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Necessary and Sufficient Conditions for
Nonlinear Worst Case (Hs) Control and
Estimation*

A. J. Krenert

Abstract

We present necessary and sufficient conditions for the existence
of worst case controllers and estimators for nonlinear systems. These

particular, we give necessary and sufficient conditions for the solv-
ability of a standard He suboptimal control problem by measure-
ment feedback that involve the solvability of a pair of partial dif-
ferential equations of the Hamilton-Jacobj type. The first is the
one associated with the problem of H,, suboptimal control by state
feedback that has appeared Previously in the work of several authors.
The second is a new Hamilton-Jacobi equation associated with H,
suboptimal estimation.
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1 Introduction

Over the past decade, two of the most active areas of system theory have
been linear H., contro] and nonlinear control. Recently several groups
of authors including van der Schaft [14], (15], Basar-Bernhard (2], Ball-
Helton-Walker (1], Isidori-Astolfi [6] and James-Baras-Elliott (8], [9] have
addressed the nonlinear H, control problem and made significant progress.
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This paper builds on their work and presents new necessary and suffi-
cient conditions for the solvability of the nonlinear Hy, control problem by
measurement feedback (Theorem 2.1).

The linear H,, control problem in state space form is known to be equiv-
alent to the solvability of a pair of Riccati inequalities either in uncoupled
form with a compatibility condition [3] or in coupled form [13]. The non-
linear generalization of the first of the Riccati inequalities is an integral
dissipation inequality in the sense of Willems [17]. Assuming differentia-
bility, this reduces to a Hamilton-Jacobi partial differential inequality [14],
[6], [2], [1]. Several different nonlinear generalizations of the second Riccati
inequality have been proposed, including a linear-quadratic approximation
[6] and a partial differential inequality [2], [15] which generalizes the second
Riccati inequality of [3]. In this paper, we present a new generalization of
the second Riccati inequality in the coupled form of Tadmor [13]. It is a
conditional integral dissipation inequality for a nonlinear estimator. It is
called conditional because it is conditioned on the measurements. Along
with a solution of the first Hamilton-Jacobi PDE, it yields necessary and
sufficient conditions for H,, suboptimal control (Theorem 2.4). Under cer-
tain assumptions, the conditional integral dissipation inequality becomes a
partial differential inequality of Hamilton-Jacobi type and the solvability
of this and the first Hamilton-Jacobi inequality lead to sufficient conditions
for Heo suboptimal control (Theorem 2.5).

The rest of the paper is organized as follows. In Section 2 we present
five theorems which give necessary and sufficient conditions for nonlinear
H® control of a standard system. Two of these are well-known, theorems
2.2 and 2.3, and three are new. In Section 3, we specialize these theorems to
linear systems. In Section 4, we treat various generalizations and extensions

of these theorems. Section 5 concludes the paper and discusses future
directions of research.

2 A Standard Worst Case Control Problem

Consider a nonlinear time varying system of the form

T= a{z,t) + b(z,t)u+ g (z,t)w (2.1)
y=c(z,t)+v (2.2)

2= { h(z‘” } (2.3)

z (tg) = £°. (2.4)

The input u (¢) is a control while the inputs w(t) and v (¢) are noises. The
output y (t) is measurable and the other output z (1) is to be regulated, i.e.,
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kept close to zero. The goal i+ to design a compensator which processes the
past measurements, y (1), t, < 7 < ¢, and the estimate Z° of the initial
state, 2%, to obtain a control action, u (t). The compensator is chosen to
minimize the worst case effect of the initial state, 2%, driving noise, w (t)
and observation noise, v (), on the regulated output, 2 (t), in an L? sense.
Notice that z (t) contains the control, u (t), and this discourages the use of
large control actions.

More precisely, assume that 0, 7° = 20 —Z°% w (t) and v (t) are bounded
in the standard L? norm, e.g.

2 2 tr 2 2
0 + 2] +/ fw (&) dt + v (1) 2 dt < 1. (2.5)
to

We seek a compensator that infimizes the supremum of

/t "l at (2.6)

over all t; > ¢y and all z°,3° w (t), v (¢) satisfying (2.5).

The problem as stated is in a standard form, later in Section 4, we shall
discuss various generalizations. The standard problem is not easy to solve
even if the system is linear. The usual approach is to seek a suboptimal

compensator. Given ay > 0, we seek compensator such that for all ¢; > ¢,
and all z°,2% w(t), and v (¢)

b 2 2 2 2 b 2 2
/ |z (&)]* dt < v [|x°| + [7° +/ lw ()| dt + v (t)*dt|. (2.7)
to to

A compensator which satisfies (2.7) is said to achieve an L2 gain less than
or equal to v. By iteration on 7, one hopes to converge to an optimal
compensator.

We have not specified the form of the compensator except to require
that it be a causal mapping

[y?”(i)]r—-»u(t), to<T<t (2.8)

from the initial state estimate z° and the past observations, y (t), to the
current control, u (t). More precisely, for each 7° and y (t) there is a u (t)
with the following property. If 7% y (t) and z° % (t) lead to controls u (t)
and %(t) respectively and y (1) = Y (7) for tog < 7 < t then (1) = T (7)
fortg <7 <t.

