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1 Introduction

The regulator servomechanism problem is to design a feedforward and feedback
control law to make the output of a given system called the plant, track a
signal from a given class. There are various ways to make this precise, we shall
follows Francis [5] and Isidori and Byrnes [11]. The class of signals to be tracked
are described as the output of a second system called the signal generator (or
exosystem). The control law consists of feedforward terms involving the state
of signal generator, feedback terms involving the state of the plant and mixed
terms involving both.

Francis [5] posed and solved the linear regulator problem and Isidori and
Byrnes [11] generalized this to the nonlinear case. The former showed that the
linear regulator problem is solvable only if a certain system of linear equation
is solvable. The latter showed that the nonlinar regulator problem is solvable
only if a certain system of first order partial differential equations is solvable.
Huang and Rugh [9], [10] did a formal (term by term) analysis of these PDEs
and gave sufficient conditions for its solvability. The degree one terms of the
Isidori and Byrnes PDE yield the linear equations of Francis, so we refer to the
system as the Francis-Byrnes -Isidori (FBI) equations.

In this paper, we shall show necessary and sufficient conditions for the term
by term solvability of the FBI equations when either the signal generator has
a semisimple pole structure or the plant has a semisimple zero structure. We
present a proof of Huang-Rugh sufficient conditions.

We also give optimal methods for constructing the nonlinear regulator based
on term by term analysis of the Hamilton-Jacobi Bellman HJIB equations in the
spirit of Al'brecht. This optimal approach to constructing a regulator may be
novel even in the linear case.

.2 Linear Regulation

Following(l'\’ancis.[vS] and Isidori and Byrnes [11], we review the solution of the
linear regulator problem. We are given a plant
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z = Fz 4+ Gu 4
)
y= H:c + Ju .

where z € R™*!, y € R™*! and y € RPX!, Throughout we shall assume (F, G)
is stabilizable, (H, F) is detectable, [ ? ] of full column rank and [H J]of

full row rank. We are also given a signal generator }
@) W= Aw 3
3) §=Cuw

where w € IR¥! and § € IRP*!. Without loss of generality, we assume (C, A) 5
is observable. The initial state of the signal generator is nonzero and the state
and output evolve in a smooth fashion. The goal is to find a feedforward and -
feedback law from (z, w) to u which both stabilizes the plant (1) and drives the ;
output error

4) y=y—yg=Hz+Ju-Cuw

to zero as ¢t — oo. Alternatively, one can occasionally reinitialize the state of
the signal generator and obtain piecewise smooth signals. The goal then is to e
achieve stabilization and tracking on a significantly faster time scale then the
times between reinitialization of the signal generator. A third alternative is to
include an input channel in the dynamics of the signal generator "

(5) = Aw+ Bv

where v is a piecewise constant input. For example, if

01 0

A= I B=1: C=[10---0]
0 1

then the output § of (5, 3) is a polynomial spline of degree d. Again the goal
is to achieve stabilization and tracking on a significantly faster time scale than M
the times between steps of the input. Throughout, we shall consider signal R
generators of the form (2, 3), the extension to (5, 3) is straightforward. :
There are several other interesting extensions of the regulator problem. One

is to assume that the plant dynamics is directly disturbed by the signal generator

S

(6) = Fz+ Gu— Bw

and then the goal of the feedback can be viewed as stabilization, regulation and
disturbance rejection. Another is to assume that the state of signal generator
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not directly measurable, only the output error j is measurable. Dynamic feed-
back can be used to solve this problem. We shall not discuss these extensions,
they are treated in [11] and the methods that we shall present are generalizable
to them. The dynamic feedback problem requires the construction of nonlinear
observers.

Francis [5] showed that the original problem is solvable iff (F, G) is stabiliz-
able and there exists mappings

z = Pw

(M

u=Kw

which solve the Francis equations,
FP+GK = PA

8
®) HP+JK=C

Hautus [8] has shown that solvability of these equations is connected with
the transmission polynomials of the original plant (1) and the transmission
polynomials of the combined plant, signal generator and output error (1, 2,3,
4). This is also related to the Internal Model Principle of Francis and Wonham
{6].

We now offer a necessary and sufficient condition for the solvability of the
Francis equations that is slightly different from these and is valid regardless of
the relative sizes of m and p.

