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Poincaré’s Linearization Method

Applied to the Design of Nonlinear Compensators

Arthur Krener, Mont Hubbard

Sinan Karahan, Andrew Phelps, Benoit Maag

Institute of Theoretical Dynamics

University of California

Davis, CA 95616 — U.S.A.

led to the devclopment of POINCARE, a MATLAB based package for the design of

systems with significant nonlinearities. This paper describes the software package, -

term goal of our efforts is the development of methodologies for the design of compens'ﬁi

for plants exhibiting highly nonlinear behavior. These includé high performance and i

processes. The existing methods of linear compensator design, the classical Bode plot ;

phase gain margins, etc., the semiclassical LQG approa.ches and the more modern H o

'~

LQG/LTR approaches are not totally adequate to desngn controllers for plants whlch '\

nonlinear feedback control laws and nonlinear state observers. POINCARE has generallf ;

proven to be a substantial improvement over standard linear designs when applied to 4

POINCARE, as well as related research on several important theoretical issues. The li

(K

V/STOL aircraft, high performance robots, advanced Jet engines and nonlinear chexm ‘

1. Introduction Over the past three years with funding from AFOSR, we have developed i

methodology for the design of compensators for highly nonlinear plants. This project has "

i
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multiaxis, highly coupled nonlinearities, significant parameter variations and unmodeled
dynamics, when these plants must perform well over a wide range of operating regimes.
More sophisticated control methodologies are needed to obtain the full range of
performance that such devices and processes are capable of achieving.

That is not to say that these linear methodologies are of no use when it comes to
nonlinear design. On the contrary, they have proven highly successful in various linear
applications and we believe that any broad and successful approach to nonlinear design
must precede from this solid foundation and reduce to it when the plant is reasonably close
to linear.

It is for this reason that our approach is based on linearizing the system model to
the greatest extent possible by various coordinate changes, state feedback, input—output
injection, etc. as available and then proceeding with tried and trustworthy linear
methodologies on the linearized model. The resulting compensator is then transformed
back to the original coordinates for implementation. The technique of H. Poincaré is a
conceptually and numerically simple method for the term by term linearization of nonlinear

dynamics. Its generalization to control problems forms the basis of our approach.
2. The Linearization Technique of Poincaré and Approximate Normal Forms of Control

Systems.

Poincaré [Ar, G-H] considered the problem of linearizing an n—dimensional vector
field i.e. an ordinary differential equation.
(2.1) x = f(x)

around a critical point xo, f(xo) =0 by a change of state coordinates

(2.2) z = ¢(x).
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Rather than attack the problem in its entirety, he sought a term by term Taylor

series solution. Suppose the critical point is x®=0 and (2.1) can be expanded as

(2.3) % = Ax + 8(x) + o(x)>.

when fm(x) is an n—dimensional vector field each component of which is a2 homogeneo

polynomial of degree 2 in the coordinates x,,..x, and O(x)3 denotes cubic and highe‘x;

terms.

We seek a change of coordinates

(24) 2= x—#%(x)

where again ¢[2] is n—dimensional vector field of homogeneous polynomials of degree 2

which carries (2.3) into

(2-5) z= Az &

A straightforward calculation shows that (2.4) transforms (2.3) into

(2.6) i = Az + ((3(x) - [Ax, ¢ I @)) + 0(x)°

@7) 2(x) = (Ax il 8x))

fields ¢[2](x) into quadratic vectc
linear equations rclating the n2(n
up the components of ¢[2](x) tot
A are '\i; 1<i < n, then the eige
vector fields by Ax are )‘i + A~
solvable for any f[2](x) iff the so-
)\i+)\j—Ak#O,for 1<i¢j<n,

If a system is linearized to «
(2.8) x = Ax + f{p](x) +
then we can seek a degree p chan
(2.9) z=x— ¢[p](x)

carrying (2.8) into (2.5).

As before this is possible {fo1
(2.10) 1)) = [Ax, 4Pl

are solvable. This is a larger linea:
for 1gi15i25...gip$n and 1
conditions.

Now consider a smooth non
(211a) x=1(x) + g(x) u
(2.11b) y = h(x)
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fields ¢[2](x) into quadratic vector fields i{zl(x) Therefore (2.7) is a square system of

linear equations relating the nz(n + 1)/2 coefficients of the quadratic monomials making
up the components of ¢[2](x) to those of fm(x) Poincaré noted that if the eigenvalues of
A are ,\i; 1 <i < n, then the eigenvalues of the linear operation of bracketing quadratic
vector fields by Ax are A+ Aj — A, where 1<i<¢j<n;1<k<n Hence (2.7) is
solvable for any 1{2](x) iff the so—called nonresonance condition holds, i.e.
)‘i+,\j-—)\k#0,for 1¢i<j<n,1<k<n.

If a system is linearized to degree p —1,i.e.
(2.8) i = Ax + 7)(x) + o(x)? !
then we can seek a degree p change of coordinates
(2.9) 2= x— ¢lf)(x)

carrying (2.8) into (2.5).

As before this is possible for all f[p ] iff the homological equations
210) ) = [Ax, ¢l

are solvable. This is a larger linear system with eigenvalues At A
1 [

for 1¢ i Cig<g ip <n and 1<k <n, hence leads to additional nonresonance

conditions.

Now consider a smooth nonlinear system of the form
(2112)  x=1(x)+g(x)u
(2.11b) y = h(x)
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where u, x and y are m,n and p dimensional. For convenience we assume that
control enters the dynamics linearly and does not appear explicitly in the output. These

restrictions can easily by relaxed. Hunt—Su [H-S], Jakubczyck—Respondek [J—R| and

others have considered the question of when such a system can be transformed by a cha.ng.’"

of state coordinates (2.2) into a system of the form
(2.12) z = Az + B(e(x) + B(x) u).

Such a system can be linearized by state feedback
(2.13a) ox)+ f(x)u=v

or, equivalently,

(213b)  of¢ () + A @) u=v.

o

b,

Such systems are said to be feedback linearizable. The above authors have deri:

the integrability conditions for the system of partial differential equations that must ‘,‘

satisfied by ¢, @ and .
Practical applications of this approach predate the general theoretical develop: ._’

It is at the core of many nonlinear control schemes such as the Total Automatic thh

Control System (TAFCOS) developed by G. Meyer and associates [M—C] at NASA Amg

Research Center and the Resolved Acceleration approach to robot control of Luh, W2

and Paul [L-W-P}]. Fortunately, for many mechanical systems the PDE’s for ¢ , a a '3‘

are integrable and a solution is obvious. The solution is not unique. However, such

systems are exceptional, for a generic system with 2m < n, the PDE’s are not integrably

Moreover, even if they are, a solution is not always easy to find.

