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This paper examines the connection between Gaussian reciprocal diffusions (GRDs) on a finite interval
[0, 7] and positive definite Sturm-Liouville boundary values problems (BVPs) on the same interval. We
show that there exists a bijection between the set of GRDs on [0, T] and the set of positive definite
Sturm-Liouville BVPs on [0, T]. The bijection occurs through the identification of GRD covariances
with Sturm-Liouville Green’s functions. Furthermore, every GRD x{f) can be formulated as a weak
solution of its corresponding Sturm-Liouville BVP, where the interior forcing terms and the boundary
forcing terms form a stochastic object whose covariance structure is determined by that of x(r). This
formulation differs from the one presented in [20] in that it represents x(¢) as the solution of its
matching positive definite Sturm-Liouville BVP, as opposed to a Dirichlet BVP. Finally, for GRDs
with a negative stress tensor [11], it is shown that the Sturm-Liouville BVP they satisfy can be
reformulated as a first-order BVP with twice the dimension of the original problem, whose solution can
be expressed as a standard Wiener integral plus an independent boundary term.

KEY WORDS: Gaussian reciprocal diffusion, Sturm-Liouville operator, Green’s function.

1 INTRODUCTION

Reciprocal processes were introduced in 1932 by Bernstein [5], who was motivated
by an attempt of Schrédinger [30, 31] at developing a stochastic interpretation of
quantum mechanics in terms of a class of Markov processes for which boundary
conditions are imposed at both ends of the interval of definition. A stochastic process
x(t) on [0, T'| taking values in R”" is called reciprocal if for any two times #, < #;, the
process interior to [to, #1] is independent of the process exterior to [tg, #1], given x(zo)
and x(t(). Reciprocal processes contain Markov processes as a subclass. Also,
Markov random fields in the sense of Paul Lévy [23, 29] reduce in the single
parameter case to reciprocal, rather than Markov processes. The properties of
reciprocal processes have been examined in detail by a number of authors, and in
particular Jamison [14, 15], who showed that they can be obtained by first
conditioning the trajectories of a Markov process to arbitrary fixed values at both
ends of the interval [0,7], and then assigning an arbitrary joint probability
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distribution to the values x(0) and x(7) of the process at the end points. Other
studies of reciprocal processes include [8, 6, 7, 25, 1, 27], among others.

In this paper, we shall be concerned with the class of Gaussian reciprocal
diffusions (GRDs). Arbitrary, i.e. not necessarily Gaussian, reciprocal diffusions,
were introduced by Krener [19] (see also [9, 22, 33]), who showed they admit second-
order stochastic dynamics and satisfy a set of conservation laws which generalize to
the reciprocal case the Fokker-Planck equation of Markov diffusions. However, a
number of aspects of the theory of reciprocal diffusions, such as the development of
a general theory of second-order stochastic differential equations, need to be fully
worked out. For the Gaussian case, this theory was developed in [20], where it was
shown that the covariance of a GRD satisfies a second order self-adjoint differential
equation, which was then used to construct GRDs as weak solutions of linear
second-order stochastic differential equations with Dirichlet conditions. In this
paper, building on a characterization of discrete—time Gaussian reciprocal processes
given in [21], we explore further the connection existing between positive Sturm—
Liouville operators and GRDs.

Following [20], a continuous-time process x(t) is called a Gaussian reciprocal
diffusion if it satisfies the following four axioms:

Al. x(r)is a zero mean Gaussian reciprocal procgss on [0, T'} and assumes values in
R". The sample paths of the process are continuous almost surely.

A2. Let R(t,s) = E{x(f)x*(s)}, where “+” denotes the transpose operation. R is C
on the triangle 0 < s < ¢ < T in the sense that continous limits of R and it first
and second partials exist on the boundary of this triangle.

A3. For 0 < #y < t; < T the two time covariance matrix

R(t0, to) R(to,ll)} an
R(t1,t0) R(n,n)
is invertible.
A4. The matrix
_OR OR, |
0(1) =5 (7,0 =5 (1%,1) (12)

is positive definite for all ¢.

