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This paper examines the dynamics and kinematics of reciprocal diffusions. Re-
ciprocal processes were introduced by Bernstein in 1932, and were later studied
in detail by Jamison. The reciprocal diffusions are constructed here by specifying
their finite joint densities in terms of the Green’s function of a general heat
operator, and an end-point density. A path integral interpretation of the heat
operator Green’s function is provided, which is used to derive a stochastic form
of Newton’s law, as well as a conditional distribution for the velocity of a
diffusing particle given its position. These results are then employed to derive
two conservation laws expressing the conservation of mass and momentum. The
conservation laws do not form a closed system of equations, in general, except
for two subclasses of reciprocal diffusions, the Markov and quantum diffusions.

1. INTRODUCTION

Reciprocal processes find their origin in an attempt of Schrodinger! to develop a stochastic
formulation of quantum mechanics in terms of Markov diffusions. In this formulation, the
probability density of a particle at a given time is represented as the product of two functions
satisfying respectively forward and backward Fokker-Planck equations. However, two aspects
of Markov diffusions created serious obstacles to Schridinger’s investigation. The first is that,
unlike the equations of classical or quantum mechanics, Markov diffusion models are not time
symmetric, since they usually involve different forward and backward drifts. Also, the stochas-
tic differential equations describing Markov diffusions are first-order equations. As such they
model accurately the kinematics of a diffusing particle subjected to random fluctuations, but
they do not capture dynamical effects.

The lack of time symmetry of Markov diffusions motivated Bernstein? in 1932 to introduce
reciprocal processes. The reciprocity property is essentially one of time locality, where given a
fixed interval, the process over the interval depends only on its values at both ends of the
interval, and on the excitations to which it is subjected in the intervening times. The class of
reciprocal processes contains Markov processes, as well as other processes. In fact, it is inter-
esting to observe that the Markov random fields in the sense of P. Lévy’ reduce in one
dimension to reciprocal, not Markov, processes, so that they should probably have been called
reciprocal fields. Reciprocal processes were subsequently studied in detail by Jamison,* who
showed that they could be constructed from Markov processes by first pinning a Markov
process at both ends of a fixed time interval, and then assigning an arbitrary probability
distribution to the end points of the process.

In paraliel with these develdpments, a systematic study of the dynamical properties of
Markov diffusions was undertaken by Nelson,” which ultimately evolved into a complete
stochastic interpretation of quantum mechanics, called stochastic mechanics.® The starting
point of Nelson’s investigation was the observation that to model the dynamics of a diffusing
praticle, one must be able to define the concept of acceleration in a stochastic context. This was
accomplished by working simultaneously with the forward and backward models of a Markov
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diffusion, and defining the acceleration as an average of mean forward and backward deriva-
tives.

However, this definition of the stochastic acceleration is rather unintuitive. This in part
motivated Krener® to propose second-order models of reciprocal diffusions, where a reciprocal
diffusion is defined as one which is constructed by applying Jamison’s pinning procedure to a
Markov diffusion. Krener showed that reciprocal diffusions satisfy locally a stochastic version
of Newton’s law, which was then employed to derive conservation laws for the probability
density and momentum density of a reciprocal diffusion. The derivation of Newton’s law in
Ref. 8 relied on a characterization of Jamison* for the three-point transition density of a
reciprocal process in terms of the two-point transition density of a Markov process, and on a
short-time asymptotic expansion of the transition density of Markov diffusions. Subsequently,
it was shown by Clark® that for reciprocal diffusions in R”, the forces appearing in Newton’s
law can be described in terms of #n-+n(n—1)/2 quantities, called the “reciprocal invariants” of
the process. In addition, Clark extended to reciprocal diffusions the change of measure formula
developed by Girsanov for Markov diffusions.'©

Note that although reciprocal diffusions, which are often called Bernstein diffusions, have
been used extensively in recent years by Zambrini'! and other researchers'? in the context of
stochastic mechanics, the class of diffusions that they consider corresponds actually to the
Markov diffusions of Schrodinger, which is only a subclass of the full set of reciprocal diffusions
discussed here.

The goal of the present paper is to demonstrate that to any dynamical system, described by
its Hamiltonian, we can associate a class of reciprocal diffusions whose dynamics and kine-
matics can then be interpreted in terms of the underlying classical system. The procedure used
to go from the classical system to the corresponding reciprocal class can be viewed as a
“stochastic quantization” method, although this term has been used with a different meaning
in other contexts. The procedure we employ consists in associating to each Hamiltonian pa-
rametrized by a scalar and covector potential pair a generalized heat operator, corresponding
to a Markov diffusion with creation and killing. Then, Jamison’s construction is employed to
characterize the finite joint densities of the corresponding reciprocal class in terms of the heat
operator Green’s function and a positive measure for the end points of the diffusion. In this
context, it is shown that the joint densities of the diffusion are not affected by the application
of a gauge transformation to the scalar and covector potentials, and the end-point measure.
Also, when the gauge is fixed, the scalar and covector potentials define a set of reciprocal
invariants for the diffusion.

To obtain a dynamical characterization of reciprocal diffusions, we derive a path integral
representation of the heat operator Green’s function used to construct their finite joint densi-
ties. Unlike the usual Feynman path integrals, the summation does not involve complex prob-
ability “amplitudes,” but real probabilities. It is therefore similar to the probabilistic interpre-
tation of Feynman integrals given by Kac.'* The path integral representation yields a short-
time asymptotic of the heat operator Green’s function, which is then used to derive the
stochastic Newton law introduced by Krener, and to show that the distribution of the empirical
velocity of a diffusing particle given its position is approximately Gaussian. These results are
used to derive two conservation laws for the probability density and momentum dens1ty of
reciprocal diffusions, which take a form identical to the equations of fluid mechanics. These two
conservation laws are in fact part of an infinite chain of conservation laws which do not form
a closed set of equations, in general, except for two subclasses of reciprocal diffusions. The first
subclass is of course the Markov diffusions, in which case the two conservation laws reduce to
forward and backward propagating Fokker—Planck equations. The second class, which seems
to have been overlooked until now, consists of what we shall call the quantum diffusions, for
which the two conservation laws are equivalent to Schrodinger’s equation. These diffusions
form the basis for an alternative version of stochastic mechanics, described in Ref. 14.
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The paper is organized as follows. In Sec. 11, the joint probability densities of a reciprocal
diffusion are characterized in terms of the Green’s function of a generalized heat operator and
an end point measure. The Markov case corresponds to the situation where the end point
measure is factorable. A path integral representation of the heat operator Green’s function is
obtained in Sec. IIL. This representation is employed in Sec. IV to derive the stochastic Newton
law of reciprocal diffusions. A simplified reciprocal Girsanov transformation is presented in
Sec. V. In Sec. VI, it is shown that the distribution for the empirical velocity of a diffusing
particle given its position is approximately Gaussian, and is parametrized by a mean velocity
vector and a stress tensor. The conservation laws of reciprocal diffusions are obtained in Sec.
VII. Unfortunately, these conservation laws do not close, in general, except for the subclasses
of Markov and quantum diffusions, where the mean velocity and stress tensor satisfy algebraic
constraints that provide two possible closure rules for the reciprocal conservation laws, which
are discussed in Sec. VIIL

il. RECIPROCAL AND MARKOV DIFFUSIONS

As starting point, we recall that a process x(¢) eR" defined for te[0,T] is reciprocal if for
arbitrary subintervals [s,f] of [0,7], the values of x(.) in the interior and exterior of [s,f] are
conditionally independent given the end values x(s) and x(z). From this definition it is clear
that if a process is Markov, it is necessarily reciprocal, but the converse is not true.

The space R” is endowed with a time-dependent, but space-independent, metric o;;(¢)
which is assumed uniformly positive definite over [0,T7]. This means that if the matrix o/ ()
denotes the inverse of the metric, i.e.,

, it i=j
() oy (1) =8

= 2.1
710 otherwise, 2.1

there exists positive constants @, and a; such that if v denotes an arbitrary vector of R”,
ap|v|2 <o (Dop;<ai|v|? (2.2)
for all 7€[0,T]. We consider a dynamical system with Hamiltonian

H(x,p,t) =30" (1) (pi— Ai(x,)Wp;—4;(x,1)) +(x0), (2.3)

where we have used the standard tensor contraction convention, with repeated upper and lower
indices corresponding to a summation. In Eq. (2.3), p; is the generalized momentum of the
system, and the scalar and covector potentials ¢(x,t) and 4 [x,t) are given.