{

[UFRRIE e Sprm——"

bbbl vk A

By utilizing Poincaré’s
obtaining only approximate so

Suppose that system dynamics

(2.14a) x = Ax + Bu +

and the output map is similar)
(214b)  y=cx+nlp

We consider the effect

space (2-4) and output space

(2.15) w=y—1%y)

The resulting system is

(2.16a) z = Az + Bu
+ f{zl(x) + gll;
(2.16b) w = Cz

+1l¥x 4+ ¢y
By adding to and subt.

(2.17) u+ alx) +
we obtain the system

(2.17a) Z=Az+Bv+
(2.17b) w=0Cz+ R2[2]
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By utilizing Poincaré’s method we can bypass these difficulties at the cost of
obtaining only approximate solutions to the PDE’s irrespective of their integrability.

Suppose that system dynamics (2.11) is expanded as follows

(2.14a) % = Ax + Bu + 18(x) + gM(x) u + O(x,u)?

and the output map is similarly expanded

(2.14b) y = Cx + h¥(x) + 0(x)®.

We consider the effect on (2.14) of quadratic changes of coordinates in the state

space (2.4) and output space

215  w=y—1y).
The resulting system is

(2162)  z=Asz+Bu

+ #3(x) + g(x)u ~ [Ax + Bu, #2)(x)] + O(x,u)3
(216b)  w=Cz

+ 1) + ¢ #Pl(x) ~ o3y + 0(x)®

By adding to and subtracting from (2.16a) the quadratic feedback expression

(2.17) v+ )+ Al u=v

we obtain the system

(2.172) z=Az+4+Bv+ R{Zl(x,u) + O(x,u)3
(2.17b) w = Cz + R}A) + 0(x)®
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where the quadratic error terms are given by

(2.18a) R{A(x0) = 00 + gHx)u
_ {Ax + Bu, #3001 - B(alFx) + AMeam)
eisy) Ry =160 + ¢ o0 — ) + 00’

We refer to (2.18a) with R[zl(x u) = 0 as the controller homological equation 'k
degree 2. It is a system of n (n+1)/2 +mn? lincar equations in n (n+1)/2 +m ..
n(n+1)/2 + m?n unknown coefficients of ¢[2] 0[2] and ﬂm I there exists a solutxon
the controller homological equation of degree two then we say that the nonlinear system i

(2.14) is feedback linearizable to degree two. : é

It is easy to see that if a system is feedback linearizable then it is feedback : i
linearizable to degree two. Given a system that is feedback linearizable to degree two,l
can ask whether it is feedback linearizable to degree three, etc. This suggests an obvxo
question. If a real analytic system (2.11) is feedback linearizable to arbitrary degree, i

feedback linearizable? This may or may not be a hard question to resolve. The

corresponding question for the Poincairé’s problem is quite difficult, see Arnold [A1]. -

the point of view of design of nonlinear compensators, the question is somewhat urel
as it would be extremely impractical to solve the sequence of higher degree cont.rollel'é *
homological equations. The size of these equations grows exponentially in the degree; ‘.
- Typically the controller homological equations of degree 2 are not solvable -ﬁ
one is forced to seek an approximate solution, e.g. in the least square sense. Moreov ai
many applications such as tracking, it is desirable not only to have R, 2 ](x,u) smalf
also R2[2](x). If we set the left sides of (2.18) to zero we obtain a system of n (n :

+m?n+p n(n + 1)/2 in n2(n +1)/2+mn(n +1)/2 + mZn+ p2(p + 1)/2 u'_

'-'.

A
i

| |

!

!
i
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coefficients of ¢[2], 0(2], ﬂ[ll and '7[2] Again, typically these equations do not have an
exact solution and an approximate solution must be found instead.

The current version of POINCARE takes as data the linear parts A, B, C and the
quadratic parts f[2], gm, and h[2] if the system (2.14). 1f thé desired goal is the design
of a stabilizing state feedback control law, then, using the pole placement or LQR
algorithm of A. Laub’s Control Systems Toolbox for MATLAB, a stabilizing linear
feedback gain F is found. Suppose the feedback
(2.19a) u=Fx+1i

is chosen because of the desirable close loop stability of

(2.19b) x=Ax+Bi
where
(2-19¢) A=A+BF

POINCARE allows one to simulate the linear feedback (2-19a) applied to the
quadratic part of the system (2.14)

(2.20a) A=Ax+ T[2](x) + Bi + gm(x) i
where
(2200)  T3x) = 1) 4 gl Fix.

If the stability of (2.20a) is satisfactory with i = 0 over the range of the x of
interest then one need not g0 any further;itdl;:t;lle other hand if 1[2] has degraded the
performance then one may seek an additional quadratic feedback to improve things. We

find such a quadratic feedback by considering the effect of a quadratic coordinate change
(2.4) and feedback

(221) i+ a[2](x) + ﬁ{ll(x) i=v
on (2.20a).

(2.22a) 2= Az + Bv + R(x, 9) + o(x, 1)®
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where
’A(x, 1) = 128(x) + gl(x) 4

~[Ax+ B, ¢8x)] - Bel(x) + Allx) 1),

(2.22b)

If we assume that the open loop control v = 0 then & = O(x ) and (2.22a,b) become
(2.22¢) 2= Az + R H(x0) + o(x)3

(2.224) Rl[?'](x, 0) = fm(x) —[Ax, ¢[2]] -B 0[2]()()-

If we have chosen the linear feedback given F so that the eigenvalues of A a,re o
resonant at degree two then there exist ¢[2] and a[ ] so that (2.22d) is zero. In fact t
are mn(n + 1/2 linearly independent solutions parameterized by a. Which should by u
chosen? It is a trade off between the size of the quadratic feedback (2.21) as measured By
a[2] and the size of the quadratic change of coordinates (2. 4) as measured by ¢[2] 0
approach is to make ¢[2] and am as small as possible in a least squares sense. Tlus

implies a choice of a metric on the space of coefficients of ¢[2] and 0[2]

‘(

An obvious choice is to take the standard i inner product on the space of coefﬁa i

i

of ¢[2] a[zl This is not as naive as it sounds because POINCARE has previously askel
us for unit lengths of the components of x, u and y and has scaled the equation (2.1%

accordingly. One can make more sophisticated choices as we shall describe later. ‘

Given a choice of metric, POINCARE uses MATLAB’s singular value
decomposition (SVD) algorithm to find ¢[2] and ol? satisfying (2.22). It then
quadratic feedback
(2.23a) i=—d?x
to satisfy (2.14). The linear (2.19a) and quadratic (2.23a) feedback yield the total ]
feedback.