Following standard terminology, a pole A of the signal generator is an eigen-
value of A. Introducing new terminology, an output pole triple (Awy) €
€ x C¥! x ¢P*! satisfies w # 0 and

©) Aw = dw

Cw=y
Of course w is a right eigenvector of A corresponding to A. If A4 is not semisimple,
i.e., A has nontrivial Jordan blocks, then there are sequences of generalized
output pole triples, (A\,w/,y’) for j = 1,---,r satisfying w!,...,w" linearly
independent and

A—AI 1.2 vl 0 wl o wr—l]
(10) [ c ][ww w]—[yl g oy
The wi’s are generalized right eigenvectors of A and it is always possible to
choose a basis for €'9%! consisting of right eigenvectors and generalized right
eigenvectors of A.
The terminology for zeros of a multivariable system (1) varies among authors,
we adopt the following. An s € € is an output zero if

(11) rank[ F_I;SI .C; ] <n+p.
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This matrix is called the system matrix of (1). An output zero triple (s,¢{,¢) €
Tx TY*m x C1%P gatisfies ¢#0and

(12) « ¢)[F;,” f}:(o 0).

Notice that if m < p then every s € C'is an output zero.

The output zero structure need not be semisimple.

There may exist se-
quences of generalized output z

ero triples (s, (;, Yi)fori=1, ... » T satisfying
1,°*+, ¢ linearly independent and
G ¥ 0 o
G2 1 F—sI @ G o0
(19 P [ H J T
Cr ¢r Cr—l 0

Theorem 2.1 The Francis e

(1) there ezists an oulpul pole
an output zero triple (s,¢, )

quations (8) are not solvable iff

triple (A, w,y) of the signal generator (2, 3) and
of the plant (1) such that

(14) A=s
and
(15) Yy #0

(1) there ezists q sequence of generalized output pole triples (), w ), j=
1,---,r, of the signal generator (2, 3) and a sequence of generalized oulput zerp
triples (s, (;, %), i=1,.. 3P, of the plant (1) suck that (14) and for some _
J < min (r, p) ‘

(16) ¢1yf+¢zy"“+~-+¢,-y‘;éo

Proof.  We choose a basis for @ dx1
eigenvectors of A. Multiplying the
vector w corresponding to the eige

comsisting of eigenvectors and generalized
Francis equations on the right by an eige
nvalue A and y = Cw, we obtain

an e R

wi

gen
(19
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This is an equation for Pw and Kw. It is solvable iff every ({ ¥) € 1" x
€'*? annihilating the system matrix on the left annihilates the vector on the
right. There is such a (( ) annihilating the system matrix iff A = s, where
s is an output zero. If A = s and (s, ¢, ¥) is an output zero triple then (17)
is solvable iff ¥y = 0. If A is semisimple, its eigenvectors span €'¢X! so we are
done.

Suppose A is not semisimple, say there exists a sequence of generalized
output pole triples (A, w ) , §=1,---,r. Multiplying the Francis equations
on the right by w’ yields

(18) F-X G|[Pw ]|_[Pw?

H J Kw |~ v
and we have a coupled set of equations for Pw/, Kw’ as j =1,---,r. This can
be rewritten as

D(}) 0 ... 0 0
E D) ... 0 0 o 7l
(19) T : = :
0 0 ... D) 0 or ~"
0 0 .. E D(})
where

=[5 ] e=] V0]

-(52] (8]

If there is a sequence (s, (i, ¥i), ¢ = 1, ---, p, of generalized output zero
triples of (1) where s = A then the matrix

& 0 ... 0
(20) oo 0
R P} &
where g = min (r, p) and
& =[G il

annihilates the large matrix on the left side of (19). Moreover, it is not hard to
see that any vector annihilating the left side of (19) must define a sequence of
generalized output zero triples and hence a matrix of the form (20). Therefore
(19) is solvable iff

DA ottt NIRRT VAN B T T s
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Yiy' =0
Yoy + 1y =0
Yyl -+ iy =0
QED

If the Francis equations are solvable then the desired feedback law to enable
the output of the plant (1) to track the output of the signal generator is

(21) u= Kw+ L(z — Pw)

where L is any feedback matrix such that F+GL is asymptotically stable. Under
this feedback the combined system (1, 2) is driven to the subspace z = Pw,
which is an invariant subspace for the closed loop dynamics {5}, {11]. On this
subspace the closed loop dynamics is the same as that of the signal generator
(2) and this is referred to as the Internal Model Principle {6).

We would like to suggest an optimal way to choose L and also to choose K
when the Francis equations admit many solutions, e.g. m > p. Suppose we wish
to minimize the infinite time quadratic cost

[o ]

(22) %/ z*Qz +2r"Su+ u"Ru dt
()

where

(23) R>0

and 0 s

(24) ERIEL

There has been some discussion in the literature about how to suitably in-
terpret this because the cost (22) could very well be infinite, see for example
[2]. We believe it should be interpreted in two stages. If the initial condition
of the combined system (1, 2) lies in the subspace defined by 2 = Pw and we
use the feedback u = Kw+ v where P and K solve the Francis equations and
v will be chosen later, then the closed loop dynamics with v = 0 will evolve
on this subspace. If there are many solutions to the Francis equations then to
minimize the integrand of the cost (22) whenever we are on the subspace, we .
should choose one that minimizes '

PI'[Q S][P
. wue [ [ & R[]
If (24) is positive definite then the minimizing solution is unique.