To the Hamiltonian H(x,p,t) we can associate an elliptic operator H obtained by replacing
p; by —V; where V, denotes the differentiation with respect to x/. This substitution can be
viewed as the stochastic analog of the quantization rule p >—1iV; of quantum mechanics. The
resulting operator H is given by

H={(V'+4) (Vi 4) +¢ - (24
AL AV + UV AAAA) +, (2.4b)
where A is the Laplace operator
2
2 G4 —— 2.
ALoY(t) EeE (2.5)

expressed with respect to the metric . Now, consider the parabolic operator
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L:H—g—t (2.6)

and the Green’s function G(x,s;y,t) given by
Ly,,G(x,s;y,t) =0, s, (2.7a)
G(x,5p,5) =8(y—x), (2.7b)

where the subscripts {y,¢} indicate L is acting on the variables y and ¢. It is also required that
the Green’s function G(x,s;y,t) should decay as y— oo. When o, 4, BA,/(?xk and ¢ are
bounded and satisfy a uniform Holder continuity condition over R"x[0,T}, it is shown in Ref.
15 that G exists and is unique. Furthermore, G(x,s:p,¢) is nonnegative and satisfies

ally—x|?

) RN S oly—x|

G(x,sp,8)<C {(t—5) exp s (2.8a)
aG(xys;))’t) —(n+1)/2 a(')ly—xlz

‘ 3y .<C2(t—S) eXP— 47 s) (2.8b)

for any aj, < ag, where C, and C, are constants.
The Green’s function G(x,s;p,t) has a number of useful properties. The most notable is the
transition property

G(x,s;2,u) = J- G(x,s0,0)G(p,t;z,u)dy (2.9)

for s <t<u. Like the Green’s function of standard Markov diffusion operators, G(x,s;y,t) can
be interpreted as a transition probability density, since it is positive and satisfies the initial
condition {2.7b). However, this density is unnormalized. To see this, let

Zp(x,s5t) = J G(x,s;p,0)dy, (2.10)
B(x,R)

where B(x,R) is the ball of radius R centered at x. Integrating Eq. (2.7a) over B(x,R) and
using the divergence theorem, we find

i

J VG . ) )
= Zp(x,550) = f (——+A’G)n,—dS+ J (44,—Vi4)/2+$)G dy, (2.11)
ot S(x,R) B(x,R)

where S{x,R) is the sphere of radius R centered at x, dS is an elementary surface element, and
n is a unit vector perpendicular to the surface. Letting R — oo inside (2.11), and using the
bounds (2.8a)-(2.8b) as well as the boundedness of A, we see that the surface integral
vanishes, so that the integral Z (x,5:¢) of G(x,s;y,t) over R” i.e., the total probability mass at
time ¢ of the density G(x,s;0,t), evolves according to

a
P Z(x,5t)= f G(x,s;p,t)c(y,1)dy, (2.12)
where

cCat) 2L A4~ ViA) (x,0) +$(x.t) (2.13)
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denotes the rate of mass creation at point x and time ¢, Note that depending on whether
c(x,t) >0 or c(x,t) <0, there is actually mass creation or annihilation. This shows that
Z(x,5:t)51, so that unless c(x,t) =0, the probability mass is not conserved.

In the special case when c(x,t) =0,

2

L= 2 Ix'Ox’

a’ i A' 0 (2.14)
( .)+ax,-( -)—at .
is the forward operator for a standard Markov diffusion with diffusion matrix a’(t) and drift
b(x,t) =—A'(x,t).

Another property of the Green’s function G involves its backward propagation in time.
Consider the adjoint operators

H*=1A AV, 4+{(—V'4,+4'4) +¢, (2.15a)
Lt p* sl (2.15b)
ot’

where we note that H* is obtained by replacing A° by —A4' in H. Then, for s<t, the Green’s
function G(x,s;p,t) satisfies the backward equation

L G(x,5:0,1) =0, (2.16a)
G(x,tp,t)=6(x—y). (2.16b)
We define reciprocal and Markov diffusions by specifying their finite joint densities as

follows.
Definition 2.1: A process x(t) is a reciprocal diffusion over [0,77] if given arbitrary times

to=0<1t,< -~ <ty=T, the joint probability density of x(z5), x(¢), ..., x(1y) is given by
N-1
P(x0,0:x,t45..5x 0, T ) = q(x0,x ) kH G(Xpol X kg 15t 1)> (2.17)
=0

where G is the Green’s function of a heat operator of the form (2.4)-(2.5) and q(xg,xy) 1s a
positive density such that

ff q(x0,xn) G (x0,0;x 0, T )dxg dx y=1. (2.18)
When ¢{xy,xy) can be factored as

g(x0,xy) =g r(x0)gp(x ) (2.19)

x(t) is said to be a Markov diffusion.

From the above definition, we see that when the interval of definition of a reciprocal
diffusion is restricted from [0,77] to a subinterval [s,7], the density g(x,s;p,t) that needs to be
applied to the new end points (s,¢) is given by

glx,s;p.0) = f fq(xo,xT)G(xO,O;x,s)G(y,t;xT,T)de dxy. (2.20)

The expression (2.20) indicates that g(x,s;y,¢) with s<¢ satisfies the two evolution equations
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Ly,tq(x’s;y’[):()y (2213)

L¥ q(x,5,p,8) =O0. (2.21b)

The specification (2. 17)~(2.18) of a reciprocal diffusion implies also that for s <t <y, the
three-point transition density r(x,s;y,5;z,u) of x(1), i.e., the conditional density of x(¢) given the
outer values x(s) and x(u), can be expressed as

Gx,sp,t)G(y,tz,u)
G(x,5,z,u)

r(xsytizu) = , (2.22)

which, except for the fact that G(x,s5y,t) is an unnormalized density, satisfies precisely the
relation obtained by Jamison* linking the three-point transition density of a reciprocal process
to the two-point transition-density of a Markov process.

Finally, observe that several potential pairs {4,(x,1),¢(x,)} and end-point densities
q(xp,x7) may yield the same reciprocal diffusion. To see this, let x(x,¢) be an arbitary differ-
entiable function, and consider the gauge transformation

G (x50,1) =exp(x (x,5))G (x,5:9,1) exp( —x.0), (2.23a)

9" (xo,%7) =exp(—y (0,x0))q(xo,x7)exp(y (T, x7)). (2.23b)

It is easy to verify that under this gauge transformation, the Jjoint densities (2.17) and the
three-point conditional r(x,s;p,t;z,u) are invariant. Furthermore, G'(x,s;p,¢) is the Green’s
function of a heat operator with potentials

d
A{ e =A,(x0) X (), (2.24a)

I
¢ (x,1) =¢(x,1) +3; (). (2.24b)

This motivates the following definition and lemma.

Definition 2.2: For a fixed metric 0y, the triples {4i(x,1),6(x,1),9(x0x7)} and
{4;] (x,0),8" (x,0),q" (xo,x1) } are equivalent if they parametrize the same reciprocal diffusion.

Lemma 2.1: Two triples {4,4,q} and {4/,¢',q’} are equivalent if and only if they are
related by a gauge transformation of the form (2.23b) and (2.24).

Proof: If two triples are equivalent, their Green’s functions G(x,5;p,t) and G’ (x,5;p,1) yield
the same three-point density r(x,sp,t:z,u) for s<r< u, so that

Gxsp.)G(ytiz,u) G (x,50,0)G' (p,t:2,u)

G(x,5;z,u) o G'(x,5;z,u) (2.25)
Define
G'(x,s9,1)
. A
R(x,sp,t) =G (2.26)

where we observe that in the limit as 7 —s and yp—x,
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R(xs;p,t)—1. 2.27)

The relation (2.25) implies

R(x,5;z,u) =R (x,53,6) R(p,1;2,u), (2.28)

and differentiating both sides of Eq. (2.28) with respect to yi, we find

a a

C'Ty[ In R(x,sp,t) = ~ 7 In R(y,t;z,u). (2.29)
Since the left-hand side of Eq. (2.29) does not depend on (z,u) and the right-hand side on
(x,s), it is a function of (y,t) only, from which we can immediately deduce that

lnR(xy[,y,S):—X(}’,t) +/1(X,S) (230)

for some functions y(y,¢) and A(x,s). From the limit (2.27) we find y(x,s)=A4(x,s), so that
G’ (x,s:p,0) and G(x,s;p,t) are related by a gauge transformation, which in turn implies that the
end-point densities must satisfy Eq. (2.23b). a

The reciprocal and Markov diffusions introduced in Definition 2.1 are specified in terms of
the potentials {4,(x,?),¢(x,2)} and density g(xp.x7). The potentials {A,¢} are determined
from physical considerations. On the other hand, the end-point density q(xg,x7) must be
computed from the joint probability density p(x0:0;x7,T) of x(0) =xg and x(T) =x, which
provides the most natural information about the boundary conditions of the diffusion. From
Eq. (2.17), we see that g(x,,x7) can be obtained from p(x,,0;x7,T") by using

p(x0,0:x7,T) =G(x0,0;x 7, T)g{x0.XT). (2.31)

The Markov case is more complicated, since unlike the reciprocal case, where the joint prob-
ability density p(x,,0;x7,T) can be assigned arbitrarily, the density p(xy,0;x7,T) has some
internal structure. In this case, it is more reasonable to assume that the marginal densities
p(x0,0) and p(x7,T) of x(0) and x(T) are given. According to Eq. (2.31), the end-point
densities g (x;) and g,(x7) must be related to p(x,,0) and p(x7,T) through the coupled
integral equations

p(x0.0) =4(x0) f Gxo0ixr,T)as(xp)dx T, (2.32a)

p(xn.T)=qp(x7) j G(XO,O;XT,T)(If(Xo)dxo s (2.32b)

which were first introduced by Schrodinger.! Multiplying ¢ +(xp) by an arbitrary constant, and
dividing ¢,(x;) by the same constant leaves (2.32a) and (2.32b) unchanged, so that the
solutions of these equations will only be fixed up to an arbitrary scaling. When such a scaling
is provided, the existence and uniqueness of such solutions was studied in Refs. 16 and 2.