Theorem 2.1 A compensator (2.8) achieves an L2 gain < vy iff there ezists
a causal mapping

I’\O [ ¥
[y(T)J‘_’S(%t), ty<T <t (2.9)
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such that for all ty < t, <t, and all 20, 71

S @) < T (120 + 7P (2.10)
S(z',t1) >0 (2.11)

t2 .2 2
Seo.oi< [(H O] Leora @

Remarks:

(i) S (z,1) is causal in the same sense as % (t); for each z° and y (1) there
exists S (z,t). If 2% y (r) and 2%,5(7) lead to S(z,t) and S (z,t) respec-

tively and y (1) =9 (7) for to < 7 < ¢ then S(z,7) = S (z,7) for all z and
for t() S T S t.

(if) We have not made precise the spaces where z, u, w,v,¥, Z live, for con-
venience, we assume that they are Euclidean spaces of varying dimensions.
The inequality (2.12) should hold along any trajectory of the closed loop
system. If the actual inputs are known to be bounded as in (2.5) then S

need only be defined and satisfy (2.10 to 2.12) where such trajectories are
possible.

(iii) The proof of this theorem is similar to those found in Willems [17],
where functions such as S(z,t) are called storage functions. Because
S (z,t) depends on the initial estimate and past observations we call it
a conditional storage function. In a loose sense, S (z,t) measures the
“energy” stored in the closed loop system when z(t) = z assuming the
initial estimate Z° and observation y (7). The initial “energy” S (z°, to) is
bounded above by (2.10). The integrand on the right side of (2.12) is called
the supply rate and can be thought of as the net “power” supplied to the
system. The noises, w (t) and v (t), supply “power” to the system and the
regulated output, z (t), extracts “power” from the system. The inequality
(2.12) is called the integral dissipation inequality and postulates that the
system always dissipates “energy”.

(iv) James-Baras-Elliott 8] and James-Baras [9] have introduced the con-
cept of the information state which is closely relaed to the concept of a
conditional storage function. The conditional storage function defined by
(2.13) below is essentially the negative of their information state. In 9
they give a similar result for discrete time systems.

Proof: Suppose a compensator (2.8) and a conditional supply function

(2.9) satisfy (2.10-2.12) for the closed loop system, then by (2.12) for any
ty 2 to and 2°,2% w (t) v (1)

ty 2ty
Stler) )+ [ FOF <SG ) )+ [P o ar
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Using (2.10, 2.11) this implies (2.7).

On the other hand suppose (2.7) holds for all ty >ty and 0,29 w (t),
v (t) for the closed loop system with compensator (2.8). For each z°
y(r),

to <7 <t we define the conditional required supply

s@mg:mﬁggﬁf+mﬁ)

+Af§0wmﬁﬂwmﬂ—§umfﬂ RNCREY

where the infimum is over all 2% w(t),v

tions, y (), and such that (t1) = z!. Cle
ity and (2.11) fol

(t) consistent with the observa-

arly S satisfies (2.10) with equal-
lows from (2.7). To verify

(2.12) suppose ty < ty < ¢,
then )
S = e [T (= + o)
t2 2
'+A)%0wwﬁﬂumﬁ—§4m%4
< inf

2(t)=z1 [7; ('Ilo + ,50'2) + /ttl 772 (,w(t)|2 + lv(t)lz) - % |z ()% dt

z(ty)=x2

Q.ED.

ght variations of those found in Willems
van der Schaft [14] and Isidori-Astolfi [6]. We

e with no observation noise and

The next two theorems are slj

eves an L? gain < +, i.e., for all
ty >ty and all 2% w (t)
ts 2 2 tr 2
/ 2 ()2 dt < 2 (|z°| +/ w (£)] dt) ‘ (2.14)
to to
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Theorem 2.2 The state feedback v = k(z,t) achieves an L? gain < ~ 1

the sense of (2.14) iff there exists a storage function P (z,t) such that for
allto <t; <ty and all 2°,

P (% 1t) < % |2°|” (2.15)
P(z',t;) >0 (2.16)
tz .2
Pe@.ili< [ TwoP-Ll@le @

Remarks: Notice that P (z,t) does not depend on z° or y (7). The proof

is omitted as it is essentially the same as Theorem 2.1. In particular, one
such P (z,t) is defined by
Y

P (z',t;) = inf [772 |x°'2+/ = w (t)? —%lz(t)[zdt (2.18)

ty .2

where the infimum is over all z° and w(t) such that z(¢t;) = z!. This
particularly P (z,t) is called the required supply by Willems [17]. In most
other treatments of nonlinear F control, a different storage function,
called the available storage, is used instead. However the required supply.
Seems more natural as it satisfies an initial condition (2.15 with equality).

The available storage satisfies a terminal condition and therefore requires
a fixed terminal time.