It should be noted that this criterion is not invariant under change of co~;
ordinates in the state space of the signal generator. Therefore it is important
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that the state coordinates of the signal generator are chosen in such a way that
the expected states of the signal generator are uniformly distributed over the
ellipsoids.

w*'Tw = constant
where T' > 0. Then we should choose a solution of the Francis equations which
minimizes

o el[2][2 3]

If the initial condition of the combined system is off of the subspace z = Pw
then the goal is to drive the solution onto the subspace in an optimal fashion.
We use z = = — Pw as coordinates transverse to the subspace z = Pw . A
simple calculation shows that under the feedback u = Kw + v,

(27) z=Fz+Gv
(28) g=Hz+Jv
If we replace the cost (22) with
1 o0
(29) 5/ 2*Qz+2z"Sv+ v* Ry dt
0
then we get a standard LQR problem for the optimal feedback
(30) v=Lz=L(z - Pw).

Under the standard assumptions, (F, G) stabilizable, (Qll 2 F) detectable and
(23) we have the cost (29) is finite and the feedback (30) asymptotically drives
the system (27) to zero and hence (20) under the closed loop dynamics remains
on the invariant subspace given by z =z — Pw=0.

Of course there is no reason why the cost (29) must use the Q, R, S of (22).
One could use instead .

i oo
(31) 3 16 + ol

or any other cost that satisfies the standard assumptions, as long as the cost is
zero whenever z = 0 and v = 0. This will ensure that the LQR problem will
have a finite solution.

3 The FBI Equations

Isidori and Byrnes [11] have posed and solved a ponlinear extension of Francis’
linear regulator [5]. We are given a plant

N z = f(z,u)
@2 y = h(z,u)
0= £(0,0)
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and a signal generator

w = a(w) »
(33) §=c(w) 8
0 = a(0).

As before, the goal is to find a feedback law from (z, w) to u which stabilizes
the plant (1) and drives the output error

(34) §=y—§= h(z,u) - c(w)

to zero as t — oo for all initial conditions. Actually Isidori and Byrnes treated
a slightly different problem in which the plant dynamics (32) is affine in both u
and y and where the output does not depend explicitly on u. Their methods and
results extend immediately to the above. They also treat the problem where
(z,w) is not directly measurable.

Isidori and Byrnes assume that the signal generator dynamics (33) is Poisson
stable around the origin, w = 0 and the linear approximation around the origin
of the plant dynamics (32) is stabilizable. Under these assumptions they show
that the nonlinear regulator problem is solvable iff there exists

z = m(w)

B it

(35)

u = k(w)

satisfying the first order P.D.E.s

£ (x(w), &(w)) — Z(w)a(w) =0
h (w(w), &(w)) — c(w) = 0.

We expand (32), (33) and (35) in Taylor series

(36)

i = Fo+ Gu+ FO(z, u)+ 0z, w)+---

3
(37) y:Hz+Ju+h[2](z’ u)+hf31(z, NEEE
(38) W = Aw + all(s) + all(z, w)+---
g=Cuw+ A?](w) + cl3l(w) 4.
(39) z = Pw+xP)(w) + 73 + -

u=Kw+ ,cl2l(w) + kB(w) + -

where superscripts [2], [3], - - denote homogeneous polynomial function of de-
gree 2,3, . .. respectively. If we insert these series expansions into (36) and trun-
cate after degree one terms, we obtain the Francis equations (8). For this reason
we refer to (36) as the Francis-Byrnes-Isidori equations of the FBI equations

Huan
abilit
of the

T
areli
The
explir
and 1
the fi
lineay
semis

the d

(43)

wher
over

The:
pole
of de
A ar
that
(44)
and

(45)



bilizes

‘eated
oth u
Is and
where

Kisson
rigin
show

g
i/

> A A At e ralak o i

Optimal Linear and Nonlinear Regulators 309

Huang and Rugh (9] [10] have stated sufficient conditions for the formal solv-
ability of the FBI equations. Formal solvability means term by term solvability
of the FBI equations without regard to convergence.

To simplify the exposition we restrict our criteria to signal generators which
are linear, but the methods can easily be extended to nonlinear signal generators.
The methods can also be easily extended to the case where dynamics depends
explicitly on the state of the signal generator, i.e., the disturbance rejection
and regulation problem. We shall give necessary and sufficient conditions for
the formal solvability of the FBI equations when either the signal generator’s
linear pole structure is semisimples or the plant’s linear output zero structure is
semisimple. We shall also give a proof of the Huang-Rugh sufficient condition.

