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Abstract

In this article we study the design of controllers and observers for
nonlinear systems. The approach is that adopted in Karahan(8). "The
truncated Taylor series of the system are used as an approximation and
the design is made for the truncated series. The flight control system
studied in Garrard-Jordan(1] is used as an example.

1 Introduction.

Most real systems are nonlinear. Nonetheless, it is quite common to design
controllers and observers for the linear approximation of a system around a ref-
crence point. The higher order terms are thus ignored following the assumption
that they are negligable when the system is in a state close to the reference
point chosen for the linearization. The purpose of this article is to go two steps
further into the approximation of a nonlinear system by taking into account
not only its linear approximation but also the quadratic and cubic terms which
appear in its Taylor seriea. Higher order terms (quartic...) could also be consid-
ered but, since they bring little improvement to the cubic approximation w
adding a lot to the computationnal burden, they will be left aside in this study.
Section 2 describes the class of systems to which the design procedures pre-
sented in this article can be applied as well as the necessary tools and related
concepts used. Section 3 presents the design methodology. It shows how the
design of a quadratic-cubic controller or observer can be achieved in two succes-
sive steps, one for the quadratic and one for the cubic terms, or in one unique
step. Differences between the two designs are examined. Section 4 applics the
above procedures to an example provided by Garrard-Jordan[1]. Tt shows how
a nonlinear controller can greatly improve the ability of an aircraft to recover

from a stall.
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2 Preliminaries.

"The nonlincar systems which will be dealt with in this article are of the general
form :

z f(z)+9(z)u (1)
y h(z)
where the dimensions of x, u and y are n, m and p respectively. Morcover,
1(x), g(x) and h(z) are nonlinear functions of £, Without lost of generality,
we can assume that f(0) = 0, g(0) = 0 and h(0) = 0. Note that the input
enters the system lincarly and that the system is 'strictly proper’ in the sensc
that the input does not appear in the output equation. We then consider the
Taylor series of system (1) around the reference point 0. System (1) is then
approximated up to the third order as :

z Az + B+ fO(z) + g (z).u + fP(z) + gl(z).u )
y C.z + hl(z) + hi¥)(z) (2)

where f(?l(z) and f3)(z) are n-dimensionnal polynomial vector fields of order
two and three in the components of x, hl?(z) and All(z) are p-dimensionnal
polynomial vector fields of order two and three in the components of x and
g!}(z) and gl¥(z) are n x m-dimensionnal polynomial matrix fields of order one

and two in the components of x.
Let us first introduce briefly the normal forms for nonlinear systems as de-

fined in Krener[4]. The controller normal form is :

£ = Az+ Bu+Ba(z)+ BA(z)u 3)
y = )
where a(z) is an m-dimensionnal vector field, 8(z) an m x m-dimensionnal

matrix field and y(z) a p-dimensionnal vector field. a(z), B(z) and y(z) are
nonlinear The observer normal form is @

It

T Az+ Du+aly) + B(y)u (4)
y Cz+7(y)

where a(y) is an n-dimensionnal vector field, A(y) an n x m-dimensionnal
matrix field and y(z) a p-dimensionnal vector field.

It can casily be scen that, if a system is in controller normal form (3), its
dynamics can casily be linearized by choosing the appropriate feedback law,
namely the feedback u should satisly :

udalz)+ plz)u=v (5)

where v is the reference input.
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Similarly, if a system is in observer normal form (4), an observer with linear
error dynamics can be found :

=Az+Bu+a(y)+pAy)u+K.[y—Cs—1(y) (6)

Just as linear systems can be transformed into controller or observer form
through a linear change of coordinates, the possibility of using a nonlinear
change of coordinates to transform a nonlinear system into controller or observer
normal form has been thoroughly investigated (see for example Krener[2](5],
Krener and Reapondek([6), Knrahan[8]). Note also that teansforming n aystem
into controller form through coordinate change is equivalent to linearizing the
system through coordinate change and feedback. In the same way, transforming
a system into observer form through coordinate change is equivalent to lincariz-
ing the equation error through coordinate change and output injection into the
observer equation.