Theorem 2.3 Suppose P(z,t) is C* and satisfies (2.15, 2.16) and (2.19)

1 1 1 .
1Dt~|-Pz¢z+§Pz <?gg —bb’) P, +§|h| <0 (2.19)
then the state feedback

u=k(z,t) = -t/ (z,t) Pl (z,t) (2.20)

achieves L? gain < . The “worst case” driving noise is

w=d(z,t)= nfi?g' (z,t) P (z,t). (2.21)

Proof: If P satisfies (2.19) then adding
2
1
*%lw—d]2+§|u~k|2
to both sides yields
P+ Py (a + bu + gu)
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2 2

04 2 1o 1 5, 4 2 1 2
< glwl =S - P - L gy Ly 2.2
Sl g g - T ar i L ke (o)

Therefore if u (t) = k(z(t),t) then P (z(t),t) satisfies the integral
dissipation inequality (2.17) and the result follows from Theorem 2.1.
Q.E.D.
Remarks:

(i) The equivalent partia) differential inequalities (2.22) and (2.19) are

called the differential dissipation inequality and the Hamilton-Jacobi-Issacs
partial differential inequality.

(ii) If P (z,t) is called a C! function satisfying (2.15) and (2;19) both with

equality then P (:vl, t1) is the value function of the differential game whose
payoff is

2 1 2
. Y02 Y 2 1 2
f | = —lw@®)|" - =
sup fnf [2 |=°| +/to g W OF =3 1z@)] dt}
’ 2 ty 2
- i 171500 @ - Loz
_Iol,rtbf(t)sip [2 |z | +/t0 5 Jw (¢)] 5 [z (t)) dtJ. (2.23)

The value of the game given that (t1) =21 is P (22, t1) and the saddle
point solution is u(t),w(t) given by (2.20, 2.21). The saddle point initial
condition z° is obtained by integrating the closed loop system backwards
in time from z (¢;) = z!. For more details, see Basar-Bernhard (2]. The
next theorem is a reformulation of necessary and sufficient conditions of

Theorem 2.1 given that the differential game (2.23) admits a saddle point
solution with smooth value function.

Theorem 2.4 Suppose there ezists o smooth P (z,t) satisfying (2.15) and
(2.19) both with equality and let k (z, ) 1d(z,t) be defined by (2.20,2.21).

A measurement feedback compensator (2.8) achieves an I,2 gain <« iff
there ezists a causal mapping

70
’ — Q(z,t) <1<t (2.24)

y(7)

such that for ty < t; < t, and all z0 x!,
2
Q (% 10) < % z°|° (2.25)
P(z,t1) +Q (s%t1) > 0 (2.26)
ty .2 2 1
Q@S [T Tw-a+ L Dusipa o
L 2 2 2
forallty <t, <ty and 2% w (t),v(t) consistent with y (¢).
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(Note P (z,t) need not satisfy (2.16).)

Proof: Since P (z,1) satisfies (2.15) with equality, it satisfies (2.22) with
equality and therefore for any z°, w (t),u(t)

P(z(t), 0

t2 .2 2
v 2 1.2 1 o 9 2 1 2
= | Tl - o - i - L —dP + S k2dr (298
/tx 2|w| 2l| 2|u| 2|w |+2l“ | (2.28)

In particular (2.28) holds for u (t) given by the compensator (2.8).
If there exists Q (z,t) satisfying (2.25, 2.26, 2.27) then it is straightfor-

ward to verify that S (z,t) = P(x,t) + Q (z,t) satisfies (2.10, 2.11, 2.12)
and so (2.7) follows from Theorem 2.1.

On the other hand if (2.7) holds then, by Theorem 2.1, there exists
S (z,t) satisfying (2.10, 2.11, 2.12). Define Q(z,t) = S(z,t) — P(x,t)
then (2.25, 2.26, 2.27) hold.

Q.E.D.

The next theorem gives sufficient conditions for existence of a mea-
surement feedback compensator achieving a L? gain < ~ and suggests an
explicit method for constructing an infinite dimensional compensator.

Theorem 2.5 Suppose

(i) there ezists a smooth P (z,t) satisfying (2.15) and (
k(z,t),d(z,t) are defined by (2.20,2.21),

(i) there ezists a smooth Q (z,t) satisfying (2.25) with unique minimum
at T (t)

z(t) =argzmin Q(z,?) (2.29)

and satisfying the partial differential inequality

= 1
Qi+ Qz (a+bu + gd) + 5«,_2ngng;

ol 2 1 ~2
— oy l-dt gk -a <0 (2.30)
where y =y (t) is the observation and 7 = u(t) is given by
u(t)=k(z(t).1). (2.31)
(ii3)
P(z,t)+Q(z.t) >0,

Then the compensator defined by (2.29-2.31) achieves an L* gain < ~ in
the sense of (2.7).
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Proof: Define S (z,t) = P(z,t) + Q(z,t) then S (z,t) clearly satisfies
(2.10, 2.11). The integral forms of (2.19) (more precisely (2.22)) and (2.30)
yield (2.12).

Q.E.D.
Remarks:

(i) While P (z,t) may be computed off-line, the computation of Q(z,t)
requires y (¢) and so must be done on-line. Hence the compensator is infinite
dimensional with state Q (-yt) at time ¢.