We start by considering the degree two part of the FBI equations assuming
the degree one part admits the solution P, K,

Frl2(w) + Grll(w) — a—;?(w)Aw = —fl3 (Pw, Kw)

(40)
Hxl(w) + I (w) = —pl2 (P, Kuw).
Suppose (w;, ..., wq) is a basis of ¢'1%¢ consisting of left eigenvectors of A,
(41) wiA = /\;w,',

or generalized left eigenvectors of A,

(42) wiA = Ajw;i +wiyg.

We can expand w[zl(w),x["’](w),f["’}(Pw, Kw) and b (Pw, Kw) in terms of
the w; as

T (w) = T 59 (wiw) (wjw)

M) = 3209 ) (o)

B (Pw, Kw)= 3 £ (wiw) (w;w)

W2 (Pw, Kw) = b (wiw) (wjw)

where x¥ ¢ @nx1 i ¢ C™X1 fii g @nX1) pii ¢ @rxt and the sums range
over 1 <i<j<d.

(43)

Theorem 3.1 Assume the FBI equalions of degree one are solvable and the
pole structure of the signal generator (2, 8) is semisimple. The FBI equations
of degree two are not solvable iff there ezist lefl eigenpairs (A, i), (Aj,w;) of

Aand an output zero triple (s, ¢, ¥) of the linear part of the plant (1) such
that

(44) s = A,’ + Aj
and '

(45)

¢ w|fs]#e

“TETNEE
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Proof. Plugging (43) into the FBI equations of degree two (40), we obtain (d+1)
choose 2 linear equations for the unknown ¥/, k¥ in terms of the known f'i, k'
and the plant system matrix. Because A is semisimple, these equations are in
diagonal from

F—-(\+)2) G ] fi
8 [ Slle]=-[]
for1<i<j<d
If 5 = X\;+ ); is not an output zero of the linear part of the plant then (46) is
solvable for any f*, h%. If there exist an output zero triple (s, {, ¥) satisfying
(44) then (¢, ) annihilates the system matrix on the left side of (46). Hence
(46) is solvable iff

€ n]f]=0
QED

Suppose the FBI equations are formally solvable up to degree k —1 then the

degree k equations are
(47) Fal¥)(w) 4+ Grl¥)(w) — %L'l:l(w)Aw = — fl¥)(w)
Hal¥(w) + JlF)(w) = —h¥)(w)

where fll(w) and hl¥)(w) are the degree k parts of the composition of f(z,u)
and h(z,u) with the expansion of (39) up to degree k — 1.

As before we can expand x(¥l(w), x*)(w), f¥(w) and hi*¥}(w) in terms of a
basis of €'1%9 of left eigenvectors and generalized eigenvectors of A,

wt(w) = Foaf 0 (i, w) - (Wi w)
st (w) = 30 ki1 (Wi, w) - (Wi, w)
() = 3 i (wi,w) - - (wiy w)
AE(w) = 37 A%k (wi,w) - - (Wi, w)

where the sum ranges over 1 <i; <i; <--- <14 <d.

(48)

Theorem 3.2 Assume the FBI equations are formally solvable up to degree k—1 5,
and the pole structure of the signal generator (2) is semisimple. The FBI equa- -,
tions of degree k are not solvable iff there exist left eigenpairs (Xi,,wi, ), - - -, (Kins
of A and an output zero triple (s,(, %) of the linear part of the plant (82) such
that 7

(49) s=XM, 4o+ A

(50) € w]f]#e

Noti
eiger
solve
coeff

wher
genel

(52)
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Proof. Plugging (48) into the degree k FBI equations (47), we obtain (d+k-1)
choose k decoupled sets of linear equations of the form

(51) [ F—(x, EREENY f] [ : ] =- [ { }

Ifs =X + -+, where (5,¢, %) is an output zero triple then (51) is
solvable iff the left side of (50) is zero,

QED

Conditions like (44) and (49) are called resonance conditions in the litera-
ture, see [3], [7]. The intuitive meaning is that the signal generator excites the
nonlinearities of the plant so as to create harmonics which the linear part of the
plant has difficulty tracking and canceling.

The above theorem excludes many interesting signal generators, for example,
those that generate polynomial splines as was discussed in Section 2. Such a
signal generator is not semisimple. Unfortunately, a general analysis of regulator
problems with nonsemisimple signal generators can be quite complicated. We
ilustrate this by a relatively simple example.