A4 is referred to as the full rank noise assumption. The terminology arises from
the fact that when the stochastic 2nd order differential equation satisfied by x(r) is
discretized, the leading term of the covariance of the driving noise is proportional to
Q(1). It turns out that A3 is actually a consequence of Al, A2 and A4. However, this
is not obvious, and it is most convenient to develop the theory of GRDs using the
above (slightly redundant) set of axioms.

The results of [20] concerning the connection between GRDs and positive definite
Sturm-Liouville operators are extended here as follows. In [21] it was shown that a
discrete time Gaussian reciprocal process x(k) on an integer interval [0, N] can be
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represented as the solution of two different types of stochastic BVPs, both involving
a symmetric 2nd order difference operator, but with different BCs.
The first class of BVP admits Dirichlet BCs

[;g‘)f))] - [i}] ~ AP, (1.3

where the covariance matrix P is specified, and the random boundary vectors b; and
by are independent of the driving noise e(k) for the difference equation satisfied by
x(k) in the interior of [0, N]. A second type of BVP examined in [21] corresponds to
the BCs

M(0)x(0) — M(0)x(1) — M_(0)x(N) = e(0) (1.42)
My(N)x(N) — M_(N)x(N — 1) = M, (N)x(0) = e(N), (1.4b)

which are called “cyclic”” because they have exactly the same form as the 2nd order
difference equation for x(k) in the interior of [0, N], provided we view x(-) as defined
over a discretized circle. In (1.4a)-(1.4b), the coefficient matrices M are given, and
the noises e(0) and e(N) on the boundary are defined in the same way as in the
interior of [0, N], by requiring that the covariance matrix of the full e(-) process
should be the inverse of the covariance matrix of the x(-) of process, so that e(-) and
x(-) are conjugate processes in the sense that

E{e(k)x"(1)} = Ls(k — I). (1.5)

The case of Dirichlet BCs for a continuous time GRD x(f) has been analyzed in
[20]. The case of cyclic BCs in continuous time is a more delicate matter because
continuous time GRDs do not have classical derivatives for which pointwise
evaluations can be made at the boundary of [0, 7]. Nonetheless, it is possible to
make precise what is meant by “cyclic” BCs in the continuous case, and this paper
does so. We should point out that the term ““cyclic”does not imply that the BCs are
periodic. Indeed, unlike the discrete—time case, where the x(-) process can be viewed
as defined over a discretized circle, because of the continuity requirement for the
trajectories of x(-), GRDs over [0, 7] cannot usually be considered as defined over a
circle obtained by identifying the ends 0 and T of the interval [0, T]. However, an
alternative interpretation of the discrete—time cyclic BCs (1.4a)—(1.4b) which can be
extended to the continuous-time case consists in noting that the property (1.5)
implies discrete time Gaussian reciprocal processes have a covariance matrix with a
cyclic block tridiagonal inverse. In [21], this observation was used to show that the
set of positive definite symmetric cyclic block tridiagonal matrices is bijective to the
set of discrete-time Gaussian reciprocal processes on [0, N]. The bijection identifies
covariance matrices with inverses of cyclic tridiagonal matrices. It is proved in
Section 2 that there exists a similar bijection in the continuous case, between GRDs
on [0, T} and positive definite self-adjoint Sturm-Liouville operators on the same
interval. Except for the requirement that the Sturm-Liouvile operator should be
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positive self-adjoint, the BCs are arbitrary, and are called “cyclic” only because they
couple the functions in the domain of the operator, and their derivatives, at both
ends of [0, 7.

In Section 3 it is shown that every GRD can be regarded as a weak solution of its
corresponding Sturm-Liouville BVP. This makes precise the notion of cyclic BCs in
the continuous time case. Here the “corresponding” Sturm-Liouville BVP we have
in mind is the BVP for which the process covariance R(¢,s) is the Green’s function.
Finally, the section 4 explores the conditions under which the Sturm-Liouville
stochastic BVP satisfied by a GRD can be formulated as a first-order two-point BVP
of the type examined in [17, 2, 26]. It turns out that the class of GRDs that can be
constructed in this manner are those with a negative definite stress tensor over the
interval [0, T, where the stress tensor is one of the quantities, together with the
density and mean velocity, which are propagated by the conservation laws of GRDs.
The first-order BVP implementing this subclass of GRDs has twice the dimension of
the original Sturm-Liouville BVP, and its solution can be expressed as the sum of a
Wiener integral plus a stochastically independent boundary term.