Unfortunately, it is not possible to transform any given nonlinear system
into controller or observer form but this idea lead to a methodology for the
design of controllers and observers for such systems. Namely, we can look for a
set of coordinates and a nonlinear feedback (resp. output injection) which will
linearize the system (resp. equation error) ‘as much as possible’ in a certain
sense and apply linear design to the resulting ‘almost linear’ system.

3 Nonlinear Controller and Observer Design

3.1 Controller Design

Let us first examine the design of a quadratic controller for the system (2).
Since we are interested only in quadratic design, all terms of order higher than
two will be :nm_mno&. We will thus consider a quadratic change of coordinates
:= z — ¢l3(z), a feedback law defined by u + QE%HV + A(z)u = v
and a change of coordinates in the output w = y — ¥ »_g (we assume here
that a linear change of coordinates and a linear feedback have already been
performed to obtain the desired first order dynamics). After the quadratic
change of coordinates in the state and output is performed and the feedback
added, the system becomes, after neglecting terms of order higher than two :

~
Il

; Az+ B+ fl(z) - fA(z) + QE?V ..m:_?vv v 7
C.z + hA(z) — AL2(z)

S
]

where :

fl(2) = [A.2,41%(2)] + B.alB(2)
d(z) = 2250 A v.m+m.m3€ (8)
MA(z) = =C.40(2) + 13(C.x)
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where [f,¢] = mm.. f- mm..n denotes the Lie bracket as defined in Isidori(3) for
example. The set of equations :

) = f)
) = gtiz) (9)
B = A

Il

is called Second Order Coniroller Homological Equation.
Let us enll W3 the operator that maps QE.:E.E:.QEV. clement of a

B g oG g P2 1o A yih @___.\.__g_v.

veclor kpree of ditnension -

clement of a vector space of dimension nu.mgalc +mn? + nﬁc‘uhb This mapping,
which was studied in Karahan(8}, cannot be inverted in general. Nonetheless, we
would like to find a quadruplet (¢{2}, al?}, 1} 412}) which is as small s possible
in L2-norm and which minimize the L2 norm of the difference (f12], ¢!}, al2) —
W2} (402, a2, gl 4031), This guarantees that, in a coordinate system hopefully
not to far from the original one (note that = and z agree at the first order), the
system is ‘as lincar as possible’ in the least-square sense. The solution found for
ol?(z) and Sl1)(z) defines the desired quadratic feedback law.

The design of the cubic controller is similar. After the quadratic feedback
given by al?)(z) and m::av is implemented, the system (2) is updated, yiclding
a system having the same general form as (2) if terms of order higher than

three are ignored. Let us also rename the updated f12, gl pt3 ) gl3 ) gl2 and
A3 and call them again f(2}, glt} al2), 01 g{2 AL Our task now consists

in m:&:a a cubic change of coordinates z = z - #3(z), a feedback law
u + af® Anw + A¥(z)u = v and a change of coordinates in the output
w= y — 7(y) to minimize the cubic terms in the new coordinate set (z,w).

The system in the new coordinate set and under the feedback law defined above

i8

5+m.<+ \53 + %_i.e +\§3..33+csSLsE?
C.t 4 h2(z) + W3l(z) = RBI(2)

——
g ™
it

(10)

where
F(z) = [Az, ¢9(2)] + B.al(z)

@—BANV - 8l (2 A v.m+mmﬁu:Nv AHHV
RB(2) = —C.¢B(z) + Y3(C.2)

The set of equations :

L

F(z) f13(z)
(=) = oY) (12)
A2y = wl(z)

I

I
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is naturally called Third Order Controller Homological Equation.
Let us call (3] the operator that maps (¢(%], al®, 413, 4(31), element of a vec-

tor space o.m dimension :u?.fwv?...s + 3:?+%?+3 + anuawic + Etu + . +2) o
A\mg.mﬁ. >Ev , element of a vector space of dimension & ?+%?+3+ mo ﬁu:+: +