Suppose p = 1, d = 3 and the Jordan form of A consist of one block. In
other words there exists A, w1,ws, w3 such that

[::;J(A_m:[::zJ
w3 0

Notice that wj is a left eigenvector of A and w1 and w, are generalized left
eigenvectors. Assume the degree one FBI equations have a solution P K. To

solve the degree two equations(40) we expand as before (43) and obtain as the
coefficients (w;w) (w;w)

7 S ()

where 27 = 0, k% = Qif i or J = 0. Because the pole structure of the signal

generator is not semisimple, the equations are not decoupled. We rewrite them
as

D(2x) o 0 0 0 0 o1 1

~ - E. D@2\ o0 0 0 0 612 v1?
00 .. E D@2 o 0 0 613 | 413

. 0 . 2E 0 D@y o 0 622 | T T | 422
0 .0 ., E E D@2\ o 623 3

0 0 0 0 2E  D(2)) 633 +33
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where

o= "5 5] =[]

g i ) ij

w=[2] (5]

Clearly if s = 2 is not an output zero of the linear part of the plant then (52)
is always solvable. Suppose s = 2) is an output zero frequency and there exist

a sequence of generalized output zero triples satisfying (13) for r > 5. It is not »
hard to see that that 6 x 6(n + p) matrix o

& 0 0 0 0
&L &0 0 0
& & & 0 0
(53) 23 2 0 &4 O
¥y 33 & & &
665 664 263 23 2% &

where §; = ((; %;) annihilates the 6(n+ p) x 6(n-+m) matrix on the left side of
(52). Moreover, any 1 x 6(n + p) vector annihilating this matrix must be in the
form of a row of (53) for some sequence of generalized output zero triples where
s = 2X. Hence (52) is solvable iff every matrix of the form (53) constructed
from sequences of five generalized output zero triples at s = 2\ annihilates the
right side of (62). If there are several linearly independent sequences of output
zero triples at s = 2), then these yield additional conditions for the solvability
of (52).

If the sequence of generalized output zero triples is shorter than five triples,
then there are fewer conditions and they are obtained by deleting rows of (53)
containing the nonexistent triples. In particular, if the output zero structure of
the plant is semisimple, i.e., there are no generalized output zero triples, then
the degree two FBI equations are solvable iff whenever s = 2 then

(54) € »|fn]=0

This last remark can be generalized to the following theorem.

COOOO

Theorem 3.3 Assume the FBI equations are formally solvable up to degree

k—1 and the output zero structure of the linear part of the plant (32) is semisim-
ple. The degree k FBI equations are not solvable iff there ezists left eigenpairs
(/\,-,.,w,-j) where w;; is a left eigenvector corresponding to Ai; or the first gener-
alized left eigenvecior of a sequence corresponding to X forj=1,...,n and
an ouiput zero triple (5,{,v) of the linear part of the plant such that

(55) s=Xi, 4+ N\,
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(56) € w0

Proof. Plugging (48) into the degree k FBI equations (47), we obtain (d+k—1)
choose k set of linear equations. A set of equations corresponding to all simple
eigenpairs (A;,,w;, ) -+ (A, ,w;, ) takes the form (51) and is decoupled from all
the rest. Hence it is not solvable iff (55, 56) hold.

If one of the ();;,w;;) is part of a sequence of generalized eigenpairs, then
this set of equations is coupled to several other sets. All these coupled sets can
be written in a large system like (52). 1If the sets of equations are written in
lexographic order with i) < i; < --- < i and the rightmost indices moving
fastest then this large system is lower triangular and the diagonal consists of
D(A, +---+2;,)asin (52). If A;; +---+;, is not an output zero of the plant
then this matrix is left invertible and the large system is solvable. If (55) holds,
where (s, (, 1) is an output triple of the plant, then the vector

(C$00 00---00)

annihilates the matrix on the left side of the large equations. Hence the system
is not solvable iff (56). QED

The Huang-Rugh sufficient condition is proved in a similar fashion.

Theorem 3.4 [9), {10] Assume the FBI equations are formally solvable up to
degree k— 1. The degree k FBI equations are solvable if for all output zeros s of
linear part of the plant (3-1) and all poles );_, ... yAiy of the signal generator,

(57) 3¢A51+~'-+Aik.

Proof. Plugging (48) into the degree k FBI equations (47), we obtain (d+k—1)
choose k sets of linear equations. A set of equations corresponding to all simple
eigenpairs ();,,w;,)--- (Xiy,wi,) takes the form (51) and is decoupled from the
rest. If (57) holds then it is solvable.

If one of the (); ,.,w,-i) is part of a sequence of generalized eigenpairs then
this set of equations is coupled to several other sets. All these coupled sets
can be written in lexographic order as a large lower triangular system with
D (Ai, +---4 A;,) on the diagonal. If (57) holds then this large matrix is left
invertible, hence the system is solvable.