(ii) As we shall discuss in Section 4.5, Z (t) can be thought of as a worst case
(Hy ) estimate of z (t) generalizing the maximum likelihood and minimum
energy estimates of Mortenson (12] and Hijab [4]. Following [4] we can

derive a differential equation for Z(t) when Q (z,t) satisfies (2.30) with
equality. By differentiating the relation

Q= (2(t),t) =0

with respect to t and differentiating (2.30) with respect to x and evaluating
at T (t) we obtain

= a(Z, 1) + b (3, 1) k (3, t)+9(%,t)d(z,1)

YL E®. D)L E (- (3, t) (2.32)
which is similar to (108) of (15]. By differentiating (2.30) twice with respect
to z and evaluating at Z (t) we obtain an ordinary differential equation for
Q74 (Z(t),t) that is driven by y(¢) and Q7L (z(t),t). By continuing to
differentiate (2.30)with respect to r and evaluating at Z (t), one obtains an
infinte sequence of coupled ODE’s driven by y (¢) that is formally equivalent
to the PDE (2.30). As in extended Kalman filtering, these ODE’s can be

truncated at degree two by assuming that Q (z, t) is approximately of the
form

1)+ 5 (=~ 20) Q1) (o - 2(1)

where Z (¢) satisfies (2.32) and Q (t) is a matrix approximating Q71 (7 (t) , ¢)
obtained by linearizing the system around the trajectory 7 (t). Then Q (t)
satisfies the Riccati differential equation

: — 1
Q+AQ+ QA+ FRCGQ-C'C+K'K =0

where Aé’, K, D are the Jacobians with respect to z of a,c, k, d evaluated
at z(t), A= A+ GD and G(t)=g(Z(t),t)

(iil) Formula (2.31) is called a certainty equivalence controller because it
is the controller we would use if we were certain that Z (t) = z (¢) asuming
that the state feedback (2.20) achieves an L2 gain < 7.
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The certainty equivalence principle asserts that if there exists a mea-
surement feedback controller achieving an L? gain < « then there exist a
state feedback controller and a corresponding certainty equivalence con-
troller that also achieve an L? gain < . But Theorem 2.5 only give suf-
ficient conditions for the existence of a measurement feedback, certainty
equivalence controller achieving an L? gain < 7.

The certainty equivalence principle holds in the linear case [2], [13] but
it is not known whether the certainty equivalence principle holds in the
general nonlinear setting. But the nonlinear certainty equivalence control
(2.31) is motivated by the fact that it maximizes

FQE0,0 =T (0 -e@W),0F - SHEO.0-ul. (239

(iv) A function P (z,t) satisfying (2.19) is a potential Lyapunov function
for the system (2.1) under the state feedback (2.20) if the driving noise
w (t) = 0 because

2
LEgn. —% ld(z (1), )

dt
_”h@uxwz
2| k{z(t),t) | °
Ifa(0,t) =0, h(0,t) = 0,
o (|z]) < P (z,1) < g (jz)) (2.34)

where «; are functions of class K, and the system 1s zero state detectable
through the output h (z (t),¢) with zero inputs then the system under state
feedback is asymptotically stable to = = 0. Recall a real valued function is
of class K if it continuous, monotone increasing, a; (0) = 0 and o; (s) —
o0 as s — 00. A state z° is detectable with respect to the output A (z(t),t)
with zero inputs if |z° (t) — z! (t)| — 0 whenever h (2°(t) ,t) = h (21 (t),t)
where z* (t) is the trajectory satisfying z* (o) = z* with zero inputs.

If Q (z,t) satisfies the inequality (2.30) with equality at z = 7 (¢) then

Qz,t) = Q(a,t) - Q(Z(1) 1)

1s a potential Lyapunov function for state estimation problem under the
measurement feedback u(t) = k(Z(t).t), the worst case driving noise
w(t) = d(zx(t),t) and zero observation noise v (t) = 0 because

SR, < - 750000,
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2
3RO -Ee0.08 - Ly e .

If @ (z,t)is uniformly bounded below and above by functions of class K, as
in (2.34) then |7 (¢) - k (z(t),t)] -»o0.If every state is detectable through
c(z (t),t) with inputs (2.20) and (2.21) then |Z (¢) ~ z(t)] = 0.

Finally we note that

§(,t) = P(z,t) + O (1)

is a potential Lyapunov function for the System under measurement feed-
back % (t) = k(7 (t),t) with w(¢) = 0 and v (t) = 0 because

N LI h(z(t),
ES@ULHS—§Ikg&i

2

t)
t)

2
— (O - @), 0.

Ifa(0,t) =0, A (0,t) =0, §(:v, ¢) is uniformly bounded below and above by
functions of class K, as in (2.34) and the system is zero state detectable
through the output h(z(t),t) with zero inputs then |z ()] — 0. If the

system is also zero state detectable through the output c(z(t),t) with
zero inputs then |7 (¢)] — 0.