BE. Again this mapping cannot be inverted in general but we can
again find a quadruplet A&g.ﬁ_g,m_s.qa_v which is as small as possible in
L?-norm and which minimize the L norm of the difference (f1%, g(% 4l3) —
WA G A0 48 Flam i s coordinate systans hopafully not Lo far from
the original one (note that z and z agree at the first and second order), the sys-
tem is ‘as quadratic (since we may not have eliminated all the quadratic terms
in the first design step) as possible’ in the least-square sense. The solution found
for al®)(z) and B3(z) then defines the desired cubic feedback law.

This same procedure can be iterated to compute feedback of higher and
higher order but, except in marginal cases, it is doubtful that considering higher
orders would bring much novelty. Besides, the computationnal cost increases
steeply each time higher orders are taken into account.

This procedure of calculating second and third order feedback laws is very
easy to derive and implement. Nonetheless, it may not yield the best pos-
sible quadratic-cubic feedback law. Indeed, the least-square solution to the
equation Wl QE_QE_EE.QEV = A.WE.WE, MEV is generally not unique since
any element in the kernel of ¥(?) may be added to any particular solution

A&WH_&E, w:_swav to yield another acceptable solution. It is legitimate to

search for the least-square solution which has the smallest L(? norm since we
would like the coordinates (z, w) to be as close as possible to (z, y) and the {eed-
back as small as possible. Such a solution is unique since it is the orthogonal pro-
jection of the vector (0,0,0,0) onto the space &E.Qw:_ w:. .:_.»_v + Ker(Wih).
Nonetheless, this choice may yield undesirable consequences to the third or-
der cquation, preventing some third-order terms to be removed. To ensure
thiat sueh an unfortunate choice is not made, one might consider solving for
the quadratic and cubic feedback laws simultaneonsly. Wo will thus consider a
quadratic-cubic change of coordinates z = z — ¢l3l(z) — ¢l¥(z), a feedback
law u + olfl(z) + B(z)u + al¥(z) + A)(z).u = v and a change of
coordinates in the output w = y — 41%(y) — 7%(y) and compute the system
in the new coordinates with the feedback. After cancelling all terms of order
higher than three, we obtain :

Az + B+ fO(z) - f(z) + (g1)(z) - §11)(2)) 0
+/B(z) = f¥(z) + (g10(z) - §(2)) v (13)
C.z+ WA(z) = AA(2) 4 KOY(2) — ABI(z)

™
il

w
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where :
( fl(z) = [A.z,88(2)] + B.al(2)

) = oE| B+ AG)

WA(z) = ~C.gl(z)+419(C.2)

M) = [A.2, ¢P(2)] + B.all(z) + w%': ® JB(z) = B.AM(2).al¥(2)
+E%§T%3?§I%S%E

i) = §$¢:2‘Z:%fv_gﬁ.{iaxzéfcéis
+ gl A - B BN + | ge)

W) = ~CoP) +NC) + B L [CHl2)E) + b))

(14)
Just as before, the mapping ¥(23] from (¢(2, 2], gl1], 4(2), (3] ol3], g2} y(3])
to AME“@E. hl2), f131 502 mEv can usually not be inverted but a least-square so-
lution to the equation :
@Hw.uu Aﬁﬁnu , QHS_ QH: , )\mn_ , ﬂﬂuu. D‘Huu , \Qﬁn__ Q—n&v = A.\v—wu , @.H:. NHS. \Amu , WHE. mmuuv can

be found. To this particular solution, an element of Ker(¥(23) can be added
s0 as to minimize the L(% norm of (4%, al2, gl1) 4121, {31 3], B(2) 4131} Gen-
erally, the quadratic-cubic feedback law found with this one-step method will
be different from the one found with the two-step method described above.
One might wonder then whether there would be a limit to the quadratic-cubic
feedback found using equations involving higher and higher order terms simul-
taneously.