QED

4 Nonlinear Regulation

Now suppose the FBI equations are solvable to degree 2. There are two ap-
proaches to constructing the degree two regulator. The first might be called the




34

pole placement approach. For the linear part of the regulator we proceed as in
Section 2 and choose a P, K satisfying the Francis equations and a L such that
F + GL is asymptotically stable. For the quadratic part of the regulator we

choose any

(58)

such that the restrictions

(59)

satisfy the FBI equations of degree 2. We consider the effect of the change of

state coordinates

(60)

and feedback

(61)

on the combined system (32, 33, 34) neglecting cubic and higher terms. The

result is
(62)
(63)
(64)

where

(65)

Because the restrictions (59) of #l%] and & satisfy the FBI equations of degree
two, it follows that

(66)

If we ignore the O(z, w, v)3 terms in (62, 63, 64), the submanifold z =0 is an

(2, w,v)

(2, w,v)

u=v+Kw+ Lz + km(z,w,v)

(F +GL)z + Gv + fB(z,w,v) + O(z,w,v)®

Aw

(H+JL)z+Jv+ 71[2](2, w,v) + O(z,w,v)3

A.J. Krener

7’r[2](z, w)

Tcm(z, w, v)

7 A(w) = 72(0, w)
«l(w) = &3(0, w,0)

z=z+ Pw+#3(z,w)

fA(z+ Pw, v+ Kw+ L2) + Fald(z,w) -

axl? (F +GL)z +Gv
! Aw

Wz 4+ Pw, v+ Kw+ Lz) + H7l(z, w).

iz, w) Y

30, w, 0)=0
B30, w, 0)=0.

%
Y
I
2
#3
.
[
5

invariant manifold of the dynamics (62, 63) when v = 0 and on this submanifold 3§

the tracking error (64) is zero. The linear part of the dynamics is asymptotically '
stable so in a neighborhood of z = 0, w = 0, the transverse state coordinates}3

”:




Optimal Linear and Nonlinear Regulators 315

z(t) and tracking error f(t) will get smaller as t — co and v(t) = 0. Because of
the presence of quadratic and higher degree terms in (62, 63, 64) and because
w(t) # 0, these will not necessarily converge to zero. To make them smaller it
would be desirable to choose (58) satisfying (59) so that

Az, w, v) =0
Rz, w, v)=0.

In general this is not possible and one may have to settle for a least squares
approximate solution to (67). The extra freedom in (58) as opposed to (59)
allows a better approximate solution to (67).

If the FBI equations are solvable to degree k, then this approach can be used
to build regulator of degree k, see [10] for details.

Now we discuss an optimal approach to constructing a degree two regulator.
Assume that the state coordinates of the signal generator (33) have been suitably
chosen so that the distribution of the state is isotropic and assume that we have
a quadratic cost criterion (22). We proceed as in Section 2 and choose a solution
P, K of the Francis equations which minimizes (25). Next we solve the FBI
equation of degree two in a similar fashion. We choose a basis (wy, . ..,wqs) for
€1%9 of left eigenvectors (41) and generalized left eigenvectors (42) such that
the w;’s are unit vectors and orthogonal whenever possible. It is always possible
to choose this basis so that all the eigenvectors and generalized eigenvectors
corresponding to the same eigenvalue are orthogonal. We seek a solution (43)
of the FBI equations of degree two (40) which minimizes

1

(67)

(68) 3 Z 7 Qx'l + 259 Sk 4 k¥ ReY
1<i<j<d
The reason for doing this is that we wish to make cost of tracking small. Of
course (68) is not the only criterion one can employ and there may be better
choices which take into account the cost due to the interaction between the
linear and quadratic solutions of the FBI equations.
Now we apply the change of coordinates

(69) z =z + Pw + 7 3(w)

and feedback
(70) u=v+ Kw+ «(w)

to the combined system (32, 33,°34) neglecting cubic and higher terms. The
result is

(71) z Fz+ Gv+ fA(z,w,v) + O(z,w,v)*
(72) ' Aw
(73) Hz+ Jv+ h3(z,0,v) + O(z,w,v)?
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where

oxl2
(74) fT"](z, w,v) = fm(z + Pw, v+ Kw) + Fw[zl(w) = (w)Aw ;
(75) 1_1(2](2, w,v) = hm(z + Pw, v+ Kw) + lez](w). ¥

Since (69, 70) is constructed from solutions of the FBI equation of degree one V
and two, it follows that 8

110, w,0) = 0
R0, w,0) = 0.

Next we choose a cost criterion, say (29) and consider the nonlinear quadratic
regulator problem (NQR) of minimizing the cost subject to (71, 72, 73). Let
0(z, w) denote the minimial value of (29) starting (71, 72, 73) at (z,w)att =0.
If §(z, w) is finite and a smooth function, then it satisfies the
Bellman (HJIB) system of partial differential equations,

(76)

Hamilton-Jacobi-

(77) “%(’((zz,’u')‘;) [ ftz, w.v) J +4(z, w) =0 '

00(z,w) o ot
(78) %a—i(z, w,v) + %(z,w) =0

where f(z, w, v) is the right side of (71) and £(z, w) is the integrand of (29).