3 Linear Worst Case Control

We study the implications of Theorem 2.5 for linear time varying systems
of the form

i:A(t):c+B(t)u+G(t)w (3.1)
y=C{t)r+v (3.2)
z:[Hme (3.3)

z (tg) = 2°. (3.4)

As before the goal is to find a measurement feedback compensator that
achieves an L? gain less than or equal to +y in the sense of (2.7) for the
closed loop system. Because (3.1-3.4) is linear and (2.7) is quadratic we

quadratic structure, the compensator will be finite dimensional, optimal in
a game theoretic sense and each of the supply functions P(z,t),Q (z,t)
will be nonnegative. We shall derive only sufficient conditions based on
Theorem 2.5 but similar conditions are already known to be both necessary
and sufficient. See for example, Bagar-Bernhard (2] and Tadmor (13]
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Theorem 3.1 Suppose
(i) there exists a smooth
1,
P(z,t) = 32 P(t)x

(please ezcuse the abuse of notation, P(z,t) is a scalar function, while
P(t) is n x n matriz) such that

P(to) < (3.5)

P(t)>0 fort >t (3.6)

K=-BP (3.8)

1
7

P+AP+PA+P <71—2GG’ - BB’) P+H'H<O0 (3.7)
D =

G'P (3.9)
(1) there ezists a smooth
Q(z,t) =q(t) + % (-2(t)' Q) (z - Z(t))

(Q(z,t) is a scalar function while Q(t) is a n x n matriz function) such
that

q(te) = 0. Q(to) <~*I (3.10)
g(t)>0, Q(t)>0 fort >t (3.11)
g= ’; ly — Cz}* (3.12)

#= (A4 BK)3 ++Q"'C' (y - C3) (3.13)

- _ 1
Q+AQ+ QA+ —QGG'Q-4*C'C + K'K <0 (3.14)
N2
where
A=A+GD (3.15)
then the finite dimensional compensator defined by (8.13, 8.14) and
=Kzt (3.16)

achicves an L? gain less than or equal to .
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The proof is a straightforward specialization of Theore

m 2.5 and is
omitted.

Remarks:

(i) Notice that Q (t) does not depend on the observation, y(t), and can
be computed off-line as in Kalman filtering. The other parts of Q (z,1),
namely ¢ (t) and Z (¢) do depend on the observation y (t) . In the linear case,
the certainty equivalence control (3.16) is optimal because it maximizes
4 (t) and hence q(t), see (2.33). Since Q (t) does not depend on y (t) and is
assumed to be positive definite, the certainty equivalence control maximizes
(over u (t)) the minimum (over ) of Q (z,1).

(ii) In Theorem 3.1, P (¢) is assumed to be nonnegative definite and Q (t)
is assumed to be positive definite while in Theorem 2.5, only the sum
S(z,t) = P(z,t)+Q (z,t) is required to be nonnegative. The discrepancy
1s explained as follows. In (2.9) we assumed that Q (z,t) had a unique
minimum in z for each t. In the linear quadratic context of Theorem 3.1

this implies that Q (t) must be positive definite. Moreover in this context
we have

S@0=37PWs+a(0)+ 2 @-20Y Q) (-2 ().
Now suppose y (t) = C (t)  (t) then g(t) =0 and Z (¢) satisfies
z= (A + BK) 7
z(0) =z°.
It follows immediately that if § (z,t) > 0 for all z,¢ and 7° then both P (1)

and @ () must be nonnegative definite. Neither depend on y (t) or 7°.

4 Extensions and Generalizations

EXTENSIONS AND (GGENERALIZATIONS OF THE STANDARD WORST CASE
CONTROL PROBLEM

In this section we shall discuss several extensions and modifications of
the standard worst case control problem treated in Section 2. Some of
these can be handled by more or less straightforward modifications of the
previous results while others lead to open research topics.

4.1 Finite time interval

We consider a system on a finite time interval [to,ts] and seek a causal
compensator that achieves an L? gain less than or equal to «y for the map-
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ping
0

z = (ty) |
w (t) — :z;(tf) . ‘ (4.1.1)
v(2) (1)

In other words we seek a compensator that processes the initia] state es-
timate Z° and the past observations y (1), t, < r <t to obtain a control
action u(t) and final state estimate 7 (t4) so that for all 2%, ®),v(@®

2 (41 + (2 (t) 2 + / P

<72 []::"]2 + |7 + /tt’ hw (B + |v(t)|2dt] . (412)

We omit the proofs of the following theorems as they are slight modi-

fications of those in Section 2. This problem has also been considered by
Lu [11].

Theorem 4.1 A causal compensator
z° } [ z(ts) }
— Lo <T7<t<t 4.1.3
[ u@ | PETSISE (41
achieves an L? gain < v on [to, t;] iff there exists a causal mapping
z° S(z,t) <r<t<t (4.1.4)
— 5 (z,t t T 1.
[y(T) } ’ Pet el

such that for ty <t <t, < ty and all 20, 7

2

$ (2% t0) < = (2] + &%) (4.1.5)

Sl ty) 2 3 (/] + ) (4.1.6)
220, 2

S(a(t), 1))z S/t ﬂ U((tt)) —%fz(t)|2dt (4.1.7)

If exact state measurements are possible then we seek a state feedback
u =k (z (t),¢) so that the closed loop system has L? gain less than or equal

to «v for the mapping
{ wI(Ot) J o { xz((ttf)) } : (4.1.8)
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Theorem 4.2 The state feedback v — k(z,t) achieves an L? gain <7 on

[to, ts] iff there eTists q P(z,t) such that for all ty < t1 <ty <ty and all
0

P (2% ) < 7; |z°)? (4.1.9)
P(z!,¢;) > %[sz (4.1.10)
t2 .2
Pa).0 < [ TwOP - P an (4.1.11)

Theorem 4.3 Suppose P (z,t) is CY ang satisfies (4.1.9) and (4.1.10) and
(2.19), then the state feedback (2.20) achieves an 2 gain < v on [to, ty)
for the mapping (4.1.8).