From Egs. (2.17) and (2.20), we see that the marginal density p(x,f) of a reciprocal
diffusion x(t) satisfies

p(x,t) =q(x,t;x,t) = f fG(xO,O;x,t)G(x,t;xT,T)q(xo,xT)de dxp . (2.33)

In the Markov case, this reduces to
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p(x,0) =q s(x,0)qy(x,1), (2.34)

where
tIf(XJ) = f G(x()yO;xyt)qf(XQ)dXO , (2353)
a5(x,t) = f Gatnp T)gy(xp)dxy (2.35b)

satisfy, respectively, the forward and backward equations
Lgs(x,6) =0, q/(x,0)=g(x), (2.36a)

L*qb(xyt) :O’ Qb(x,T)qu(x) (236b)

The relations (2.34) and (2.36) illustrate the original idea of Schrédinger, which was to
decompose the density p(x,?) of the Markov process x(f) into a product of forward and
backward information “waves” g(x,r) and g,(x,t), where the initial data for these waves is
provided by the functions g,(x) and g,(x) obtained by solving the coupled integral equations
(2.36).

The reciprocal and Markov diffusions introduced in Definition 2.1 can therefore be viewed
as defined “in the sense of Schriodinger.” Unlike Markov diffusions defined as the solutions of
stochastic differential equations, which, for a given metric o;;, are specified by the n compo-
nents of the drift, and the initial density p(x,0), the Markov diffusions of Definition 2.1 are
parametrized by the n+ 1 potentials {4,¢}, as well as the two end-point densities g,(x) and
qp(x). This raises the question of whether these two types of Markov diffusions are equivalent.
Such an equivalence was established by Jamison* and Nagasawa,'” following an argument
which is outlined below.

Theorem 2.1: x(t) is a Markov diffusion in the sense of Definition 2.1 iff it is a Markov
diffusion in the sense of stochastic differential equations.

Proof: Let x(t) be a Markov diffusion in the sense of Definition 2.1. Define the gauge
transformation

Y+ (x,t)=In g,(x,t). (2.37)

Then, using the evolution equation (2.36b) for ¢,(x,t) inside the gauge relations (2.24a) and
(2.24b), it is easy to verify that the transformed heat operator has the form

1 . E;
L, =5A-Vi(b,)—3,. (2.38a)

b (x,0)=—A,(x,t)+V;In gs(x,1), (2.38b)
Le., it is the forward operator corresponding to a stochastic differential equation with diffusion
matrix ¢”/(¢t) and drift b° . Furthermore, using Eqgs. (2.23) and (2.37), we find that for
ty=0<¢," - <1, the joint density of x(#,), x(#,),..., x(¢,) is given by

p—1
P(x0,0:X1, 135X ol ) = p(%0,0) kH G, (XioliXicr vts1)s (2.39)
=0
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where G is the Green’s function of L .- This density is in the usual Markov form, so that x(z)
is a Markov diffusion in the usual sense.

Conversely, when x(¢) satisfies an It6 differential equation with forward operator L and
initial density p(x,0), by taking into account the normalization

Z (rs0)= [ G (rswa)dy=1 (2.40)

inside the coupled integral equations

p(xo,O):q}(xO,O)fG'+(xO,O;xT,T)q;’(xT,T)de, (2.41a)

p(xr,T)=qy (x7,T) fGJr(xO,O;xT,T)q}L (x0,0)dxq, (2.41b)
it is easy to verify that these equations admit the solution

q}'(x,O):p(x,O), q[f(x,T):l. (2.42a)

Furthermore, since the operator L, does not contain a creation/killing term, the evolution
equations (2.36) imply

g (x,0)=p(x1), q (x1)=1, (2.42b)

so that for a Markov diffusion described by a forward stochastic differential equation, all the
information about the diffusion process is contained in the forward wave, since the backward
wave g¢; (x,t) is uniformly distributed. When identities (2.42a) are substituted inside the
specification (2.39) of the joint probability densities of a Markov process, we find that these
densities are in the form of Definition 2.1, so that Markov diffusions in the sense of stochastic
differential equations satisfy Definition 2.1. O

In the above proof, the gauge transformation (2.37) was employed to obtain a forward Itd
differential equation for a Markov diffusion x(¢) defined in the sense of Definition 2.1. If
instead of using Eq. (2.37), we select

X —(x,1)=—1Inq,(x,2), (2.43)

the heat operator is transformed into

1 - d
—_A_b i
L_ =3 A—b,_(x,0)V 3 (2.44a)
bi_(x,t) = —A;(x,t) =V;In g p(x,), (2.44b)

so that x(¢) satisﬁes also a backward stochastic differential equation with diffusion matrix
0”{x) and drift &'_. In this case, the forward and backward information waves are given by

g, (x,0)=1, ¢, (x,1)=p(x,1), (2.45)

so that all the information about the process x(¢) is now contained in the backward wave.
Finally, we verify that the reciprocal diffusions of Definition 2.1 satisfy the characterization

of such diffusions given by Jamison.* According to this characterization, a process is a recip-

rocal diffusion iff it has the same three-point transition density r(x,s;p,t;z,u) as a Markov
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diffusion, but a different end-point density. But the expression (2.22) for the three-point
transition density depends only on the Green’s function G, i.e., on the potentials {4,4}. Thus,
given a reciprocal diffusion x(¢), provided we replace its end-point density g(xg,xy) by a
factorable one, we obtain a Markov diffusion with the same three-point transition density, so
that Jamison’s criterion is satisfied.

To illustrate our construction procedure for Markov and reciprocal diffusions, we consider
several examples.

Example 2.1: The Wiener process W (r) is generated by the operator

L L& 9 2.46
= a7 a (2.462)
with Green’s function
G : o)’ 2.46b
(X,S,y,t)—m)m exp—m- (2.46b)
The marginal probability densities at the end points are
.
p(x,0)=6(x), p(x,T) )P 57 (2.47)
so that
! * 1 2.48
g7(x,) =p(x,t) =G APy Blxn)=1 (2.48)

Example 2.2: The Brownian bridge B(t) can be expressed in terms of the Wiener process
as

B(t):W(t)—% W(T). (2.49)

It can be constructed from the heat operator (2.46a) and Green’s function (2.46b), but with
the marginal densities

p(x,0)=p(x,T)=65(x). (2.50)

In this case, the solution of the coupled integral equations (2.32a) and (2.32b) is given by

q7(x) =¢q,(x) =C8(x) (2.51)
with C=(27T)"*, so that
¢ * 2.52
qf(x9t):(—2W eXp—73, (2.52a)
C x?

qb(x,t) Zm eXp_Z(T—t—)’ (252b)

and
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T 1/2 x2T
p(x,f):(m) CXp—m_—t). (2.53)

Note that the operator L is well-behaved, even though the drifts

x
b+(x,t)=—(T—x_5, b*(x,t)z? (2.54)

of the forward and backward stochastic differential equations satisfied by x(¢) have singular-
ities at =7 and r=0, respectively, reflecting the fact that at these two times, the process

density is totally concentrated at the node x=0. O
Example 2.3: The Bessel process R(t) is a Markov process defined as the radial part

n 172
R(t)z( 2 W?(t)) (2.55)
i=1

of a multivariate Wiener process whose components W,(¢) are independent. It can be con-
structed'® from the forward operator

138 3 (n—1 d
ra (w0 2300

with Green’s function

G, (x,s:0,1) :eXP(:_(JS ;;f))niz(tl—” xnwlln/zl(;_—));), (2.56b)
where I,,,, | is a modified Bessel function. Given the initial density
p(x,0)=6(x), (2.57a)
we find that the density of R(¢) is given by
2Cx" ! x?
p(x,t):W exp—z, (2.57b)

where C, is a normalizing constant. The drift b (x,7) = (r—1)/2x corresponding to the above
description is singular at x=0, reflecting the fact that the density p(0,r) =0 for all £>0, i.e,,
x=01is a node of the diffusion R(¢) at all positive times. Similarly, if we consider the backward
stochastic differential equation satisfied by R(¢), we find that the drift

b 2 x nol 2.58
b_(x,t)= +(x’t)«5c_ np(x,t)_?_._ 5 (2.58)

has also a singularity at x=0. On the other hand, the drift, i.e., the covector potential, can be
completely eliminated by applying the gauge transformation '

2

y(xt)=— In x (2.59)

to the forward heat operator L . In this case, the transformed heat operator takes the form
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L 13 (n=1)(n—-3) 43 5 60
=137 s o (2.60)
where all the information has been pushed into the scalar potential ¢(x,t)=—(n—1)(n

—3)/8x%. But this new description contains some information that did not appear explicitly in
the forward description (2.56a). Specifically, we see that for n=2, the potential is repulsive, for
n=3, it is identically zero, i.e., the particle is “free,” and for n> 3, the potential is attractive.(]

The last example illustrates the flexibility afforded by the use of gauge transformations in
the description of reciprocal and Markov diffusions.