2 POSITIVE STURM-LIOUVILLE OPERATORS AND GAUSSIAN
RECIPROCAL DIFFUSIONS OVER [0, T

Let L]0, T) denote the real Hilbert space of functions taking values in R”, with inner

product (u, v) fo t)dt. Consider the formal 2nd order differential operator
d? d! d°
L_AZ()dt2+Al()dt1+A0(t)@’ @2.n
where we assume that the matrix coefficients A4;(z) belong respectively to C_,[0, T
for i =0,1,2." Given the boundary condition

Bu £ 01u(0) + 0pu(T) + 31(0) + cvgie(T) = 0 (2.22)

where the 2n x n matrices oy are such that the 2n x 4n matrix
o = [a1 o O3 014] (22b)

has the full rank, we define the subspace E C L2[0, T] as
E = {u € L}[0,T) : uis absolutely continuous, # € L2[0, T], and Bu = 0}. (2.3)
Then the linear operator Lg:E — L2[0,T] is defined by the rule u€ E —

Lu € L]0, T). Note that our notation distinguishes the formal differential ““operator”
L from the actual differential operator Lg. Lg is said to be a Sturm—Liouville

"This requirement can be weakened somewhat if we adopt the parametrization of L given in equation
(2.59) below.
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operator if it is self-adjoint, i.e. for all u,v € E,(Lu,v) = (y, Lv). Furthermore, it is
positive definite if for all nonzero u € E, (Lu,u) > 0. We will repeatedly make use of
the following two results from the theory of Sturm-Liouville BVPs [12, 28].

SL1. If Lg is positive definite self-adjoint, so is Lp, where D is the subspace of
L2]0, T] specified by the homogeneous Dirichlet conditions, which correspond

to the choice
I, 0 0
oy = [O] o = {In] a3 = 04 = L)] . (24)

SL2. Let D[0, T] be the subspace defined in SL1, and let D[to, #1] be the subspace
of L2[ty, 1] obtained by applying homogeneous Dirichlet conditions to the
subinterval [to, ;] of [0, T]. Then, if Lpj,1) is positive definite self-adjoint, so is
LD[lo,h] -

The results of this paper are based in large part on the following theorem, which
establishes a bijection between the set of positive definite Sturm-Liouville operators
on [0, 7] and the set of GRDs on the same interval. This bijection identifies the

operator Green’s function with the covariance of the corresponding process.

TrroreMm 2.1 Let x(7) be a GRD on [0, T| with covariance R(t,5) = E{x(1)x*(s)}-
Then there exists a unique positive definite self-adjoint operator Lg such that R(t,s) is
the Green’s function of Lg. Conversely, if Lg is a positive definite self-adjoint operator
with Green’s function G(1,s), there exists a unique GRD x(¢) on [0, T| with covariance

E{x(t)x*(s)} = G(t,5).

Before proving Theorem 2.1, we introduce some notation and establish a basic
lemma regarding the kinds of boundary conditions that can arise in positive definite
Sturm-Liouville BVPs. We will formulate both the domain E and the formal
operator L in terms that allow for streamlined proofs of not only Therorem 2.1,
but also of results to be presented in subsequent sections of the paper.

We write the formal operator L in the form

L:Q4m<iﬁ+aﬂﬁ+sza

d2 dl 0
d ), 2.5)

where Q(f) is symmetric positive definite on [0, T), and where the following self-
adjointness conditions [20] are satisfied

(@G+eo ) =-5@" (.60

B —

-1 _*71_li 1y _ *O-}
Q' F-FQ ! =52(Q'G- G0 (2.6b)

Since we restrict our attention herein to positive definite self-adjoint operators, the
reader may verify that there is no loss of generality in replacing the form (2.1) for L
by (2.5).
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In the following we will make use of the n x n boundary-value transition matrices
1(¢t) and 4, (r) for the operator Lp, which satisfy

Ly (t) = Lapa (1) = 0 (2.7)
with boundary conditions
1(0) (0) | _ (I, O] _
[wm wzm]‘[o 1,,]—" (28)

If Lg is positive self-adjoint, the existence of ¢y and v, is ensured by SL1. As in (2.8),
2n x 2n matrices will be denoted by boldface in the remainder of this paper.