(2.23b) u="Fx-— a[2]x.

Notice it does not depend on ¢[2]. The closed loop dynamics in the original x ©

has a quadrat
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but in the tra;
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has a quadratic component,

(2.24) x=Ax+ M) - B oy 4 o(x)?

but in the transformed z coordinates (2.4) it does not,
(2.25) z2=Az+ 0(z3).
Because ¢[2J(x) and am(x) have been chosen to be small, one expects the performance of

(2.24) to be similar to that of (2.25). The result should be an improvement over the

system with only linear feedback,
(2.26) x=Ax+ T[“Z](x).

To verify this, POINCARE simulates the response of three systems to a nonzero
initial condition. It graphs the norm of the state |x(t)]| and the components of the
output yi(t), i=1i,.,p of (2.14b) for the linear system with linear feedback,

(2.27) x = Ax,

the quadratic system with linear feedback, (2.26) and the quadratic system with linear and
quadratic feedback (2.24). The first is the linear ideal closed ldop system, the second is the
result of a standard design obtained by ignoring nonlinear terms and the third is the
POINCARE approach. Generally in these simulations we have found that the performance
of POINCARE system closely approximates the linear ideal, while the standard design is
Somewhat different and usually worse. By performance Wwe mean things like settling times
and basis of attraction. We present some simuié.tions in Section 3.

The above problem is somewhat simplistic. Usually one wants to exercise open loop
control on the stabilized system. For example one might desire the output ¥(t) of the
System (2.14) to track a reference signal r(t). As before the first step is to do a linear

design. Qne might try to use static state feedback and reference signal feedforward of the
form

(2.28) u=Fx+i
to achieve the desired tracking for the linear part of (2.14). The input §(t) is a linear
functional of the current and past values of the reference signal {1(s) :s <t} typically
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obtained by passing the reference signal through an approximate right inverse of the ling

lIxi? =
system ”u”l2 -
(2.29&) x=Ax+ B ”)’”2 -
(2.29b) y=Cx X

These could be
We denote this dependency of i by 0(t) = @(t;r). We can use this as a basis for a

probability dens;
nonlinear design via POINCARE.

expected operati;
We start by applying the feedback (2-28) to the nonlinear system (2.14) and ob

Then we ¢
(2.30a) x=KAx+ B+ 1x) + gle + opxa)3 N
(2.30b) y=Cx+ 1) + o)’ (2.32a) // N
(2.30¢) gm(x) = gm(x) G. ‘ ¢[:
We then apply the quadratic changes of coordinates and feedback (2.4), (2.15) anf® (2320) 0'{,
(2.21) to obtain ﬂ[;
(2.31a) i=Az+Bu+ Rllzl(x,ﬁ) + O(x,8)° 7
(2.31b) y=Cz+ Rgzl(x,y) + O(x)3

At present ]
where the quadratic residual f{lm is as before

(2-182) after substitution of A, B,‘;f_ MeLrics on the space

M

i
EoK]

for A, 5,4, ftl ana 02 2]

o 2reidentity ma;

We wish to make the quadratic residuals in (2.31) as small as possible whil
same time using as keeping ¢[2], 012], ﬂ“], 7[2]

Covariance, These ty

as small as possible. To make thi

we must define metrics on the space of coefficients of (R1[2] ) f{z[z]) and the space
coefficients of (¢[2], 0[2], ﬂp‘], 7[2]). An obvious choice is to use the standard metts

these spaces and again this is not a bad choice provided one has already scaled thé

in the futyre,

POINCARE y

leads ¢ the control la

equations (2.14). More sophisticated metrics can be obtained as follows. Choose 1 By neglecting ¢
on the state, input and output spaces defined by positive definite matrices M, M; (2.331,) = Fy

~G(dl

and the closed I




2 *
2 = x" M x
2 *
”““i =1 Mi u
2 *
vl =y My
These could be the same metrics as those used in the LQR algorithm. Also choose a
probability density p(x,u) on the input cross state space. This density describes the
expected operating regime; the likelihood that the system will be at state x with input u.

Then we define

r{2 2

o

(2.322) = [§(IRy (cu)ll? + IRy(x,CII,) plx,u) dx du

and

A

(2.32b) g3 = 116002 + o) + Al + 1)) pxn) dx du
2]

Y

At present the only choices of metric available in POINCARE are the standard

metrics on the spaces of coefficients and the metrics defined by (2.31a,b) when M, M; and

M o are identity matrices and p(x,u) is a Gaussian density with zero mean and unit
covariance. These two choices are actually quite similar. We expect to add other options
in the future.

POINCARE uses MATLAB's SVD algorithm to find ¢12], o/, g1l 2],y
leads to the control law with linear part (2.28a) and quadratic part
033) a4+ dPx) + A8 = a(ee D (A

By neglecting cubic terms, we have the control law
(2.33b) u=Fx + Gr

— G(a(x) + AM()r + w(t;9%N(e))

and the closed loop system
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(2.34a) x = Ax + Br
+?muo+é”ur—cmmu)+d”uy+um4ﬂM)
(2.34b) y=0Cx+ hm(x).

This (2.34) should be compared with the ideal linear system (2.29) and the standard ?
\' g

¢ lincar law (2.28) to the linear and quadratic parts of (2.14), i

E:

approach of applying th

(2.353) x = Ax + Bu(t;r)
+ 1009 + gyt
(2.35b) y=0Cx+ hm(x).