Ill. PATH INTEGRAL REPRESENTATION

In this section, we obtain a path integral representation of the Green’s function G(x,s0,1)
corresponding to the heat operator L. Although most applications of path integrals have been
in quantum mechanics and field theory,' following Onsager and Machlup’s original investi-
gation,”® path integral techniques have also been employed to assign a probability measure to
the paths of diffusion processes. This line of work was originally formal, since it required the
evaluation of an action functional along the nondifferentiable trajectories of a diffusion process,
but it was subsequently given a rigorous meaning?! when it was shown that the path measure
can be interpreted as the probability that the diffusion stays within a tube of small radius
centered about the path under consideration.

For our purposes, the most relevant work is that of Graham,?? who obtained a path integral
representation of the transition density of diffusion processes with creation and killing. Gra-
ham’s result is more general than the one derived here, since it allows the metric to be
space-dependent. However, the derivation of path integrals in curved space has been a subject
of controversy, because when 0;; depends on x, the correspondence rule p <>—V; which was
used in Sec. II to construct H from H(x,p,t) cannot be defined unambiguously. Different
choices of correspondence rule yield operators H which differ by the addition of terms pro-
portional to the scalar curvature of the space. The reader is referred to Ref. 23 for a discussion
of path integrals in curved spaces.

The method which is employed here to derive a path integral representation of G(x,s;p,t)
is identical to Feynman’s original approach. The Lagrangian L (x,x,?) corresponding to the
Hamiltonian (2.3) is given by

L(x,%,1) =30,;() X%+ A(x,1) ¥ — $ (x,1), (3.1)

and the action functional % (x,,a;x,,b) for a path x(¢) linking x(a)=x, to x(b)=x, with
0<a<b<T, can be expressed as

b
S xgaxp,b) = f L(x(8),x(8),0)dt. (3.2)

a

Now, consider the discrete lattice D, ={#,=a+ kh; k=0,...,N} obtained by dividing the inter-
val [a,b] into N subintervals of length A= (b—a)/N. We seek to discretize the action functional
% by replacing it by a discrete sum involving only the trajectory points x(#;) on the lattice D,
To achieve this objective, consider the tolattice D;, = {a + (k + 1/2)4; k=0,..,N—1}. In the
following, the mean and difference of successive discretization points are denoted as

m(t:h) =3x(t+h/2) +x(t—h/2)), (3.3a)

dx(th)=x(t+h/2) —x(t—h/2), (3.3b)
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with ¢ € D;. Then, consider a path originating at x(a) =Xx,, terminating at x(b)=x, and
constituted of piecewise linear segments linking the points x(z,), with t,eD,. Over each
segment —h/2<s<t+h/2, with t € D;, the motion of the particle is specified by

%,(5) =0, (3.4)

which reflects that in the absence of potentials, no forces act on the particle. This implies that
over each segment x,(s) =u, ie., the velocity, when expressed in contravariant form, is con-
stant. In fact, it is easy to check that

dx’

u=0;,(t) ; +O0(HY). (3.5)
For such a piecewise linear trajectory, the action functional .% can be decomposed as
t+h/2

S(xXp@;xpb) = 2, L(x(s),%(s),5)ds. (3.6)
te D"' t—h/2

Performing a Taylor series expansion of x(s), X(s) and s in the vicinity of m(s;h), dx(;h)/h
and ¢, respectively, and taking into account (3.5), we find

h/2
f” L(x(5),%(s),8)ds = Ly (m.dx,1) + O((dx)) + O(dx b) +O(RY), (3.7
t—h/2
with
Ly(mdx,t) = (1/2h)0,;(£)dx' dx? + A,(m,t)dx— $(m, 1) h. (3.8)

The orders of truncation employed in Eq. (3.7) ensure that for all piecewise linear paths such
that dx(z;h) has size h'/?, which is the standard deviation of the increments of a Markov
diffusion, the action functional satisfies

S(xpaxpb)= 2 Ly(mdx,t)+0(h'?). (3.9)

reD;,
Consider now the preexponential factor

01/2([)

Ch([):W’

(3.10)

where o() =det 0,;(¢). We can assign to a piecewise linear path x,, linking the points x(a) =x,
and x(b) =x, and passing through the points x(¢;) with z,€D,, the probability

p(xp)= Il Cu(exp— Ly(m,dx,), (3.11)

'
teD,

where the arguments of m(#;4) and dx(r;4) have been suppressed. Note that the path proba-
bilities defined above are unnormalized, since as will be shown below, the sum of the proba-
bilities for all piecewise linear paths linking x(a) =Xx, and x(b) =x, is not equal to 1. Also, we
cannot claim at this stage that the probability assignment (3.11) is consistent with the prob-
abilistic description given in Definition 2.1 for reciprocal or Markov diffusions constructed
from the operator L. The equivalence of these two descriptions is based on the following result.
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Theorem 3.1: The Green’s function G(x,a;x,b) specified by Eq. (2.7) can be expressed as
the path integral

Gxpaxpb) =lim | I dx(r) T Cuyexp—L,(m,dx.1). (3.12)
h-0 TeDy

teD,’,

If K(x,a;x,,b) denotes the expression appearing on the right-hand side of Eq. (3.12), we
see that it is obtained by summing the probabilities of all piecewise linear paths linking x, and
X, and then letting the lattice spacing 4 tend to zero. It is therefore a Feynman path integral,
except that the path probabilities are real, instead of being complex probability amplitudes.

Proof: Let £(.) be an arbitary function defined over R", and define

Fn < f K(xs,0) f(x)dx. (3.13)

To prove Theorem 3.1, we only need to show that f(y,r) satisfies the heat equation

Lf(y,t)=0, ¢>s (3.14)
with initial condition f(y,s) = fO).
From Eq. (3.13), we have
h h
f(y,t+§) = f Cu(t)exp(— Lh(m,z,t))f(x,t—i)dx, (3.15)

where z=y—x and m=(y+x)/2. Replacing the integral over x by an integral over z yields

h h
f(y,t+5) = f C,(t)exp{— Lh(y—z/Z,z,t))f(y—z,t—-Z—)dz, (3.16)

where we can expand all terms inside the integral in the vicinity of y and ¢. This gives

C;,(t)exp—L,,(y—z/2,z,t)=M,,(y,z,z)exp—E,,(y,z,t) (3.17)
with
Ey(yzt) = o EHA DN +47(y,0)h), (3.18a)
M ASON L 4 b 2 ik 4 0 4 0o
h(,V:Z,t)ZW[ +(§A(y,t) f(y,t)+¢(y,t)) +§W(y’t) 2"+ 0(2") + O(zh)

+0(h2)}, (3.18b)

where the exponent E,, is quadratic in z. For small z, we have also the approximation

h ar 13f 1 3*f
f(y~z,t—-2-) =f(yt) —3k (y,t)z"—gg nt)h +3 575 1) * 2 +0(2) +0(zh) + O(R?).
(3.19)
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Using standard identities for the first- and second-order moments of a Gaussian distribution,
and identifying the terms proportional to 4 on both sides of Eq. (3.16) yields
af A4, a4 p af ! 3 f
5 )= ( ¢+ — 3 ay,)(y, + (y,t)a,(y,t)+ 3 3oy 62

so that f(y,t) satisfies the heat equation (3.14). Furthermore, if we consider the generator

1), (3.20)

Gy(x,t—h/2:p,t+h/2)=Cy(t)exp— Ly(m,z,t), (3.21)

with m=(y+x)/2 and z=y—x, the expression (3.8) for L,(m,z) implies

lim Gy(x,59,5+h) =8(y—x), (3.22)
h-0
which ensures that f obeys the initial condition f(y,s) = f(y). ]

The generator G, (x,t—h/2:y,t+h/2) given by Eq. (3.21) is consistent with the short-time
asymptotic expansions of the transition density of Markov diffusions obtained in Ref. 24 for the
more general case of a space-dependent metric.

Theorem 3.1 and the preceding analysis yield the local short-time asymptotic expansion

G(x,53,5+h) =G, (x,505+h) [1+0(h?)] (3.23)
hl/z

for y—x=0(
rocal diffusions.