Next we assert that the BCs of a positive definite Sturm—Liouville problem can
always be cast in a certain form. This form will prove quite convenient for linking the
study of positive definite Sturm-Liouville operators to the study of GRDs.

LemMma 2.1 Consider a formal operator L of the form (2.5) and a subspace
E C L2[0, T of the form (2.3), such that the resulting operator Ly is positive definite
self-adjoint. Let G(t,s) be the Green’s function for Lg. Then, in the parametrization
(2.3) of E, we can replace the boundary condition Bu= 0 by

put arrew| )] -po MO ] - [0]. 29

where

_ | G(0,0) G(0,T)
= [G(T,O) G(T, T)] (2.10a)
_ |2 0
Q_[ 0 —Q(T)] (2.10b)
y_ | 00 1?2(0)]. o100
Yi(T) ¥a(T)

Remark Lemma 2.1 asserts, in effect, that the 2n x 4n matrix « given by (2.2b)
can always be premultiplied by an invertible 2n x 2r matrix to yield the 2n x 4n matrix

I+PQ'¥ —PQ7. (2.11)

Proof of Lemma 2.1 1t suffices to show that the Green’s function G(¢,s) of Lg
satisfies

(] e [§e)- ) e
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for 0 <s < T. To do so, we obtain a representation of G that allows for a proof of
(2.12) by direct calculation.

Let G(t,s) denote the Green’s function of Lp, where D is the subspace of L2[0, T]
corresponding to homogeneous Dirichlet BCs (i.e. P =0 in (2.9)). Then standard
Green’s function construction techniques yield the representation

(2.13)

5 _ Jhh(OKYi(s), 0<t<s<T
Glo9) = {¢f(t)1<*z});(s), 0<s<t<T,

where K is a constant matrix. K admits several representations [10], two of which are

K = [tha(s) — Dr()Pr (5)9a(5)] " Q(s)ebT* (s) (2.14a)
=93 (5)Q(s) Wb ()93 ()41 (5) — b1 ()], (2.14b)

where “—+" denotes the inverse transpose. Since K is constant, the above
representations do not really depend on s. Setting s = 0 and s = T in (2.14a) and

(2.14b), respectively, gives the simplified expressions

K = (42(0))7'0(0) = -Q(T) (@ (T)) ™, (2.15)

which will prove useful below. Next, let

dun-tois w999 SDI[GAL oo

We claim that G can be represented as
G(t,5) = G(1,5) + G(s, s). .17

To see this, observe that L,[G(1,s) + G(t, 5)] = é(t — s), so that L,[G(z,s) — G(t,s)—
G(1,5)) =0, and that G — G — & = 0 on the corners of [0, 7] x [0, T}. It then follows
from SL1 that G — G — G = 0 everywhere on [0, T] x [0, T]. Using the representation
(2.17) for G(z,5), we can prove (2.12) by direct calculation as follows. For 0 < s < T,
we have

-1 G(O,S) _ —1 %g(ovs)
arenco ] v [%—?( »)J
[éw,s L[] %—?(WD
-Lén] e (0] [
__ G(O,S) _ -1 %?(O’S)
“L?(T,s)J e [—m} 19
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But
oG .
071(0) 7~ (0,5) = ¥i(s) (2.19a)
oG .
—Q7N(T) 5 (T, s) = Wi(s), (2.19b)
so that (2.18) is zero by the definitions of P and G. O

We are now in position to establish Theorem 2.1.
Proof of Theorem 2.1 We must show that:

(1) If x(¢) isa GRD on [0, T] with covariance R(t, s), there exists a unique positive
definite self-adjoint operator Ly such that R(¢,s) is the Green’s function of Lg.