Theorem 4.4 Suppose there exists q smooth P (z,t) satisfying (4.1.9) and
(2.19) both with, equality and let k(z,t),d(z,t) be gs in (2.20,2.21). A
compensator (4.1.8) achieves an L? gain < Y for the measurement feedback

problem on [t,, tr] in the sense of (4.1.2) iff there ezists a causal conditional
storage function (2.24) such that

Q1) < 2 g (41.12)
P(al,t) +Q (o’ 1)) > % (2" + 5[ (4.1.13)

[}
Qe ), < [ ?whwf+§wf—§m—m%t (4.1.14)

ty

Note: In (4.1.13) 7/ — Z(tr) — Z(t;) where Z(ty) is given by (4.1.3)
and need not be the argmin of Q (¢, ty).

Theorem 4.5 Suppose for t € [to, ¢f]

(1) there ezists q smooth P (z,t) satisfying (4.1.9) and (2.19) and
k(z, t),d(z, t) are defined by (2.20,2.21 ,

(i) there ezists o smooth Q (x,t) satisfying (4.1.12) with unique mini-
mum at T(t) (2.29) and satisfying (2.30) with u(t) given by (2.81),

(i) P and Q satisfy (4.1.13).
Then the compensator (2.29-2.81) achieves an I2 gain < v on [to, ts] in
the sense of (4.1.2).
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4.2 Autonomous systems on infinite time interval

Consider an autonomous version of the nonlinear system (2.1-2.4) such that
a(z),c(z) and h(z) are all zero at z = 0. Assume that for each pair of
noises w (), v (t), there exists a o such that w (t) = 0,v(t) = 0,z(t) =
0,Z(t) =0for t <to, and so y (t) = 0,z (t) = 0 for ¢ < t,.

We seek a causal compensator

y(r)—ult), t<r<t (4.2.1)

which achieves an L? gain < v
w (t)

/t: 2 ()] dt < /tt A

on any interval [to,t;] over all pairs of noises w(t),v(t) with support
bounded below by tq.

dt (4.2.2)

Theorem 4.6 A causal compensator (4.2.1) achieves an L? gain < v for

an autonomous version of (2.1-2.4) on (—oco,0) iff there ezists a causal
conditional storage

y(m) = S(z,t), to<T<t (4.2.3)

such that for all ty < t; < t, and all !

S(0,t0) =0 (4.2.4)
S ) >0 (4.2.5)

ta .2 , 2
S(x(t),t)]gg/t T QZ((;; —-;—|z(t)|2dt. (4.2.6)

Proof: Suppose there exists § satisfying (4.2.4,4.2.5) then for any noises

w(t),v(t) and trajectory z (t), whose support is bounded below by ty we
have

i) 2 t1 2
%/; |Z(t)12dt§5($(t1),t1)+’7/t ?:((tt)) dt
2 ty 4 w 2
<sto, w10
A e
= 7/0 1) ‘ dt.

On the other hand suppose, there exists a causal compensator (4.2.1)
which achieves an L? gain < ~. That is. for cach y (t) with support bounded
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below by some ¢, there exists a causal u (t) also with support bounded below

by to such that for any t; > t; and any w (t),v (t) with support bounded
below by to and compatible with y (t)

w (t)
v (t)

along the trajectories of the autonomous system and compensator start-
ing from z (t) = Z(t) = 0. For each measurement history y (¢), define
S (z',t1) to be the infimum of (4.2.7) over all w (t),v () compatible with

y (t), etc. It is straightforward to verify that S (z,t) satisfies (4.24, 4.2.5,
4.2.6). '

2 g

— 5l () dt (4.2.7)

Q.E.D.

If the state of the system is exactly measurable then it may be possible
to achieve an L? gain for the mapping

w (£) —> 2 (t) (4.2.8)

by state feedback. Necessary and sufficient conditions for these to be pos-
sible follow immediately from the work of Willems [17] as extended by van
der Schaft [14],-{15] and Isidori Astolfi 6]

Theorem 4.7 (Willems [17]) The autonomous state feedback u = k(z)

achieves an L? gain < v for an autonomous version of (2.1-2.4) on (— o0, 00)
iff there exists a P (z) such that

P0)=0 (4.2.9)
P{z)>0 (4.2.10)
tr |2

Pl < [ Lo - lora (4.2.11)

Proof: If there exists a P (z) satisfying (4.2.9-4.2.11) then clearly u = & (z)
achieves an L? gain < «. Define

P(z) = inf /t ’ 7; w ()] - % 12 () dt. (4.2.12)

where the infimum is taken over all ¢, and all w (t) with support bounded
below by to and all t; > t; such that z(t1) = z. If no such w(t),to,
exist then P (z) = oo. It is straightforward to verify that P satisfies (4.2.9-
4.2.11).