Notice that the linear parts of all three systems are the same. POINCARE simulates i

compares the behavior of the three systems (2.29), (2.35) and (2.34).
Of course in many situations full state observations are not possible and hence --

must use a filter or observer to estimate the state from the past observations. If one

to ignore the nonlinearities of the system (2.14) one could design a linear observer of (el
form

(2.36a) % = (A + KC)x + Bu—Ky

with linear error dynamics, X = x—X, given by

(2.36b) % = (A + KC)x.

If the linear part of (2.14) is observable then one can choose K to set the spectrt

A + KC arbitrarily. One can also choose K by using a Kalman filtering form

MATLAB’s Control Systems Toolbox has algorithms for either approach. w
Of course if we use the linear observer (2.36a) to establish the state of thg ]

quadratic part of (2.14) then the observer error dynamic has quadratic terms
%= (A + KC)x

+ fm(x) + gll](x)u + Kh[2](x).
These extra terms may sufficiently degrade the performance of the observer (2.3

(2.36¢)

it is unaccept:
nonlinearities
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coordinates on
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it is unacceptable. POINCARE allows one to ameliorate the effect of the quadratic
nonlinearities in the following fashion.

Consider once again the effect of quadratic changes of state (2.4) and output (2.15)
coordinates on the quadratic part of (2.14). The result is (2.16). If we add and subtract an

input—output injection term

oliy) + Ay
to and from (2.16a) we obtain
(2.37a) 2 =Az+ Bu + 0[2](y) + ﬂm(y)u + R:£2](x,u,y) + O(x,u)3
(2.37b) w = Cz + R} A(xy) + o(x,u)®

where

(2.383) R (x0,y) = #3x) - gWx)u —{Ax + Bu, 2] — olBy) — Mgy,
) R[Tcy) =m0 + ogl8) - 4f2ly).

We wish to emphasize that the current ¢[2], 0[2], ﬂ[]‘], 7[2] under discussion are different

{rom those employed previously. In particular the dimensions and arguments of 0[2] and

41] have changed. Previously 0[2] and ﬂll] were m x 1 and m x m valued functions of

y. Later on, when it will be necessary to distinguish between these, we shall denote the
previous ones with a subscript ¢ asin ¢([:2], a([:2], ﬁ‘[:ll, 7([:2] since they are used for the
design of control laws. The current ones shall

be denoted with a subscript o ¥ in ¢£2]’
[2 1 2
% ]’ ﬂg ]’ 7([> }

since they will be used for the design of observers.
If we set R%zl and RP] to zero then the system (22.37) is said to be in observer
form of degree 2 and (2.38) are the observer homological equations of degree two.
Krener—Respondek [K—R), Bestle—Zeitz [B—Z] and others have looked at the

uestion of when a nonlinear system can be transformed exactly into observer form by a

$mooth change of coordinates. For most systems, this requires checking a large set of

tegrability conditions and finding the change of coordinates by solving a set of PDE’s.

Phelps [P] has developed a method that greatly simplifies this, but it is still 2 formidable
sk,
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Instead, we have approached the question term by term using the linearization techniq

Poincaré.

We can design an observer for (2.37) with quadratic input—output injection

(2-3%) 5= (A + KC)z + Bu—Ky + odA(y) + A y)u + K42y

then the error z = z — 2 satisfies

7= (A + KC)z + R:[f](x,u,y) + KR'{fl(x,y) + O(x,i,u)s.

(2.39D)
420 2, 41 A2 1o minimi

POINCARE uses MATLAB’s SVD algorithm to choose

the quadratic part of (2.37b),
2 2] 2
iR+ kg

The metric used is either the standard one on the spacc of coefficients or

1’2 + ke 1 = 4 IR (u,Cx) + KR{2(x,Cx)IZ plx,u) dx du

is a Gaussian of zero mean and unit covarian

(2.40)

where M is the identity and p(x,u)

Notice that the linear observer gain K enters the quantity (2.40) to be minimized 2

hence influences the solution.
ar in the transformed

Of course, the error dynamics (2-39b) is nearly line

coordinates. The implementation of the observer (2.39a) should be done in the ori

coordinates so we define X by
% = (A + KC)x + Bu—Ky
+[(A + KC)% + Bu, RN
p)
+ () + ﬂm(y) + K y) - Q;Lu(i) Ky .

"The error % = x —x dynamics is given by

(2-41a)

%= (A + KO) + 1(x) + gl + kul%(x)

(2.41b) :
_ (A + KOJz + Bu, §%00] — o) — Ay - K12(y) +

Then to O(x
that the linear part
extra quadratic term
system (2.14). Thel
the quadratic terms ;
terms of {2.14) are al
(2.41a) it is not BIB«

POINCARE s
performance. The fir
observer (2.36a). Th
second pair is the sys
linear observer (2.36a
the linear and quadra
This is the POINCAL
mitial condition error
cwordinates are graph
POINCARE approacl
standard approach, al
section.

It is also possit
nput—output driven n
{241a) us fed into a I
POINCARE approach
bnear observer and lin

Wadratic system with
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Then to O(x,x), (2.39a) and (2.41a) are rclated by (2.41c) 2 = x — ¢[2](§c). Notice
that the linear part of the observer (2.41a) is the same as the linear observer (2.36a). The
extra quadratic terms in (2.41a) correct in part for the quadratic part of the original
system (2.14). The linear part of the observer (2.41a) is stable by proper choice of K but
the quadratic terms may destabilize it. Of course one might expect this since the quadratic
terms of (2.14) are also destabilizing. But as a system with inputs uand y and output X,
(2.412) it is not BIBO stable in contrast to the linear observer (2.36a).

POINCARE simulates three pairs of systems and observers to compare their
performance. The first pair is a system consisting of the linear part of (2.14) and the linear
observer (2.36a). This is the linear ideal and provides a benchmark for the other two. The
second pair is the system consisting of the linear and quadratic parts of (2.14) and the
linear observer (2.36a). This is a standard approach. The third is the system consisting of
the linear and quadratic parts of (2.14) with the linear and quadratic observer (2.41a).

This is the POINCARE approach. The three pairs of systems and observers are excited by
initial condition errors and various kinds of inputs, u(t). The norms of the errors in x
coordinates are graphed with respect to time. Generally one finds that the errors of the
POINCARE approach are smaller and closer to those of the linear ideal than those of the
standard approach, although this is not'always the case. Simulations are given in the next
section.

