely, that when the
Legendre—Clebsch Condition (2.6) holds with identity over an interval [to, 1]
then the minimizing arcs must have (2.13) nonnegative. Of course (2.13)
could be identically zero on [ty t;] and then one must keep

on differentializing (2.10) until y explicitly appears.

The generalized Legendre—Clebsch Conditions of Kelley—Kopp—Morver
[K—K—M)] asserts that the first time i explicitly appears, it will be in an even
time derivative of Hll and its coefficient must have the right sign for the

extremal t0 be minimizing. In other words, if along a minimizing extremal

ey L[4 Bow am=o

for te [to, t1] and j=0,2,4..,2k—2 then (2.14) also holds for j=1,...,
2k—1 and to be minimizing,

2k
(2.15) (-1)k gﬁ [gf] 3—5—( At), &(t), w) < 0.

The multiple input version of this result can be found in Goh [G]. These

results can be proved rigorously using the High Order Maximum Principle of

Krener [Kr]
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It is straightforward calculation from (2.16) and (2.2) to show that (2.14, 15)

are equivalent to

(2.16) A(t) g, ad)(H) g] (£(1)) = 0
for teftg, t)) and j=1,3,.,2k3 and
(2.17) (=) At) [g ad? 71(0) gl(€1) < 0.

Moreover, using the skew—symmetry and Jacobi identities of the Lie bracket,

it follows that (2.16, 17) are equivalent to (2.16,18) when
k-1 k
(218)  A()[ad(Dg, ad (Dg] 2 0.

is exactly the expression arising in the parameters of the quadratic normal

form (1.13) when A(t) = CAI™L. A similar result holds in the multiple input

case.

3. Conclusion We have shown that there is a close connection between

the invariants of quadratic systems under quadratic change of coordinates and
2

quadratic state feedback and the generalized Legendre—Clebsch Condition, a N
quadratic necessary condition of optimal control. We have not satisfactorily ‘%
explained why this is the case and direct the interested reader 10 the paper of -

B. Bonnard [Bo] describing his work with I. Kupka, which sheds considera.blé‘

light on this question.
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