), which plays an essential role in characterizing the local behavior of recip-

IV. STOCHASTIC NEWTON LAW

In this section, we derive Newton's law of reciprocal diffusions. Our derivation is patterned
after that of Ref. 8, which used a short-time asymptotic expansion for the transition density of
Markov diffusions to approximate locally the three-point transition density of reciprocal dif-
fusions. The only difference is that we employ here the expansion (3.23) for G. By substituting
the short-time asymptotic expansion (3.23) inside the conditional density r{x(t—h),t
—hx(2),6x(t+h),t+h) of x(¢) given x(¢—h) and x(t+ h), with h small, we find it admits the
approximation

r(x(t+h),t+hx(t),t;x(t—h),t—h)=M exp— E (4.1)
with
E=L,(m dx ,t )+ Ly,(m_,dx_,t_), (4.2)
where
ty=txh/2, m =m(t+h/2;h), dx, =dx(t+h/2h), (4.3)

and M =M(x(t+h),x(¢t—h),th) is a constant independent of x(#). Our derivation of Newton’s
law relies on a local approximation of r (x(t+h),t+hx(2),6x(r—h ),t—h) for small A.
Consider the centered mean and centered first- and second-order differences

T(Hh) =Hx(t+h) +x(1—h)), (4.4a)

d'x(t;h) =Hx(t4+h) —x(t—h)), (4.4b)
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d’x(th) =x(t+h) +x(1—h) —2x(1), (4.4c)

so that
x(txh)=x(t,h) +d'x(sh), (4.52)
x(t)=x(t;h) —1d*x(t:h). (4.5b)

Then, the means m and differences dx + given by Eq. (4.3) can be expressed as
m, =x(th) + A xd'x(t;h) —3dPx(t;h)), (4.6a)

dx, =d'x(t;h) +3d*x(t;h). (4.6b)

Expanding m, in the vicinity of X(#;A) and ¢, in the vicinity of ¢ inside the discretized
Lagrangian L,(m ,,dx ,t,) and substituting inside E in (4.2) yields a local approximation of
rx(t+h),t+ h;x(2),6x(t—h),t—h), the conditional density of x(z) given x(z+h4) and x(¢
—h), for small A. In deriving this approximation, we employ the following rules.

(a) Since we are only interested in the local distribution of x(t), or more precisely
d*x(t;h), all the terms that do not contain d*x(t;h) can be ignored, since they can always be
absorbed inside the constant M of Eq. (4.1).

(b) To decide which terms to keep, and which ones to neglect in our expansions, we
assume that dlx(t;h) has size 4"/, which is the standard deviation of the increments of a
Markov diffusion. In approximating L, we neglect all terms proportional to O((d*x)?
X h32=P)) for p>1, and O((d*x) P VR1=P) for p>0, with p integer. The motivation for
selecting these orders of truncation is that we want to evaluate accurately all the moments of
the conditional density of dzx(t;h) given d'x(t;h) and X(%A) up to order I’

We obtain

1 1 do; . d*x\! | d*x\/
L,,(m+,dx+,t+):ﬂ a,j(t)-}-i—é—t— (t)h (d x+——) (d x+T)

2
_ 1d4; _ 4 d’x\’ 1d4; _ all 4 d*x\'
-+ A,-O‘J)-I-g@(x,t)( x—-z—) +§—8t—(x’t) ( x+—2—)
_ 19¢ 4 d*x\’ A a7
-~ ¢(X,t)+§a—x,-(X,t)( X_T)] , (4.7a)
l 130’,] dl dzx { dl dzx i
Lh(m*,dxﬁytk):‘zz [O'ij(t)—i—a‘t- (H)h ( X—T) ( x-—T)
_ 144, _ o, d’x\/ 104; _ Wl d*x\’
+ Ai(xJ)—iW(XJ)( x+—2—) —EE(X’” ( X—T)
_ 1d¢ _ . d’x\’
- ¢(X,t)—§5;,-(XJ)(d x+—2—) ]h. (4.7b)

This yields
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Uij(

E=bot—p

d’x dzx/+1 %% 4 (%,0)d%" d'x/ + a_¢+aﬁ (x,t)d’x'h, (4.8)
2\ ot i ' 3t ’ o
where the term E, does not contain d’x and

dn, =24 4.9
= (49)
denotes the exterior derivative of A4,

The expression (4.8) for E indicates that the three-point transition density rx(z+#4),t
+h;x(t),t;x(t—h),t—h) can be approximated locally by a Gaussian distribution for dzx(t -h).
The conditional mean of d*x(:4) given x(¢+h) is obtained by minimizing E with respect to
d*x'. Dividing both sides of the resulting expression by k%, and denoting by u/(£;h)
=d'x/(t;h)/h the empirical velocity, we obtain the stochastic Newton law

ai:Fi(fyu)t)'*'—O(hl/z)a (410)
where
d’x’  do;
a=E|o0;(1) - + (t)uf|x(t:th) X+uh (4.11)
is the mean acceleration in contravariant form, and
F, dA 9 aA" 3 4.12
A Xu,t) =dA;;(%,0)u! — (a ; at)(x,t) (4.12)

is the force applied to a particle with position X and empirical velocity u at time k. By analogy
with the Lorentz force law of electromagnetism, the first term in Eq. (4.12) can be viewed as
a magnetic force (because of the skew symmetry of d4,;, this force is orthogonal to the velocity
vector u'), and the second term as an electric force.

Since the coefficient of d*x’ d°x//2 in E is a;; (t)/ 2h, we can conclude that the conditional
covariance matrix of d? x(t;h) given x(t+h) is glven by

ijr

Eld>' d*x/ | x(t+h) =X +uh] =20"7(t)h+O(h>?). (4.13)

Note that the evaluation of the size of the error terms in (4.10) and (4.13) relies on the
assumption that d'x has size O(k'?). We have therefore proved the following result.

Theorem 4.1: If x(¢) is a reciprocal diffusion constructed from the triple
{4,(x,1),¢(x,1),q(xg,x7)}, it satisfies the stochastic Newton law (4.10)—(4.13).

An important aspect of Newton’s law is that it is noncausal, in the sense that it specifies the
conditional acceleration d’x(;4)/h® at time ¢ given the positions of the diffusing particle at
times —# and 4+ A, so that the knowledge of both past and future is necessary to specify the
motion at a fixed time. From a physical point of view, the local motion of a diffusing particle
is obtained by adding to the classical motion specified by the forces F,(x,u,t) some random
fluctuations, which according to (4.13) have a size proportional to 4'/2. The statistical prop-
erties of the random fluctuations are not yet well understood, except in the Gaussian case, for
which it was shown?® that the fluctuations are locally correlated in time, and such that the
correlation between two successive time increments depends on the forces acting on the dif-
fusing particle.
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It is worth noting that the stochastic Newton law derived here differs from the one pro-
posed by Nelson,’ since it relies on a different definition of the stochastic acceleration. Accord-
ing to Nelson, the stochastic acceleration of a Markov diffusion x(¢) is given by

ay()=3(D_D,+D, D )x(1), (4.14)

where D, and D_ denote the mean forward and backward derivatives corresponding to x(¢).
In flat space, for an arbitrary tensor T (x,t), these derivatives are defined as

1
D, T(e(n).)=lim ; E[T(x(t4h),i+h)—T(x(1).0)], (4.15a)
h-0
1
D_T(x(n).0)=lim ; E[T(x(1).0)=T(x(t—h),i—h)], (4.15b)
h-0

where E, denotes the conditional expectation given x(¢). To verify that definitions (4.11) and
(4.14) yield different values for the acceleration, let x(z) be a Markov diffusion with potentials
{4,¢}. Then, if b,, and b, _ are the forward and backward drifts given by Eqgs. (2.38b) and
(2.44b), respectively, and if we introduce the mean velocity

vi(x,t) =3(by (x,0) +b;_ (x,0)), (4.16)

Nelson’s version of Newton’s law takes the form

aNz(t) =FN[(x(t))U(x(t)1t)yt)) (4'17)
where the forces F, are obtained'' by replacing the potentials {4,¢} by
Ay=A;, (4.18a)

Apl/Z
N:¢+ pl/z (418b)

inside Eq. (4.12). Thus, in Nelson’s formulation the potentials used to contruct a Markov
diffusion do not match those appearing in the force term of its Newton law. Furthermore, the
correction term which is added to the scalar potential ¢ to obtain ¢, is nonlocal in the sense
that a change in the probability density p(x,¢) at one point in space instantaneously affects the
potentials at points far away from it. This instantaneous action at a distance is rather objec-
tionable since no such effect can exist in classical physics. In contrast, the version of Newton’s
law given in Theorem 4.1 is completely free of nonlocal effects.

As indicated in Sec. II, the potentials {4(x,#),4(x,)} corresponding to a reciprocal dif-
fusion x(¢) are only specified modulo a gauge transformation of the form (2.24a) and (2.24b).
Obviously, the choice of gauge does not affect the forces appearing in Newton’s law. In this
context, the concept of local reciprocal invariants introduced by Clark® can be formulated as
follows.