3.2 Observer Design

Observer design is very similar to controller design as described above except
that we would like to put the system into Qbserver Normal Form through n
change of coordinates in the state and in the output. As hefore, we can denl
with the quadratic and cubic Lerms separately, thus solving for the Second and
Third Order Observer Homological Equations successively or deal with these
terms altogether in one equation.

Let us first examine the two-step observer design. For the quadratic part,
let us apply a quadratic change of state coordinates z = z — ¢{3(z) and output
w =y — 713(y). In the new set of coordinates, the quadratic approximation of
the system is :

i = Az+ Bu+al¥(w)+ M w).u+ xmn_?,:.v + an;ﬁ w).u (15)

woe o Coe oy ) 4 e w)
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where

m_m_?.s_:v = flal(z) - [A.z,¢P(2)] - al?l(w)
Rz, w,0) = o)~ o~ A (16)
ww»_?.é. u) = }EANV + Q.%ET«V _ QEAGV

We then build an observer as :

i A Mt ol ) Ay K A.: e ie::;v an
so that the error dynamics are :

é = z-—12
(A+K.C).c+ { RNz, w) + KRNz, w)} + Rz, w)u (18)

i

As a design procedure, we would like to find a quadraplet (¢13,al, Bl 412])
which minimizes the nonlinear term in (18) so as to linearize as much as possible
the equation error (18). The mapping from (¢13), o, g1, 4131) of dimension

nl(nt1) | :m:mtw +nmp + Pgbwﬁb to Amwu_ + \«.bw»_.wm__?.evv of dimension

chcw+|_~ + whﬁ..hb + n*m + nmp is usually not invertible and a least-square
solution has to be found. Moreover, it is necessary, among all the possible
solutions, to search for the one which minimizes the L3 norm of ¢{? and 413,
Indeed, the error in the estimation of z is the sum of the error ¢ and the term
#13)(z) — $131(2). If € converges to zero, so will the error on the state since ¢l%,
as a polynomial, is Lipshitz in any bounded domain around zero. Nonetheless,
the smaller the norm of ¢{?, the closer the error on z and z. The third-order
observer design proceeds from there. The quadratic change of coordinates in
the states and output being performed, one obtains a new system and we would
like to put it third order terms into observer form ‘as much as possible’. To
complish this we search for a cubic change of coordinnten in Lhe b lin
output, namely ' = 7 - o(z) and v’ = w - v (w). This yields Lo the
‘Third Order Observer Homological Equation which again can usually only be
solved in the least-square sense. As for the controller case, the observer obtained
with this two-step procedure may not be yield the smallest possible cubic terms
in the equation error for z' — z'. A one-step approach is then possible at the

cost of a higher computationnal burden.
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4 Design of a Nonlinear Flight Control System

The procedure described in the above section has been implemented as a package
for MATLABTM! The system which we will use as an example to test it
is provided by Garrard and Jordan(l]. In their paper, Garrard and Jordan
derive the equation of flight for an F-8 Crusader aircraft and look at the linear,
quadratic and cubic terms of the resulting three-dimensionnal system. They
design a quadratic-cubic controller using an approach different from the one
described above and test the ability of the closed-loop system to recover from a

nsin (2) with
-0.877 0 | -0.215
A=1]0 0 1 B=} 0
-4.208 0 -0.396 —-20.967
0.47z% — 0.088z,z3 — 0.019z} 3.846z3 - 2z,
\E?v = 0 .\.ET.V =l o0
—-0.47z? -3.564z3
glt(z) =0
g®(z) = 0

The state z; represents the angle of attack, z2 the angle between the wing
planc and the horizon, z3 the time-derivative of 5 and the command is the tail
deflection angle. All states are assumed to be measured accurately. The linear
feedback is the quadratic regulator with matrices (see Kailath(7]) :