AT’brecht [1] has analyzed the formal solvability of the HIB equations. We
expect the optimal cost 6(z, w) to begin with a quadr

atic term in z '
1 - 3]
(79) 0(z, w) = 37 Tz+6%(z, w)+---

and the optimal feedback to begin with a linear term in z,

(80) v= Lz+k[2](z,w) + .-,

The lowest degree terms in (77) are the familiar equations of a LQR,

et v

(81) %z‘ (TF+F'T+Q—(TG+S)R™ (TG +5)") z =0
(82) (TG +S)+v"R =0.

We solve the Riccati equation (81) for T and from (82) obtain the linear feedback
gain,

(83) L=—~RYTG+S)*.
Next we look at the cubic part of (77) and the quadratic part of (78)
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963! (F+GL):z
- it =
’ (84) 6(z,w)(z’ w [ Aw ] + 22Tz, w, Lz) =0
5013 afla . \
kil . x12] = !
(85) 2 (z, W) G+ 2T 5 (z, w, L)+ k¥ (2, w) R=0
where fl3(z, w, v) is given by (74).
iree one ; : : ; (2] Y]
This (84,85) is a system of linear equations for the unknowns, '/ and &!'“.
If we can solve (84) for 83)(z, w) then the quadratic feedback &l?}(z, w) is given
by
[3] fl2l *
(86) &3z, w)y=-R! (62 (z,w)G-l—z‘Taéf (z, w, Lz))
zadratic z v
"3). Let Let (wy, . ..,wq) be a basis of €% of left eigenvectors and generalized eigen-
it =0. vectors of A as in (41, 42). Let (¢, ...,(n) be a basis for €"*! of left eigen-
-Jacobi- vectors or generalized left eigenvectors of (F + GL)
(87) G(F +GL) = psGi
i or
E (88) CG(F + GL) = piCi + Gigx
where pi1,.. ., pin are the eigenvalues of (F + GL). Then 8%)(z,w) can be ex-
of (29). panded
ons. We 3
f, 08(z, w) = 2i<i<j<i<n 2% (Gi2) (G2) (Ge2)
() + Logisse 0;’%& (Gi2) (¢52) (wrw)
+ 2 asien, O (G2) () (wrw)
+ Ticicicrca Fdow (win) (Wjw) (wiw).
f Because of (76), z*T fP?)(z, w, Lz) is at least quadratic in z so
R, 4 E;;)In L 2Tz, w, L2) = 215:'5,'5&5» FEE (G2) (G52) (Gr2)
i + Dogigies file (G2) (52) (wrw)
‘If‘_ﬁ"&:l-_GL and A are both semisimple then when we substitute (89, 90) into
{(84),we obtain a diagonal system of equations

LR
P

(ps + pj + pe) 038 = —fii%

ijk

“Jazw

ijk _
oz’zw -

(s + 5 + Ae)
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for1<i<j<nand1<k<d (99)
If (F + GL) or A is not semisimple, then when the terms of the expansions are fo:
(89, 90) are written in lexographic order we obtain a lower triangular system degree
with (91, 92) on the diagonal. Hence if there are no reasonances, i.e.,
pitp+m#0  1<i<j<ksn
(93) ’ =7 (100)
pi+pi+peFo 1<i<j<k<nl<k<d
g then (84, 85) is solvable. (101)
- E{% Under standard assumptions, the spectrum of (F + GL) will always lie in .
0} the open left half of the complex plane. The spectrum of a typical signal gener- satisfic
é ator is in the closed left half of the complex plane. Therefore, under standard
! assumptions the nonresonance conditions (93) will be satisfied. Notice that the (102)
h .
'E total feedback up to degree two 1s
ﬁ i (94) u= Kw+ Lz + ?(w) + &z, w).
118 P ¢
%‘ Note also that k r:oolf'
1 {3) _ cost a1
ggg 60, w) =0 equati
% 3
§ (95) a6t ](o, w)=0
| 0z (103)
s &30, w)=0.
Hence when z = 0 then the optimal cost up to degree three is zero and the
optimal feedback up to degree two is
(96) u = Kw+ ¥ (w)
which nearly keeps the system (37 , 38) on the manifold
97) 2=z~ Pw—ad(w)=0 (104)
The extra terms in feedback (94) when z # 0 drive the system toward (97) in -
an optimal way up to degree two. This generalizes to higher degrees as follows.
Theorem 4.1 Assume the following:
(i) The linear part of the plant (87) is stabilizable. i
(ii) The poles of the linear signal generator (2) lie in the closed half of the NS where
complez plane. s ? (32) w
(iii) A solution (39) ezists of the FBI equations up 1o degree k. . {
(iv) The quadratic cost (29) satisfies (25, 24) and (QY/2, F) is detectable. (105)

Then the HIB equations for the NQR of minimizing (29) where

(98) z=z—Pw—‘rm(w)—-~-—1r"(w)
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(99) v=1u— Kw—xl(w) - .. — xl(w)

are formally solvable up to degree k + 1 in the optimal cost 8(z,w) and up to
degree k in the optimal feedback k(z, w). The unique solution

(100) 0(z,w) = —;-Z'Tz 400z, w) + -+ O+ (2, )
(101) &(z,w) = Lz+&3(z,w)+ -+ &¥(z,w)
satisfies

8(0,w) =0

6
(102 [ -
) 5, (0w) =0
k(0,w) = 0.