Definition 4.1: Two reciprocal diffusions in a space with metric 0;;(¢) are locally equivalent
if for identical positions x(¢+ 4) =X + uh, they are subjected to the same forces. Quantities that
are preserved under local equivalence are said to be local invariants. A set of local invariants
is complete if two diffusions with identical invariants are locally equivalent.

If two reciprocal diffusions with potentials {4,¢} and {4]¢'} are locally equivalent, we see
from (4.12) that, because the position x and velocity « are arbitrary, we must have
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dd;;=dA], (4.19a)
dp JdA; dp' 94, 4196
e T (4.19)
from which we can deduce that the potentials {4,¢} and {4;},¢'} must be related by a gauge
transformation. Thus, we have proved the following result, due to Clark.’

Theorem 4.2: Two reciprocal diffusions are locally equivalent if and only if their potentials
are related by a gauge transformation. Furthermore, the n{n+1)/2 quantities

dA (4.20)

d¢ 94,
2

constitute a complete set of local invariants.

Theorem 4.2 implies that if two reciprocal diffusions are locally equivalent, they have the
same three-point transition densities, but the end-point density g{xy,x;) may be different.
Thus, the class of equivalence of a given reciprocal diffusion contains the Markov diffusions
obtained by replacing g(xg,x;) by a factorable density of the form q(x0)qs(x7).

V. GIRSANOV TRANSFORMATION

Consider two reciprocal diffusions constructed from the triples {4;(x,1),¢(x,t),q(x¢,x7)}
and {4](x,1),¢'(x,1),q’ (xp,x7)}, defined over the interval [0,T1], in a space with metric o,(1).
When these two diffusions are discretized over the lattice D,={t=kh; k=0,..,N} with &
=T/N, the joint densities of the discretized processes can be approximated as

N—-1
g(xoxy) 11 Gh( Xl X iy 1ty 1)
k=0

P(x0,0;.. ;X gt sxp, T) = (1+0(h"?)), (5.1a)

N—1

P (x0,05 5 xp b X0, T) = | ¢ (X0,x ) kH GL(XptisXiy pte) [(1+0(AY))  (5.1b)
=0

with
G,,(x(t+h/2),t+h/2;x(t—h/2),t—h/2)=C,,(t)exp——L,,(m,dx,t), (5.2a)
G;,(x(t+h/2),t+h/2;x(t—h/2),t——h/?_):C;,(t)exp——L;,(m,dx,t), (5.2b)

where the arguments of m(sh) and dx(t;h) have been suppressed, and we have assumed

dx=0(h"?). But the preexponential factor C,(¢) depends only on the metric o; j» and is the

same for both processes. Consequently, the likelihood-ratio function for the two discretized
processes can be approximated as

WP (X005 s x s x, T) {9 (xoxn) / 172
A(xh):P(xo,O;..4;)ck,kh;...;,w:N,T) - ( qx0x ) [EHD’ exp(L,— Lj) (m,dx,t) )(1 +0(h77)),
g (5.3)
with
(Ly—L;) (m,dx,t) = (A—A) (m,0)dx‘— (¢ —¢') (m,0)h. (5.4)
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The likelihood-ratio function A( X;) can be interpreted as the ratio of the probabilities of a
piecewise linear path passing through the point x(z,), 0<k<N under the probability measures
P’ and P corresponding to {4 ¢'.q'} and {4,4,q}, respectively. Letting #—0 in Eq. (5.3), we
find that the likelihood-ratio, or Radon-Nikodym derivative of P’ with respect to P is given by

dP’  q'(xpx7)
A=P = qlagry) P OS(xnTx,0), (5.5)

where the action difference 85 is defined as

T _ T
55 (7, Tixo0) 2lim 3 (Ly— L]) (mdx.t) = f (A= A2) (x,8)dx'— f ($—8") (x,)dr,
0 0

’
h—0 D,

(5.6)

with the limit being taken in the mean-square sense. Both integrals in Eq. (5.6) concern a
sample path x(¢) linking (x0,0) and (xp,T). The first integral is defined in the sense of
Stratonovich, whereas the second integral is a standard Riemann integral. Note that A is well
defined only if the end-point density g'(xg,x7) is absolutely continuous with respect to
9(xg,x1). By analogy with the interpretation for discretized paths, A can be viewed as the ratio
of the probabilities of a path x(¢) under P’ and P. Although a given path has zero probability
under each of these measures, the ratio (5.5) is well defined. Thus, we have proved the
following generalization of the Girsanov transformation of Markov diffusions.

Theorem 5.1: The likelihood ratio function A of two reciprocal diffusions {4/,4',¢’} and
{4,4.q9}, where ¢’ is absolutely continuous with respect to q is given by Egs. (5.5) and (5.6).

For the case of Markov diffusions, we have

9" (xox7) =q7(x0)qy(x7),  qxg,x7) =q7(x0)gp(x7). (5.7)

Furthermore, by an appropriate choice of gauge transformations, these two diffusions can be
represented entirely in terms of forward propagating information waves, i.e.,

gr(x,t)=p'(x,t), gj(x,t)=1, (5.8a)

gr(x,0)=p(x,t), gyx,t)=1, (5.8b)

where the two Markov diffusions satisfy forward stochastic differential equations with drifts
b (x,t) and b'(x,1), respectively. By making the identification [see Eq. (2.14)]

Aj=—b, ¢'=-3(b"b/+VD]), (5.9a)
Ai:‘ —bb ¢: ‘—%(blb,-{'— Vib,‘), (5.9b)
it is easy to verify that Egs. (5.5) and (5.6) reduce to

"(x5,0)
A—P( )

= 5 (x00) exp 85 (x1,7;x,,0) (5.10)
(¢33

with

T 1 T . . . :
ST = [ (6 =b)(xax'~ [ 1w+ 87— b4 9
0 0
(5.11)
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which is the standard expression for the Girsanov transformation of Markov diffusions.

Note that the expressions (5.5) and (5.6) for the Girsanov transformation of reciprocal
diffusions are simpler than the expression obtained by Clark,” which required a double integral.
However, Clark’s integral was expressed entirely in terms of local reciprocal invariants,
whereas the path integral appearing in the expression (5.6) for 8S(x7,T;x,0) is not gauge
invariant. Specifically, if we consider the gauge transformation

~ J
A(x,t)=A4;(x,1) —a—;(,- (x,0), (5.12a)

~ dy
¢(x,1) = (x,0) + 5 (x0), (5.12b)

we have the path integral transformation rule

T - T T _ T
fAidx‘-—f ¢dt=(f Aidx‘—f ¢dt)—(x(xT,T)—X(x0,O)). (5.13)
0] 0 0 0

The value of the integral is changed by the quantity y(xp,T) —y(x0,0) which is path inde-
pendent, and depends only on the end points of the path. However, according to Eq. (2.23b),
under the gauge transformation (5.12), the end-point density is transformed according to the
rule

a(xo,xr) :eXP(X(xT,T) ""X(XO’O))q(xO’xT)y (5 14)

which removes the additional term introduced by Eq. (5.13). Thus, the likelihood-ratio func-
tion A is gauge invariant.

VI. VELOCITY DISTRIBUTION

The Newton law (4.10)=(4.13) captures the local structure of the conditional density of
x(t) given x(t—h) and x{t4-h), or equivalently, given x{£;4) and dlx(t;h), for small A. To
obtain a full probabilistic description of x(¢), we must also characterize the joint density of
x(t—h) and x(¢+h) for small 4. This will be accomplished by finding a local approximation
of the conditional density of d'x(z;h) given the mean position X(#k). Specifically, it will be
shown that this conditional density is approximately Gaussian, and when expressed in terms of
the empirical velocity u(#;h) =d'x(;h)/h, it can be viewed as specifying a velocity distribution,
which except for the fact it applies to a diffusion, is reminiscent of the Maxwell velocity
distribution for a dilute gas locally in thermal equilibrium.