025 0 0
Q= o 025 0 |R=1 (19)
0 0 02

and its gain is F = [-0.0526 0.5000 0.5210] as in Garrard and Jordan.
T ack law obtained with the two-step process is de-

quadratic-cubic fe

flned by ¢
altl(z) = =0.13282z} — 0.2543z, 23 — 0.0592z173 — 0.1258z3 + 0.0022z73 + 0.048523
pil(z) = =05222z; — 0.4898z3 + 0.0045z3
Wy = 0
aBl(z) = 2541523 — 5446223z, — 1.8393z3zs — 1.7854zz3 — 0.3386z1 2223
4+ 1.1664z,z3 +0.7169z3 + 0.0186z3za — 0.0194z,z3 — 0.0114z3
A(z) = -9.9424zf - 3.4300z,z, + 0.1854z, 23 + 2.2063z3 + 0.0361z5zs — 0.0010z]
Wy) = 0

(20)

IMATLAB is a TradeMark of The MathWorks
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The quadratic-cubic feedback law obtained with the one-step simultaneous
design is defined by :

-0.0911z} — 0.1469z1 23 — 0.0413z, 23 + 0.0367z3 + 0.0054z223 + 0.0114z3

ad(z) =
pW(z) = =0.1991zy —0.0307z2+ 0.0021z3
Alyy = 0
ald(z) = -2.7364z3 - 5.9165z3z, — 1.042421zs — 1.0879z 23 — o.ﬁsurss

+ 1.26382,23 +0.7810¢3 + 0.0210z3 s — 0.0046z32 — 0.0120z3 \
M(e) = 10.810Re] = 4017000y + 0.90608, #x + 2.077023 + 0.041 12929 — 0.002723
W) = 0

(21)
The feedback law used by Garrard and Jordan is :

u= 10.083+o.m§+o.§8+o.§uwno‘imrs+o.§a.,_,..o.§aws (22)

Let us now examine a few simulations based upon the examples presented in
Garrard and Jordan(1]. They show the ability of an F-8 airgraft to recover {rom
astall. Under the flight conditions taken in these simulations, the airplane stalls
when the angle of attack is above 23.5 degrees. The controller is designed so as
to limit the time during which the aircraft is in a stall condition and thus have an
altitude loss as minimal as possible. The figures show the evolution of the angle
of attack and control effort under various initial conditions. The equation which
is integrated is the third-order approximation of the system given by (2) and the
data at the beginning of this section with a feedback defined as in (20), (21) and
(22). The initial conditions are of the form (21(0),0,0) where z;(0) is the initial
angle of attack. Simulations with z,(0) = 22.9, 25.0, 29.0 and 30.1 degrees are
presented. The solid curve represents the two-step controller, the dashed line
the one-step controller (it follows the two-step controller so closely you might
not even see it) and the dotted line the controller proposed by Garrard and
Jordan. Note that the latter is unstable and therefore not represented in the
last set of figures (z1(0) = 30.1 degrees). The angle of attack and the control
effort are in degrees.

"The linear controller becomen unstable when the initial angle of ntinck
reaches 28.3 degrees, the quadratic one when z,(0) reaches 28.8 degrees and
the cubic one when z;(0) reaches 30.2 degrees. The domain of stability is
thus increased when quadratic and cubic terms are taken into account into the
feedback design. Also, even when the linear feedback law is stable, it does not
perform as well as the quadratic or even the quadratic-cubic controller as shown
i1 the last two figures for z,(0) = 28.6 degrees (solid line : linear controller,
dashed line : two-step design quadratic controller, two-step design quadratic-
cubic controller).

As far as the feedback law derived by Garrard and Jordan is concerned, we
could not reproduce their results exactly because of a lack of information from
(heir article. 1t secems to be a little less stable and performant than our design
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w

but on the other hand, it requires less control effort. Nonetheless, both designs
w_.m.?zmmaos_uw:u\ different in their application. In fact, Garrard and Jordan'’s
design does not include any reference input, thus making it inapropriate for
any kind of tracking problem. Our design on the other hand takes into account
reference input terms, thus making it a more flexible tool.
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