Q.ED.
Remarks: Willems calls the function P (z) defined by (4.2.12) the required
supply. An autonomous version of (2.1-2.4) is said to be reachable from zero
if for every x there exists a w (t) and t; such that z (to) =0and z (t1) = =.
The function P (z) defined by (4.2.12) is reachable iff P (z) < o0, [17].
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Theorem 4.8 [14], [6]. Suppose P (z) is C* and satisfies ({.2.9, 4.2.10)
and

1 1 ’ ' / 1 2
- — - - < 2.
P,a + 2P, (72951 bb) P, + 5 R <0 (4.2.13)
then
u=k(z) =-b'(z) P (x) (4.2.14)

achieves L? gain < 7 for the autonomous version of (2.1-2.4) on (—oo, 00).
The “worst case” driving noise is

w=d(z) = 7—129’ (z) P, (z). (4.2.15)

The proof is omitted as it is very similar to that of Theorem 2.3. The
solvability of the partial differential inequality (4.2.13) and the correspond-
ing equality are discussed by van der Schaft [15].

Theorem 4.9 Suppose there erists a smooth P (x) satisfying
(4.2.9, 4.2.13) both with equality and let k (z),d (z) be defined by (4.2.14-
4.2.15). A measurement feedback compensator ({.2.1) achieves an L? gain
< 7y for an autonomous version of (2.1-2.2) on (—o0,00) iff there ezists a
causal mapping

y(1)— Q(z,t) o <7<t (4.2.16)

such that for all ty < t; < t2, all zw (t),v(t) with support bounded below
by to
Q(0,t0) = (4.2.17)

Pz)+Q(z,t) >0 (4.2.18)

1 42 2, 7 2 1 2
Q= (1), ) < —2—[w—d| + 5 v~ §|u-k| dt. (4.2.19)

t)

Again the proof is omitted as it follows closely the proof of Theorem
2.4.

Theorem 4.10 Suppose

(i) there exists a smooth storage function P (z) satisfying (4.2.9, 4.2.18)
and let k (z) and d (z) be defined by (4.2.14,4.2.15),

(i) there ezists a smooth conditional storage function Q (z,t) satisfying
(4.2.17) for all w (t),v (t) with support bounded below by to with a unique

minimum at I (t) (2.29) and satisfying the partial differential mequality
(2.30) with control given by (2.81),

P(z)+Q(x,t)>0.
Then the compensator defined by (£.29-2.31) achieves an L2 gain < v for
an autonomnous version of (2.1-2.4) on {=00,00)
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The proof is omitted as it follows closely the proof of Theorem 2.5.

Remarks: The compensator defined by (2.29-2.30) is infinite dimensional
and autonomous. Since the system (2.1-2.4be autonomous and k,d are au-
tonomous, the partial differential inequality (2.30) is autonomous except
for Q(z,t), y(t) and @ (t). It is an autonomous infinite dimensional com-
pensator. Further research is needed on finite dimensional compensators
which approximate this infinite dimensional compensator.

4.3 More general systems

Consider a nonlinear system of the form

z=a(z, t,u,w) (4.3.1)
y=c(z,t,u,w) (4.3.2)
z = h(z,t,u,w) (4.3.3)

T (to) = z°. (4.3.4)

We present the generalization of the theorems of Section 2, drawing on
work of Bagar-Bernhard (2] and Isidori-Kang [7]. Previously we considered
quadratic supply rates of the form

2 2

w

S(z’ t”u’,w)’u) v

7
2

1 h(x,e)
2 U

but in this more general context we allow any function s (z,t,u,w). We
are primarily interested in supply rates which are concave in u, convex in

w and satisfy several additional conditions which shall be apparent in the
later development.

Following Willems [17], a state feedback

u=k(z,t) (4.3.5)
is dissipative on [tg, 00) with respect to supply rate s (z,t,u, w) and initial

storage PO (2°) if for every ¢; > t; and every X0, u (t),w(t)

t1
0< P°(29) +/ s(z(t),t,u(t),w(t)dt. (4.3.6)
tg
A causal, measurement feedback compensator
{ z°

v (7) ] — u (t) to<tT<t (4.3.7)
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is dissipative on [tg, oc] with respect to supply rate s (z,¢,u, w) and initial
conditional storage S© (2°,29) if for every t; > to and every %, u (t) ,w ®)

134

0<8° (z°,2%) +/ s(z(t),t,u(t),w(t))dt. (4.3.8)

to

The following theorems are presented without proof as they are very
similar to those of Section 2.

Theorem 4.11 A measurement feedback compensator (4-3.7) is dissipa-
tive on [tg, 00) with respect to supply rate s (z,t,u,w) and initial conditional
storage S° (z°,%%) iff there exists a causal conditional storage

70
[ , ] - S(5,t)  tg<T<t (4.3.9)

such that for all tg < t, < t,, and 2,2, w (t) consistent with the observa-
tions y (t)

S (2% t) < §° (z°,2%) (4.3.10)
S(z',t1) >0 (4.3.11)
S (@ (), o)) < / @) ) w ) dt. (4.3.12)

Theorem 4.12 The state feedback (4.3.5) is dissipative on [t0, 00) with
respect to the supply rate s(z,t,u,w) and the initial supply P° (%) iff

there exists a storage function P(z,t) such that for all ty < t < to, all
2®, xt w(t)