Let p(x,t—h;y,t+h) be the joint probability density of x(t—#4) and x(¢+h). By taking
into account the expression (2.31) relating the two-point density to the Green’s function G,
and the short-time asymptotic expansion (3.23), we find it admits the local approximation

plx,t—hip,t+h) =q(x,t— hiy,t+ ) Cop(£)exp— Lyy(%,2d'x,1) + O(hY?), (6.1)

with x=(x+y)/2, d'x=(y—x)/2, where it is assumed that d'x=0(h"?). Let
6(x,5:0,8) 21n q(x,50,8). (6.2)
Expanding y=X+d'x and x=% —d'x in the vicinity of X, and ¢+ 4 in the vicinity of ¢, inside

6(y,t —h;x,t+h) yields
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Ot —hip,t+h) =0(%,63,1) + 2w (X,0)d"x'+ 27, (X,0)d'x + O(K*?), (6.3)
with
1736 96
w,-()?,t);f‘:i (a—y,—g) (x,5,x,1), (6.4a)
1f/a 4 a 4
Tr,-,-(i,t)éz [(a—y,—@) (a_yi_ﬁ)g (x,6,%,1). (6.4b)
Noting that p(x,t) =g(x,5x,t), this gives the approximation
q(x,t—hpt+h) = p(X,0)expQwd'x + 2m;d'x" d'x’) + O(h?). (6.5)
In the Markov case, by observing that
q(x,50,0) =g 7(x,5)qp(1,1), (6.6)

where g (x,t) and g,(x,t) are given by Eqgs. (2.35a) and (2.35b), we obtain
O(x,5:0,t) =6 p(x,5) + 0,(y,1) (6.7)
with

Gf(x,t)zln qf(x,t), Bb(x,t)zln qb(x,t). (68)

In this case, the expressions (6.4a) and (6.4b) reduce to

( )—1 (Viln gu(x,1) —V;1 (x,0))=V;1 a(x,0)\ " (6.9)
(X)) =5V, H)—=V; 1))=V; ) .
w;i(x 5 n g,(x nq(x n(qf(x,t))

7 x,1) :}V,—Vj(ln q(x,t)+In qb(x,t)):}V,-V/- In p(x,t). (6.10)

This shows that in the Markov case, w'(x,f) is a gradient function, and the tensor mii(x,t) is
proportional to the Hessian of the log density In plx,t).
From Eq. (3.8), we also see that

Lyn(%2d'x,t) = 0,;(1)d'x' d'x//h—24(%,1)d'x' +- O (h). (6.11)

We are now ready to find an approximation of the joint density plx,t—hyt+h) of x(t—h)
and x(¢+h) for small h. However, instead of approximating p(x,t—hp,t+h), it is more
convenient to approximate the joint density p(x,d'x,zh) of x( t;h) and the difference d'x(£;h).
Noting that the Jacobian of the transformation from x(t—h), x(t+h) to X(t;h) and d'x(;h)
is 2, and substituting approximations (6.5) and (6.11) inside (6.1) yields

y g2y
p(xd x’t;h):2”p(y,t-h;X,t+h):P(xvt) (mh)""?
X exp ‘(%"—me)d‘xid‘xf'+2(w,~—A,-)d1x" (1+0(m). (e.12)

From Eq. (6.12), we see that for small 4 the density p(x,t;h) of X(t;h) admits the approx-
imation
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p(E th) = p(F0) +O(h). (6.13)

Also, the conditional density of d Lx(£;h) given X(t;h) can be approximated locally by a Gauss-
ian distribution with mean

E[d'x'(t;h) | X(:h) =X] —vi(x%,0)h+O(h?), (6.14)
where the mean velocity is given by
Vi(x,t) & — AT t) +w'(x0). (6.15)
The conditional covariance of d'x(t;h) is obtained by inverting the tensor
}’ij=(2/h)(01j(t)—Zﬂij(x,t)h)- (6.16)
This gives

E[(d'x— v (x,) AN X — v (x,0) B | X (1) =X] —I(t) (h/2) + 7 (Z DR +o(h).
(6.17)

The above result specifies an approximation for the joint probability density f,(X,u,t) of
the mean position X( t;h) and empirical velocity u(z;h) =d'x(t;h)/h of a reciprocal diffusion.
Specifically, we have

172
K ) : iy iy 6.18
fh(x’u’t) :p(‘x’t) (217.)n/2 exXp —_E Kij,h(x’t)(u —V (x9t))(u - (X,Z)) ( . )

with

7]

-, t .
Kl (x,t)= )+17”(x,t), (6.19a)

iy (x,£) =det K 4(X,0)- (6.19b)

Thus, the distribution of the velocity u(t;h) given the position X(£h) 18 approximately Gauss-
ian. Locally in space, it is similar to the Maxwell velocity distribution for a gas in thermal
equilibrium. However, one important difference with the Maxwell distribution is that the
Maxwell distribution applies to dilute gases, whereas a diffusing particle is subjected to a very
large number of collisions with its background bath per unit time, which is reflected by the fact
that the leading term of the covariance K (x,) is proportional to 1/A. The correction term
7/ (x,t), which is the dominant term for dilute gases, is the stress tensor of the velocity
distribution. In the following, we shall exploit the fact that the density f,{x.u,t) is completely
parametrized by n(n+ 1)/2+n+ 1 functions: the density p(x,t), mean velocity vector v(x,t)
and stress tensor w7 (x,t). We have therefore proved the following result.

Theorem 6.1: If x(¢) is a reciprocal diffusion, for small A, the joint probability density
fulx,u,t) of the mean position x(t;h) and velocity u(t;h) has the form (6.18) and (6.19).

In Refs. 7 and 8, the identities (6.14) and (6.17) were introduced in the form of postulates,
which in combination with Newton’s law, were used to define reciprocal diffusions. Together
with Newton’s law, these identities can be viewed as an extension to reciprocal diffusions of the
postulates

E[d*x'(th) |x()=x] =Bt (x,0)h+o(h), (6.20a)
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E[d*x'(h)d* X (k) | x(t) =x] = 0" (x,0) h+0(h), (6.20b)

where d* x(t;4) =x(t+h) —x(¢) denotes the forward increment of the process x(¢), that were
employed by Feller”® to formulate Markov diffusions. One advantage of deriving the velocity
distribution, as was done here, instead of introducing it as a postulate, is that we have been able
to obtain explicit relations for the mean velocity v,(x,t) and stress tensor Tr,-j(x,t) in terms of
the covector potential A,(x,t) and end-point density q(x,5:y,1). These algebraic relations will be
used below in our discussion of the conservation laws of reciprocal diffusions.

VH. CONSERVATION LAWS

For small 4, the joint density f(x,u,t) of the position and velocity of a reciprocal diffusion
is completely parametrized by the density p(x,t), mean velocity vector v'(x,z) and stress tensor
7 (x,t). To propagate f,(x,u,t) in time, we would need to find a closed set of evolution
equations for p, v’ and 7. In this section, two conservation laws are derived for the density p
and momentum density pv', where the second of these equations depends on /. These equa-
tions are not sufficient for propagating f| #(x,u,t), since in order to close this system of equa-
tions, we would need either a third conservation law or an algebraic relation expressing 7/ in
terms of p and v’ only.

To derive the conservation laws, we consider two test functions f(x,t) and gx&1)
:gk (x,2)§,, where fand the coefficients functions gk are of class C*. Then, if x,(¢) denotes a
piecewise linear trajectory passing through the points x(#;) with 7, €D, and satisfying Eq. (3.4)
over each trajectory segment, we consider the functions

Fu() = fx(1),2), (7.1a)
8r(0) =M, (0), 0% (1), (7.1b)

For a point 1€Dj, their centered differences are given by
dfu(t) = frlt+h/2) — f1(t—h/2), (7.2a)

dg, (1) =gy (t+h/2) —g,(t—h/2). (7.2b)

Taking into account the approximation (3.5) for the contravariant form of velocity over each
trajectory segment, and expanding x,(t+4/2) and t+4/2 in the vicinity of X and ¢, respec-
tively, inside f,(r+h/2) and g,(t+h/2), we obtain

df (t)——*af (%,0)d'x/ a—f(_t)h (,h) (7.3)
h —axj X, X +6t X, +e€ltn), -
1 . 80'1(- . agk . 1 .
I = I 200 B At B | o s Lj glok  — n2j 2 k
dgh(z)hh gf‘(x,z)(akjdx + EP d'x )+3x1 (x,t)(dx dx 4dx d°x )
g* .
+*§ (X,t) 0y d'x/ h +7(4,h), (7.4)
where the error terms satisfy
Ele(t,h)|X]=0(H*), E[n(t,h)|X]=0(h*). (7.5)

J. Math. Phys., Vol. 34, No. 5, May 1993



1870 B. C. Levy and A. J. Krener: Reciprocal diffusions

Next, we condition d f,(¢) and dg,(¢) with respect to X(¢;4) and use the fact that the joint
conditional density of dzx(t;h) and d lx(t;h) given X(t;4) takes locally the form of a Gaussian
distribution, whose first- and second-order moments can be computed from Newton’s law and
the velocity distribution obtained in Sec. VI. This gives

E[df4(1) |X=x]=Af(x,0)h+O(K), (7.6)
Eldg,(1) | x=x] =Bg(x,))h+O(h*), (7.7)

where the differential operators A and B are defined by

. af
Af(x,r)=(va,-f+—a7)(x,t), (7.8)

. 0,
Bg(x,1) = Fy(x,v(x,1),08°(x,0) + PV /g (x,1) + vy —g (x,0), (7.9)

and the flux of momentum tensor ij(x,t) is given by
P (x,t) = (m j+vve) (X,2). (7.10)

Since the test functions f(x,t) and g,(x,t) depend arbitarily on x and ¢, we can assume

f(x’o)zf(va) =O’ (7113,)
81(x,0) =g (x,T) =0, (7.11b)
so that
0= 2 dfu(t)= 2 E[df,(D], (7.12a)
teDy, teDy
0= dg()= Y Eldg,(]. (7.12b)
teDy teDy

To evaluate the expected values of df,(¢) and dg,(¢), we can first condition them with respect
to x(;h) and then take the expectation of the resulting expression. For example,

Eldfi (1) ]=E[E[df,(2) |X]]. (7.13)

This amounts to integrating expressions (7.6) and (7.7) against the probability density
p(xth) = p(X,t) +O(h) of x(t;h).