1t is also possible to combine the two halves of POINCARE to obtain an
iuDut-out.put driven nonlinear compensator. The stable estimate of the nonlinear observer
(2-41a) us fed into a linear and quadratic feedback control law. Once again the
POINCARE approach can be simulated and compared with an ideal linear system with
linear observer and linear state estimate feedback and a standard approach of a linear and

Wadratic system with linear observer and linear stable estimate feedback.
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. . is
These three pairs of systems are as follows. The linear ideal i

(2.42a) x = Ax + Bu
(2.42b) % = (A + KC)& + Bu—Ky
(2.42(.'1) u=Fx +v
The standard approach yields
' 1
(243) %= Ax+ Bu+ 13(x) + glll(x)u
(2.43b) % = (A + KC)% + Bu—Ky
(2.43¢) y=0Cx+ h[2](x)
(2.43d) u=Fx+v
The POINCARE approach yields
1
(2.44a) %x = Ax + Bu + f[2](x) + g[ ](x)u
(2.44b) %= (A + KC)x + Bu—Ky

+ [(A + KOk + By, ¢/Fx)]
., @
+ ac[,z]()') + ﬁ([,ll(y) + K1, 2(y) - e Ky
(2.44c) y=Cx+ hlz](x)
(244d)  u=TFx+v-ald®m) - allcy
Equation (2.44d) should be plugged into (2.44b) before computing the bracket.

Simulations can be found in the next section.

. Simulations
ESSION 1 Contro

w10

\

_ QUADRAT(
— Controj

———

————— Hhat is you

1) Finder
2) Nultifin

Select a menu nu
————— Enter mode

1) Novice
2) Expert

Select a menu num
————— HARIN ]

1) Help

2) Enter non
3) Select th
4) Simulate ¢

?f  ! 5) Quit

Select a meny nuab
- is g menu drijvy

e obseryeps

[ ~ for nonlinear con
o be in

v - the following for
- dx

i T T =Rx + By + f
; - dt

3 - [2]

VROt h ()
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3, Simulations

SESSION 1 Controller/Observer Example

_ QURDRATIC APPROXIMATION _
— Controller - Observer _

————— Uhat is your Macintosh running under? -----
1) Finder
2) Hultifinder
Select a menu number: |

————— Enter mode -----

1) Novice
2) Expert

Select a menu number: 1
————— Hatl N MENU--——-

1) Help

2) Enter nonlinear system (plant and output equat ions)
3) Select the type of problem to be solved

4) Simulate and plot results

5) Quit

Select a menu nuamber: 1
- 0QC is a menu driven script file for 2nd order approximate
observers
E for nonlinear control systems. Your control systea should
€ in

- the following foraat:

- dx [2] [1] 3
- (—j—=ﬂx+Bu+f (x) +g (x)u+ 0(x, v
- dt

- (2]

- y=Cx+h (x)
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_ where A is the nxn plant matrix, B is the nxm input vector,
f[2] is

. the second degree part of the vector field, and gl1] is the
first

_ degree part of the input vector. All of these terms should
be

_ obtained by the user from the Taylor expansion of the
control

— system at the nominal operating point 0.

— He compute the quadratic observer-control ler parameters
and plot

_ the system against linear and quadratic observer-controllier
pairs.

_ The corresponding function modules are documented on-line
undenr

_ HELP QCRUN. For further details on the individual
subroutines

_ and function programs called by the routines, use the help
utility

— in MATLAB.

— Glossary of §.C. Functions —

QCHELP introduces the guadratic approximation progranm.
QCSETUP inputs in the system functions F, G, f2, gl.
QCCOMP solves the homological equations for _, — and _.

_ QCSCALE rescales the system and control matrices.

_ QCBIGNY sets up the linear equations in the

coefficients,

_ QCSUD solves these equations using the SUD algoritha.
QCFDBK gets the user-specified feedback.
QCGLOB sets up global symbolic variables for controller.
QCSIN controls the simulation subroutines.
QCINIT sets the initial conditions for the ODE’s.
QCCHTRL creates the controi H-file with several options.
QCSOLUE solves the ODE's for the system and observers.
QCPLOT plots the solutions with the following options:

_ QCPHASE provides the phase plots;

— QCEXT extends the solutions;

_ QCTINE provides the time plots.