P(z°t) < P° (=) (4.3.13)
P(z't) >0 (4.3.14)
t2
P(z(t), ) < / s(z(t),t,u(t),w(t))dt (4.3.15)
iy
Theorem 4.13 Suppose P(z,t) is C* and satisfies (4.3.13, 4.8.14) and
suppose
u==k(x1t (4.3.16)
w=d(z.t (4.3.17)
satisfy for each z,t > ¢,
02 inf sup (P, + Pya —s) = (P, + P.q — s), . (4.3.18)
vw u=k(z,t)
w = d(z,t)

Then the state feedback (4.8.16) is dissipative on [to,00) with respect to
supply rate s (z,t,u,w) and initial storage PY (wo) .
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Theorem 4.14 Suppose there exists a smooth P (z,t) satisfying (4.3.13)
and (4.3.18) with equality for k (z,t) yd(x,t) defined by (4.3.16-4.3.17). A
measurement feedback compensator (4-8.7) is dissipative on [to, 00) with
respect to supply rate s (z,t,u,w) and initial conditional storage

§%(2%,2%) = P (2°) + @° (2°) (4.3.19)

if there exists a causal conditional storage

)] ~ewn wsre

such that for and ty < ¢, <ta, all 20 21 (t) consistent with the observa-

tions y (t)
Q (2% 1) < Q° (37 (4.3.20)
P(z'6) +Q (2, t,) > 0 (4.3.21)

ta
Qa0 < [0, u v @) (4.3.22)
ty
where

s(z,t,bu,w) =s (z,t,u,w) — s (z,t,k(z,t),d(z, t)). (4.3.23)

Theorem 4.15 Suppose

(i) there exists smooth P(z,t) and k (z,t), d(z,t) satisfying (4.3.13) and
(4.3.18),

(1i) there exists a smooth Q (z,1) satisfying (4.8.20) with unique minimum
at T (¢)

Z (t) =arg min Q (z, t) (4.3.24)
and satisfying the partial differential inequality
inf (Q; + Q,a — 3), <0 (4.3.25)
w u=1u(t)

where the infimum is overall w (t) consistent with the observations y(t) and

u(t) =k(z(t),t), (4.3.26)
(iii)
P(z,t) +Q(z,t) > 0.

Then the infinite dimensional compensator (4.3.24-4.8.26) is dissipative on

[to.00) with respect to the supply rate s (z,t,u, w) initial conditional storage
function S° (2°,2%) | in the sense of (4.3.8).
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4.4 Worst case estimation

Embedded in the measurement feedback compensators of the previous sec-

tions are worst case estimators similar to those of Mortensen [12] and Hijab
[4]. Consider the system

z=a(z,t) + g(z,t)w (44.1)
y=c(z,t)+v : (4.4.2)
u=k(z(t),t) (4.4.3)

T (o) = £°. (4.4.4)

As before w (t),v (t) are driving and observation noises. But u(t) is no
longer an input but rather it is an output that is to be estimated from
the past measurements, y (1) ,t, < 7 < ¢ and the initial state estimate Z°.
Linear versions of this problem have been treated by Khargonekar-Nagpal
(10] and Basar-Bernhard [2]. In particular we seek a causal estimator

20 } (t) <7<t (4.4.5)

— 7 (t ¢ T 4.
[ y(7) ==

with an L? error gain < 7, i.e., for any to < t; and any z%w (t),v(t)
consistent with the observations, y (t)

ty t1 2
[ I (2 (t) 1) — & (8)]2 < o2 (]50|2+/t ' :‘)’((:)) ’ dt). (4.4.6)

The following two theorems are essentially specializations of Theorems 2.4
and 2.5 and proven in a similar fashion.

Theorem 4.16 A causal estimator (4.4.5) has an L? error gain < v on
[to, 00) iff there exists a causal conditional storage function

z0 4.4.7
L |meen wers (4.47)

such that for any ty < t; < ty and any 2% w (¢) ,v (t) consistent with the
observation y (t)

Q (% o) < gli(’l? (4.4.8)
Q(z',t1) >0 (4.4.9)
O (5 (1), 1)) 5/[% 71‘)’((:)) ! -é!k(m(t),t)—a(t)|2dt. (4.4.10)
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Theorem 4.17 Suppose there exists a smooth Q (x,t) satisfying (4.4.8),
and (4.4.9) with unique minimum at 7 (t)

Z(t) = argmin Q (z,t) (4.4.11)
and satisfying the partial differential inequality

1 2 1 -
Qi+ Qea+ 2—72QIgg'Q; - 77 ly — ¢ + 5 k—a)* <0 (4.4.12)

where y =y (t) is the observation and @ = u (t) is given by

A(t) = k(Z(t),1) (4.4.13)

then the infinite dimensional estimator (4.4.11-4.4.13) achieves an L? error
gain < 7.

Remarks: As before

Q(z,t) = Q(z,8) - Q (B (), 1)

is a potential Lyapunov function for state estimation problem. See Remark
(iv) following Theorem (2.5).

5 Conclusions and Questions

We have presented necessary and sufficient conditions for worst case
(H —infinity suboptimal) compensators and estimators in a variety of set-
tings. The compensators and estimators are generally infinite dimensional.
There are several open questions.

Are there nonlinear systems that admit finite dimensional compen-
sators, [16]? Are there effective finite dimensional approximations? The

compensators are based on certainty equivalence, are there other kinds of
compensators?
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