We find
0=| 2 h| (AN)p(x.0)dx|+O(h), (7.14a)
IEDh
0=| X k| (Bg)p(x,t)dx|+O0(h). (7.14b)

tehDy

Letting A —0, the sums over ¢ can be replaced by time integrals, which can be integrated by
parts, so that
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osz (Af) p(x,t)dx dt:ff S(A*p) (x,0)dx dt, (7.15a)

O:ff (Bg) p(x,t)dx a’t:ffg(B*p)(x,t)dx dt, (7.15b)

where A* and B* denote the dual operators of A and B, respectively. Since the test functions
S(x,1) and g, (x,¢t) are arbitary, we can conclude that the two conservation laws

dp .
O:A*p:—(E—f—Vj(pUj)), (7.16)
ad )
0=B*P=ka(x,v,t)—a—l (pv) —V/(pPy) (7.17)

hold weakly. The identity (7.16) represents the conservation of mass, which is also called the
equation of continuity. Similarly, the equation (7.17) represents the conservation of mean
momentum, since for a small volume element, it equates the forces acting on the element times
its mass to the time rate of change of the mean momentum plus the flux of momentum flowing
outward across the surface of the element. Note also that, since we are considering a fixed
element of volume, the conservation laws are expressed here in Eulerian form.

It is worth observing at this point that the above two conservation laws are actually part
of an infinite chain of such laws, which can be obtained as follows. Consider the function
q(x,5;p,t) obtained by setting s=1 in the end-point density function ¢(x,s;,¢), i.e., by letting the
interval [s,7] shrink to zero. The evolution equations (2.21a) and (2.21b) imply that g(x,zp,f)
satisfies

dg
E’ (x9t;y5t):(Hy,l—H:t)q(xst;yyt) (7‘18)
Next, if we define

OQimzty2q(m—z/2,t;m+z/2.1), (7.19)

by performing a Taylor series expansion of Q(m,z,) in the vicinity of z=0, and taking into
account the definitions (6.4a) and (6.4b) of w; and T;j, We obtain

. 2z Z'2i7*
Q(m,z,t) =p(m,t) | 1+w(m,) 2 + (m;;+ww;) (m,1) =+ Tir(me)

+ .. n]
(7.20)

Performing the change of coordinates x=m —z/2, y=m+2z/2 inside Eq. (7.18), and identi-
fying the successive powers of 5 on both sides of Eq. (7.18) yields the desired chain of
conservation laws. This chain does not close, since the conservation law for each coefficient of
Eq. (7.20) contains a divergence term involving the next higher order tensor in the expansion.
One exception is the Gaussian case, where because In Q(m,z,t) is quadratic in m and z, the
chain closes after the third law, which is given in Ref. 7. However, for non-Gaussian reciprocal
diffusions, the conservation laws beyond the first two take a complicated form and are hard to
interpret physically.
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ViIl. CLOSURE RULES

In this section we consider two closure rules which provide a mechanism for closing the
conservation laws of reciprocal diffusions after the first two laws. The two closure rules require
that the functions w,(x,t) and m;;(x,t) given by Egs. (6.4a) and (6.4b) should satisfy

wi(x,) =V,S(x,1), (8.1a)

€
le(x,t):Z V,V] ln p(x,t), (8.lb)

where §(x,t) is an arbitrary function, and e= =+ 1.
As can be seen from Eq. (6.10), the case e=1 corresponds to the subclass of Markov
diffusions. In this case, according to Eq. (6.9), we have

)\ 12
qp(x )) , (8.2)

S0 :m(qf(x,t)

and the two conservation laws (7.16) and (7.17) for p and pu, are equivalent to the forward
and backward evolution equations (2.35a) and (2.35b) for ¢ r and g, On the other hand the
case €= — 1 specifies what we shall call the class of quantum diffusions, since in this case, the
reciprocal conservation laws are equivalent to Schrodinger’s equation.

To prove this, it is convenient to rewrite the conservation laws (7.16) and (7.17) in
Lagrangian form as

‘Z_ft’ VI, 0,V =, (8.3a)
duy, ) .
P 5, + POV 0+ VI () — pF =0, (8.3b)
Then if we denote
R(x,t)21In p"?(x,1), (8.4)

by substituting the closure rules (8.1a) and (8.1b) inside Egs. (8.3a) and (8.3b), we obtain

oR ViS—4/ 85 1y 0 8.5
737+( - )VjR+T—§VAj— \ (8.5)
Vil (x,t)=0, (8.6a)
with
as 1 ) ) €
I(x,t)é—ﬁ—i (VfS—Af)(VjS—Aj) +¢+§ (V/SV,S+AR). (8.6b)

Provided that I(x,.) =0 at one point in space, the relation (8.6a) implies
I(x,r)=0. (8.7)

In the Markov case, i.e., when e=1, if we introduce the two functions

J. Math. Phys., Vol. 34, No. 5, May 1993



B. C. Levy and A. J. Krener: Reciprocal diffusions 1873

qr(x,0) =exp(R—S8)(x,1), qp(x,t) =exp(R+S)(x,1), (8.8)

it is easy to verify that Eqs. (8.5) and (8.7) are equivalent to the forward and backward
evolution equations (2.35a) and (2.35b) for g5 and g,
In the quantum case, i.e., with e= — I, if we introduce the wave function

Y(x,t) =exp(R(x,t) +iS(x,1)), (8.9)

the identities (8.5) and (8.7) correspond, respectively, to the real and imaginary parts of the
Schrodinger equation

d
15,9000 =Hgi(x,0), (8.10)
where we have set Planck’s constant #=1, and

Ho={—iV/ — 4/ (x, ) (— iV ;— 4,;(x,1)) + ¢ (x,1) (8.11)

is the quantum Hamiltonian operator obtained by applying the correspondence principle
pj <> —iV; to the Hamiltonian H(x,p,r). Note that the wave function ¥(x,t) is consistent with
the quantum diffusion x(¢) used to construct it, since

p(x,0)=|¢(x,)|% (8.12)

At this stage, the correspondence between quantum diffusions and quantum mechanical pro-
cesses is purely formal, since we have not yet shown how to select an end-point density
q(xg,x7) such that the two closure rules (8.1a) and (8.1b) are satisfied with €= — 1. This topic
will be examined in Ref. 14, where a complete formulation of stochastic mechanics based on
quantum diffusions is presented.

Finally, observe that the closure rule (8.1a) is just a requirement that w,(x,?) should be a
gradient function. But it is easy to verify that the momentum conservation law implies that if
w; is a gradient at r==0, it remains a gradient for all times. Thus, the only truly constraining
closure rule is (8.1b).

IX. CONCLUSIONS

In this paper we have obtained a complete characterization of the dynamics and kinematics
of reciprocal diffusions. This was accomplished by employing a “stochastic quantization”
procedure, where the Hamiltonian of a dynamical system was used to specify a generalized heat
operator, which in turn yielded the finite joint densities of a family of reciprocal processes,
where each member in the family differs from another one only by the end-point probability
density g(xp,x7) assigned to it. A path integral representation of the heat operator Green'’s
function was obtained, which was then used to derive a stochastic Newton law and a distri-
bution for the velocity of diffusing particles. These results were employed to derive conserva-
tion of mass and momentum laws which are closed for the subclasses of Markov and quantum
diffusions. N

The class of quantum diffusions is studied in further detail in Ref. 14, where it is used to
develop a new version of stochastic mechanics which is free of several of the inconsistencies
with quantum mechanics affecting Nelson’s theory, which was based on Markov diffusions.

The results presented here are still incomplete in several respects. One issue that needs
further examination concerns the extension of the above results to curved space, i.e., to the case
when the metric o;; depends on both space and time. This will require finding a more general
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stochastic quantization rule, and obtaining a path integral representation of G in curved space.
Both issues are fraught with pitfalls, but they have been worked out in quantum mechanics.

Another element missing from the above study of reciprocal diffusions is a description in
terms of stochastic differential equations. Since the stochastic Newton law is expressed in terms
of second-order differences of the diffusion process x(7), it seems natural to interpret it as a
second-order stochastic differential equation, as was done for the Gaussian case in Ref. 25.
However, one feature that makes the development of such a theory difficult is that, as shown
in Ref. 25 in the Gaussian case, the driving noise for the second-order differential equation is
locally correlated, with a correlation depending on the forces acting on the system.
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