QCRUN is this
~~~~~ MATN
1) Help
2) Enter n
3) Select
4) Simulatl
S) Quit
Select a menu m
————— Input one ¢
1) Enter dc¢
2) Enter fi
Select a menu nu

Enter filename:

limensions of the

Homogeneous order
nchoose2 =
6

Linear plant mat

-_
0 0
3 -2 -
Eigenvalues of t}
—_—
-1.2757

0.1378 + 1,5273i




i 1) Help
4 2) Enter nonlinear system (plant and output equatlons)

k 3) Select the type of problem to be solved
k. 4) Simulate and plot results
4 5) Quit

Select a menu number: 2
----- Input one of the following: ~----
1) Enter data manual ly
2) Enter filename for loading data
f Select a menu number: 2
Enter filename: example_1

~§ Dimensions of the system:

Homogeneous order of system:
nchoose2 =
6

Linear plant matrix, A:

0 1 g0
0 0 1
-3 -2 -1

Eigenvalues of the open-loop plant:

-1.2757
0.1378 + 1.5273i

PRy VT RS AN o
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0.1378 - 1.5273i
Second order part of the plant, f2:

1 0 -1 0 0
0 -1 0 1 1
0 0 0 0 i 0

Constant part of the input vector, B:

0
0
i

First order part of the input vector, gl:

1 0 0
0 0 0
0 1 ]

Constant part of the output wvector, C:

1 ] 0

Second order part of the output vector, h2:

0 0 o 0 1] 0

Scale factors of the states, x1 through x3:

xscale =
1 1 1

Scale factor of the input, ul:

uscale =
1

Scale factor of the output yi:
yscale =

————— Mai N I
1) Help
2) Enter nc
3) Select t
4) Sinulate
5) Quit

Select a menu nu
---- Select the

1) Quadrat i
2) Quadrat i
3) Quadrati:
4) Get more

Select a menu nw
CLOSED LOOP FEEDBf

Of
""" Input one of

1) Specify ¢

. 2) Design 1i
'CIghing

~ 3) Design Ii
*eighing

Select @ menu nual

Quadrat ic regulato

~ integral (x"(:

~ Entep 3x3 <sym. ¢

-



MAIN HENU

1) Help

2) Enter nonlinear system (plant and output equat ions)
3) Select the type of problem to be solved

4) Simulate and plot results

5) Quit

Select a menu number: 3
Select the type of problem to be solved

1) Quadratic Controlier design (full obseruability)
2) Quadratic Observer design

3) Quadratic Controller-Quadratic Observer design
4) Get more information on the above choices

Select a menu number: 3
CLOSED LOOP FEEDBACK DESIGH FOR LINEAR PRRT
0F THE PLANT

input one of the following:

1) Specify closed loop eigenvalues

2) Design linear quadratic regulator with state
weighing

3) Design linear quadratic regulator with output
weighing

Select a menu nuaber: 2

Quadrat ic regulator will minimize:

— integral(x'Qx + u'Rul)dt

~ Enter 3x3 <sym. pos. semi-def.> aatrix, Q:
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__>_f{t1o00;010;001]
_ Enter 1x1 <sym. pos. def.> matrix, R:

>

—>1

Closed loop eigenvalues:

-1.3294
-0.4975 + 1.4599i
-0.4975 - 1.4599i

Gain matrix F that places the poles of R + BF at above

-0.1623 -1.7015 -1.3244

Calculating scaled variables according to the scale
factors...

2
B in the 0(x,u)

_ Ue construct a large linear system L ¥ =
This system has

_ coefficients of the homological equations.

2 2

ROMS: n (n+1)/2 + an

2 2
n (n+1)/2 + an{n+1)}/2 + m n .

— COLUHNS:
—In general,

_ overdeterained.
_ Ue use the SUD algorithm to get the “nearest” possible solutiy

the column rank is deficient and the solution is

————— Please choose the method for minimization:

1) ldentity nors
2) Norm weighed by a normal distribution

Select a menu number: 2
Solving for the coordinate change and feedback...

Quadrat
————— Please ch

1) Display caoor
2) Show remaind
3) Exit to main

Select a menu r
[2]

phi in second

PR R R L 2 D RPN

phi_con[2](1) =
phi_con[2](2) =

phi_con[2](3) =

§econd degree |
alpha_con[2](1) -
1.4355%x (1) %x(3)+
0‘]193*X(3)*x(3)

First degree pc
beta_con[1](1' 1)

Please choo

1) Displa
y
. 2) Show rem.
'Nnearizgble syst.
3) Exit to {
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Quadratic Controller Problen:
————— Please choose a menu item ~----

A 1) Display coordinate change and feedback
2) Show remainder between the actual and closest linearizable system
3) Exit to main menu

4 Select a menu number: 1
1 [2] (2]

i phi in second degree coordinate change z = x - phi_con(x):

P R el R e Y L2 P P P P R P e P 2 P L P L L L

phi_con{2](1) = -0.0076646*x(1)*x{1) - 0.15515*x{(1)*x(2) +
0.67221*x(1)*x(3) - 0.023882*x(2)*x(2) +
0.1054*x(2)*x(3) + 0.046875*x(3)*x(3)
-2.9808%*x(1)*x(1) - 1.1353*x{1)*x(2)

+ 0,15515%x(1)*x(3) - 0.5626*x(2)*x(2) +
0.016217*x(2)*x(3) - 0.043276*x(3)*x(3)
-0.49063*x(1)*x{1)-5.5871*x{1)*x(2) -
1.2223*x(1)*x(3) - 2.1954*%x(2)*x(2) -
0.68737*x(2)*x(3) -0.7826%x(3)*x(3)

phi_con[2](2)

phi_con{21(3)

(2]

Second degree part of feedback: alpha_con

B R et L L P e e L L L L L e

alpha_con[2](1) = +2.8083*x(1)*x(1)+4,7978*x{1)*x(2)-
1.4355%x(1)*x(3)+7.6045*x(2)*x(2)+3.1339*x(2)*x(3)~
0.1493*x(3)*x(3)

1

L S L 2L T2 X T L L PP P L P Py ey ettt L

Quadratic Controlliler Problen:

-

1) Display coordinate change and feedback

2) Shos remainder between the actual and closest
linearizable systea
3) Exit to main menu




Select a menu number: 2

[2]

Second degree part in the remainder: R(x)

~~~~-~~-~~~~~~~~~~~~~-~~-~-~~-~~~-~~-~--~~~

R[21(1) = -0.01731%x(1)*x(1)-0.15516*x(1)*x(3)-
0.01?31*x(2)!‘x(2)—0.016222*x(2)*x(3)+0.069239*x(3)*x(3)
R[2]1(2) = O

R(21(3) = O

1]
First degree part in the remainder: R (i’th col. of R[1]
pultiplies u(i))

PR PP NP Y adatetadedededadadadiad

P Y it Rk

R{11CY, 1) = +0.32?79*x(1)-0.1054*x(2)-0.093?5*x(3)
R[11(2, 1) = -U.15515*x(1)-0.016217*x(2)+0.086552*x(3)
R[11¢(3, 1) =0

[2]

Second degree part in the remainder of the output: H(x)

~~‘-~~~~-~--~~~~~~~~~~-~~~-~~~~ﬂ~-~~~~--~~~----~~~~~~~~~~

H[21(1) = -0.0076646%x(1)*x(1)

CLOSED LOOP FEEDBACK DESIGN FOR LINEAR PART OF THE
0-B-S-E-R-U-E-R

————— Input one of the following: ———--

1) Specify observer eigenvalues
2) Design |inear Kalman filter

Select a menu number: 2

Kalman filter will minimize the error covariance.