Proof (By induction on k). The above analysis showed that theorem is true for
k=1 and 2. Now suppose the HIB equations are solvable up to degree k in the

cost and degree k — 1 in the feedback. The degrees k + 1, k parts of the H-J-B
equations (84, 85) are

dglk+1] (F+GL)z
I -l e

T+ 2T ( (2, w,0) + Grl*)(z, w))

{x] .
+ 2 e w) Oz, w,0)

-1
+2" (S + L* R) &)z, w)+an (z, w)ReF+H1= (2 ) =

i=2
o -+1] A i
(104) e (z ,w)G+8 (z w) f (z,w,0)
f[kl
+- +z'T—a— (z,w,0)

+&H (z,w)R =0

where f—bl(z w,v) is the degree j part of composition of f(z,u) appearing in
(32) with

z=z+4 Pw+xd(w)+---+ #l*(w)

105
(105) u=v+ Kw+ Lz + s (w) + #A(z,w) +--- + &E-1(2, w)
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£
a3
:
Because of (83), one of the unknowns &l¥(z, w) drops out of (103), so we try 3 3
to solve (103) for the other unknown, 0[“’1](2,1.0). It is possible, then (104) is
solvable for &l¥](z, w),
(k+1) ¥] . 3'
a9k af |
<kl =R . 2T (2 2
(106) &%(z,w)=-R % Grw)G+---+ 2 I’av (z,w,0) :
i

Since (98, 99) solve the FBI equations up to degree k£ and (102) holds by
induction it follows that

(107) U0, w,0)=0

for j = 2,... k. Therefore all the terms but the first in (103) are at least
quadratic in z. When we expand §l¥+1] (2,w) and the rest of the terms in (103)
in monomials consisting k + 1 fold products of ((;z) and (wjw), we obtain a
diagonal or at least lower triangular system, which is solvable if the nonresonance
condition hold

MDA o A I 5L S o | LI e 0.

Hi, +"'+/‘ik+| #0

vt + A, #£0
(108) l‘ix /‘lg + #

Biy+ iy + Ay + -4 Xy, #0.

These hold since Re(y;) < 0 and Re(A;) < 0. Hence there eixts a unique
0k+1)(2, w) satisfying (103) and it is least quadratic in 2. It follows that
#E(z, w) exists (106) and is at least linear in z.

QED

We note that if there are several solution (37) to the FBI equations of degree :
k, we can choose that which minimizes the generalization of (68). Of course there
are other reasonable choices.

The term by term approach to the HJB equations can also be used with cost
criteria like (31) instead of (29). The key points are that the closed loop linear
part of the plant (F + GL) be asymptlotically stable and that cost vanish up to
order k when z = 0 and v = 0 so that all but the first term of (103) is at least
quadratic in z.

T G LA U A AR AT o2
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(109) u(z, w) = x(w) + &(z (2, w) , w)
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when z(z,w) is given by (98), k(w) is (39) to degree k and &(z,w) is (101). The
optimal cost is

(110) 0(z,w) = 8(z(z,w),w)

where 6(z, w) is (100) and the running cost £(z, w) is

‘ (111) Uz,w) =1 (z‘(:r,w)Qz(z:,w)gz'(z,w)Sv(z,w))

) +v(z, w)Ro(z, w)

s where z(z,w) is given by (98), v(z,w) is given by (99) with u = u(z,w) as in
(109). From the HIB equations (77) we have

(112) 2020, w(t) = —2(2(t), w(t)) + O (=), w(®))**? .

This suggests that 8(z,w) is a candidate Lyapunov function for the tracking
problem as formalized in the following.

e o LA B e ek g e S A e

gy

j Theorem 4.2 In addition to the hypothesis of Theorem {.1, assume there erists
a region €2 in IR® x R? containing (0,0) such that
(1) Q is positively invariant under the closed loop dynamics (82) (2) and (109).
(11) 8(z,w) > 0 on Q and O(z,w) = 0 only on {z(z,w) = 0} N Q.
(111) $:6(z,w) <0 on Q and the mazimal positively invariant subset in
{£6(z,w) = 0} NQ is contained in {z(z,w) =0} .
Then for any initial condition (z(0),w(0) € Q) the solution (z(t), w(t)) of the

closed loop dynamics converge to {z(z,w) = 0} N Q where the tracking error is
O(w)k+1,

The proof of this theorem follows immediately from LaSalle’s extension of
4 Lyapunov’s direct method.
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