_. Enter 3x3 <sym. pos. semi-def.> driving noise covariance
matrix, Q:

P e datatadadadad

e e e NN S eSS AN

it

2 AR

—>_I1ro
_ Enter 1x1 «
matrix, B:
___-> |

Observer ei

-1.5385
-0.4085 + 1
-0.4085 - 1

Gain matrix

-1.3556
-0.4188
2.2571

Solving
————— Please

1) tden
2) Horm

Select a men

1) Help
2) Enter
3) Sele:
4) Simu
5) Quit

Select a memt
‘Tppess any ke
Simulation wit

PleQSe define
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_>_[t100;010;001]
_ Enter 1x1 <sym. pos. def.> observation noise covariance
motrix, R:
___—> ‘
Observer eigenuvalues:

-1.5385
-0.4085 + 1.5331i
-0.4085 - 1.5331i

Gain matrix K that places the poles of A + KC at above

-1.3556
-0.4188
2.2571

Solving for the Quadratic Observer
----- Please choose the method for minimization: —--——-

1) fidentity norm
2) Norm weighed by a normal distribution

Select a menu number: 2

1) Help
2) Enter nonlinear system (plant and output equations)
3) Select the type of problem to be solved

4) Simulate and plot results
5) Quit

Select a menu number: 4
~-Press any key--
Simulation with external disturbances:

Please define input ul




————— Disturbance input type ————-

1) 2ero disturbance on the above input
2) Impuise {(not implemented yet)

3) Step
4) Sinusoid

5) Random noise (not implemented yet)

6) External data file (not

Select a menu number: 4
Enter sinusoid amplitude: 1

implemented yet)

Enter sinusoid frequency (*scaled* time): 6

_ Enter 3x! vector of init

>

—

Simulation will start from init

initial conditions, x10c: {0;0;0]

al time t0c = 0.

Enter final time (*scaled*), tfc: 12

_ Enter 3x1 Uector of observer initial conditions, x100:

[0;0;0]

0.06 S
. 0.04¢
N
l’-‘ 1
D 0.02 \
B
o]
o o
0.02}
-0.04
0 2
TIME: ]

USING THE SAME S

1} Quadrat i
2) Quadrat i
3) Quadrati
4) Get more

Select a menu nu
CLOSED LOOP FEEDE

---- Input one ¢

1) Specify cl
2) Design lir
3) Design lir

Select a menu nu

Quadrat ic regulat

— integral(x'

- Enter 3x3 <sym.




OUTPUT yl

-0.02

0.04

TIME: LIN.MOD rf-] L.CON-OBS g[-.] Q.CON-OBS b[-]

USING THE SAME SYSTEM AS ABOVE:
1) Quadratic Controller design (full observability)
2) Quadratic Observer design
3) Quadratic Controller-Quadratic Observer design
4) Get more information on the above choices

Select g menu number: 1
CLOSED LOOP FEEDBACK DESIGN FOR LINERR PART OF THE PLANT

————— Input one of the following: -----
1) Specify closed loop eigenvalues
2) Design linear quadratic regulator with state weighing
3) Design linear quadratic regulator with output weighing

Select a menu number: 2

Quadratic regulator will minimize:

— integral(x‘Qx + u'Ru)dt

-~ Enter 3x3 <sym. pos. semi-def.> matrix, Q:




__>[100;010;001]

: Enter 1x1 <sym. pos. def.> matrix, R:

>

—> 1

Closed loop eigenvalues:

-1.3294
-0.4975 + 1.4599i
-0.4975 - 1.4599i

Gain matrix F that places the poles of A + BF at above

-0.1623 -1.7015  -1.3244

INITIAL CON

1.2

Morms of the states
(= [
4 [

INITIAL CONIL
above)

03—

0.25

0.2

0.15

0.1

Norms of the states




TR
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INITIAL CONDITION RESPONSE: X=[0.10.10.1]

Normmns of the states

|

4 6 8 10 12
TIME: SYS -] L.CONgf.. ] Q.CONb[-]

INITIAL CONDITION RESPONSE: X=[-0.1 -0.1 -0.1] (Negative of the
above)

Norms of the stams
o
—
A

0.1
0.05
0 —
0 6 8 10 12

TIME: SYS -] L.CON g[-.] Q.CON b[—]
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STEP RESPONSE: Step input magnitude is O.1.

0.05 -

0.04

0.03

0.02

Norms of the states

0.01

4 6 ) 10 12
TIME: SYS[-] L.CONg[-] Q.CONb[-]

STEP RESPONSE: Step input magnitude is 0.2.

0.4

0.35

T
1

0.3

¥
~
1

0.25} ) ]

T

0.2 - i

Norms of the states

0.05 -7 ]

T
J

0 2 4 6 ) 10 12
TIME: SYSt{-] L.CONg[-.] Q.CONb[-]

SESSION 2 0BSERUY

Dimensions of the

Homogeneous order

Linear plant mat

-

0
0
0 - 0

Eigenvalues of t

0
0 + 1.0000
6 - 1.0000

Second order pari

0 0 0
0 0 o
a -9 0

Constant part of

0
0
1

First order panrt .
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SESSION 2 OBSERVER EXANPLE
Dimensions of the systenm:
1
Homogeneous order of system: nchoose2 = 6

Linear plant matrix, R:

Eigenvalues of the open-loop plant:

0
0 + 1.0000i
0

- 1.0000i

Second order part of the plant, f2:

0 ] 0 0 0
0 0 0 ] 0 0
0 -3 0 0 3 0

Constant part of the input vector, B:
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Constant part of the output vector, C:

1 0 0

Second order part of the output vector, h2:

0 0 0 ] 0 0

Scale factors of the states, x! through x3: E
xscale = 1 1 1 4

Scale factor of the input, ul:
uscale = 1

Scale factor of the output yt:
yscale = 1

----- HA 1N

1) Help

2) Enter nonlinear system {plant aond output equations)
3) Select the type of problem to be solved

4) Simulate and plot results

5) Quit

Select a menu number: 3
————— Select the type of problem to be solved ——-—-

1) Quadratic Controller design (full observability)
2) Quadratic Observer design

3) Quadratic Controller-Quadratic Observer design
4) Get more information on the above choices

Select a menu number: 2

CLOSED LOOP FEEDBACK DESIGN FOR LINEAR PRART OF THE
0-B-S-E-R-U-E-R

———-- Input one of the following:

1) Specify observer eigenvalues
2) Design linear Kalman filter

Select a menu
Kalman filter w

: Enter 3x3 <sy

matrix, Q:
> _[1 005
_ Enter 1x1 <sys
matrix, R:

>
Observer eiger

-1.0000
-0.4551 + 1.09
-0.4351 - 1.09

Gain matrix K

-1.9102
-1.3244
0.4960

---- Please choc

1) Identity
2) Norm wei

Select a menu nu
""" MA 1IN n

1) Help

2) Enter no
3) Select t
4) Simulate
3) Quit




Select a menu number: 2

Kalman filter wil] minimize the error covariance. :

- Enter 3x3 <sym. pos.
matrix, Q:

semi-def.> driving noise covariance

> _[100;010;001]
- Enter 1x1 <sym.
matrix, R:

pos. def.> observation noijse covariance

—>1
Observer eigenvalues:

-1.0000
-0.4551 + 1.0987i
-0.4551 - 1.0987;

Gain matrix K that places the poles of A + KC at above

-1.9102
-1.3244
0.4960

Solwvin g for the

Quadratic Obs erver

----- Please choose the aethod for minimization:

1) ldentity nors
2) Nora weighed by a normal distribution

Seiect q menu numrber; 2

1) Help

2) Enter nonl inear system (plant and output equations)
3) Select the type of problem to be solved

4) Simulate and plot results

5) Quit




Simulation will

Select a menu number:

—>[.03 .03 .03]

3

start from initial

Enter final time (*scaled*), tfc:

Initial conditions for the plant to be followed by the observer:

_ Enter 3x! vector of .initial conditions, x10c:

time t0c = 0.

Simulation with external disturbances:

Please define input ut

————— fisturbance input type’

Select a menu number:

1) 2ero disturbance on the above input
2) lapulse (not impiemented yet)

3) Step
4) Sinusoid

5) Random noise {not implemented yet)
6) External data file (not implemented yet)

1

_ Enter 3x1 Uector of observer initial conditions, x10o:

—>[00 9]

To
1-
2-

4~

integrate the systeas:

Please quit HMATLAB.

Double click on the application
3- Restart MATLAB

After opening the QC folder, type "qc_continue”
at which point the progras will resume plotting.

*intg 68020" in the folder

Initial Condit

° o
X g

Norms of the estimat errors
o
=]
w

Initial Conditioi

0.06 —

0.05

8

0.031 A

0.02f Y,

Nermns of the estmae ertors

0.01}




1

Initial Conditions for the plant : [0.03 0.03 0.03]

0.06

0.05

0.04

0.03

0.02

Norms of the estimate exror3

0.01

NORM ERROR OF OBSERVER TRACKING

TIME: L.OBS -] Q.obs b[--]

Initial Conditions for the plant : [-0.03 -0.03 -0.03]

0.06

o
o
&R

g

Norms of the estimate errors
=) =}
S 8

=]
[=3
—

NORM ERROR OF OBSERVER TRACKING

TIME: L.OBSd-] Q.obs b{—]




112

A AR b

Relerences

[Al]  Al'brekht, E. G., On the optimal stabilization of nonlincar systems. PMM—J.

Appl. Math. Mech., 25, 1961, 1254—1266.

[Ar] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer—Verlag, NY, 1983.

[BZ] Bestle, D. and M. Zeitz, Canonical form observer design for nonlinear time

systems, Int.J. Con., 38, 1983, pp. 419-431.

[DM] Doyle, F. J. Il and M. Morari, A conic sector—based methodology for nonlinear

controller design, Proceedings of the American Control Conf., 1990, San Dieg

[DS] Doyle, J. B. and G. Stein, Robustness with observers, IEEE Trans. on Auto

Control, 24,1979, pp. 607—611.

[Dw]. Dwyer, T. A. W. III, Exact nonlinear control of large angle rotational maneuy]

IEEE Trans. Auto. Control, 29, 1984, pp. 769—774.

[GC] Garrard, W. L. and L. G. Clark, On the synthesis of suboptimal, inertia w.

control systems, Automatica, 5, 1969, pp. 781-789.

[GJ] Garrard, W. L. and J. M. Jordan, Design of nonlinear automatic flight con!

systems, Automatica, 13, 1977, pp. 497—505.

[Gl] Glad,
1987,
[GH] Gucks
Bifur«
[HS] Hunt,
Int. S;
[JR] Jakub
Acad.
[Ka] Karah:
Thesis.

[KI)  Krener

observe

(KKHF| Kren
approxi

1987, pj

[KR] Krener,

dynamic




113

[G]] Glad, S. T., Robustness of nonlinear state feedback — a survey,
1987, pp. 425—435.

Automatica, 23,

[GH] Guckenheimer, J. and P. Holmes, Nonlinear Oscillations, Dynamical Systems and

Bifurcations of Vector Fields. Springer—Verlag, NY, 1983.

(HS} Hunt, R. and R. Su, Linear equivalents of nonlinear time varying systems, Proc.

Int. Symp. MTNS. Santa Monica, 1981, pp. 119-123.

ne
[JR] Jakubczyk, B. and W. Respondek, On the linearization of control systems, Bull.
b Acad. Polon., Sci., Ser. Sci., Math., Astron., Phy., 28, 1980, pp. 517—522.
mlin
Ke)

Karahan, Sinan, Higher degree linear approximations of nonlinear systems, Ph.D.

Thesis, University of California, Davis, 1988.

[KI) Krener, A. J. and A. Isidori, Linearization by output injection and nonlinear

observers, Systems and Control Letters, 3, 1983, pp. 47-52.

IKKHF) Krener, A.J., 5. Karahan, M. Hubbard and R. Freaza, Higher order linear

approximations to nonlinear control systems, Proc., IEEE CDC, Los Angeles,
1987, pp. 519-523.

[KR) Krener, A. J. and W. Respondek, Nonlinear observers with linearizable error
dynamics, SIAM J. Control Opt., 23, 1985, pp. 197-216.




(Kr]

(L]

[LWP] Luh, J., B. Walker and R. Paul, Resolved acceleration control of mechanical

[P]

114

Krener, Arthur J. Nonlinear controller design via approximatc normal forms. In .1- : Pr
Signal Processing, Part II: Control Theory and Its Applications, A. Grunbaum.’_Jg ;
W. Helton, P. Khargonekar, (eds.) Springer Verlag, Ncw York, 1990, pp 139—154,

Institut

Ling, C. K., Quasi—optimum design of an aircraft landing control system, J.

Ai ft, 1970, pp. 38—43.
- " Abstract

With the aid of
been realized fo
y = h(z,u). Tl
controllability a

manipulators, JEEE TAC 25, 1980, pp. 468—474.

of nonlinear sta
program helps t
For this purpos
canonical forms
system theoretic
the nonlinear m.

% interfaces to the

1. Introductio

Recently, numer.
linear systems h.
tensive analytica
without compute
guage such as M,
REDUCE for the
trical power syst
Program for the
design of nonline
Aad [BZ2).

Methods for the «
e very extensiv

%ased handling of