(2) If G(¢,s) is the Green’s function for a positive definite self-adjoint operator Lg,
there exists a unique GRD x(¢) on [0, 7] such that G(¢,s) = E{x(#)x*(s)}.

Proof of (1) Let x(¢) be a GRD on [0, T] with covariance function R(t,s). To
x(f), we can associate a formal self-adjoint operator L of the form (2.5) with

o) = — (88—1; (£, 1) — %—I:(z', t)) (2.20a)
2 2
G(t) = —(%g(tﬂ f) — %—tf(f, t)) 071 (2.20b)
2
F(t) = (%—tf (1) — G(l)%? (¢, z)) Rt 1) (2.20¢)

It is shown in [20] that the corresponding Lp is positive definite self-adjoint, and
R(1,5) satisfies

L,R(t,s) = 6(t — s). (2.21)
It is also proved in [20] and [10] that
R(t,s) = R(1,s) + R(1,5), (2.22)

where R(1,s) has exactly the form given by the RHS of (2.13), and R(1,5) has the
form given by the RHS of (2.16), with the symbol “G” replaced by “R”. In both
cases the 9 matrices are defined by the conditions (2.7-2.8), and their existence is
ensured since Lp is positive. Now, applying the calculations in (2.18) to R(t,s), we
conclude that, forO0 <s < T,

R () s
(I+PQ1‘P){§(((;’,SS))} -PQ™! [% ©, )} = [g] (2.23)
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where P is the matrix obtained by replacing “G” with “R” in (2.10a). From (2.21)
and (2.23) we conclude that R(¢,s) is the Green’s function of Lg, where we use the
boundary condition (2.9) to parametrize E. The uniqueness of Lg is due to the fact
that R can have only one inverse. This completes the proof of (1). Next we carry out
the proof of (2) in five steps.

2-i) Prove that there exists a zero-mean Gaussian process x(¢) on [0, 7] such
that G(t,s5) = R(1,5) = E{x(£)x*(s)}.
2-ii) Prove that x(f) has continuous sample paths a.s.
2-1ii) Prove that for 0 < 1y < 1, < T the two time covariance matrix

R([o t()) R(t() tl)
’ ’ 2.24
R(ll,to) R(tl,tl) ( )
is invertible.
2-iv) Prove that x() satisfies the full rank noise assumption.
2-v) Prove that x(¢) is reciprocal.

2-1) To prove that there exists a zero-mean Gaussian process x(f) on [0, T| with
covariance G(¢,s), we note first that since Ly is positive-definite, so is Lgl, ie.

(Lg'v,v) = /T/T vi(1)G(t, s)v(s)dtds > 0 (2.25)
0 Jo

for every nonzero v € L2[0, T]. Given t,...,t, in [0, T}, let C(zy, ..., t,) denote the
np x np matrix whose (i,j)th block is G(1;,1),1 < i,j < p. The self-adjointness of
Lz" implies that C is symmetric. Also, C is nonnegative (though not necessarily
positive) definite. To see this, let a* = (af, . .. ,@,) be a row vector in R, and define
the sequence {v;(f)} by

vi(t) = k(ah(t) + - - + a, L (1)), (2.26)

where I (f) is the indicator function of the interval [t,, — 1/2k, t,, + 1/2k] (with
the obvious modification in definition if 7, =0 or ¢, =7). Then a*Ca=
limy oo (L' vk, vi) > 0. Here we have used the continuity of G(z,s) on [0, 7] x [0, T).
This continuity follows from the fact that G is the Green’s function for a Sturm—
Liouville operator.

Now consider the zero-mean Gaussian distribution on R” whose covariance
matrix is C(fy,...,t,). These finite-dimensional distribution satisfy the consistency
hypotheses of Kolmogorov’s existence theorem (see Theorem 3.1 of [13]), so there
exists a stochastic process x(r) on [0, 7] having these finite-dimensional distributions.
Clearly G(¢,s) is the covariance of this process.
2-i1) To prove that x(¢) has continuous sample paths a.s., observe that if z(¢) =
b*x(t), where b is an arbitrary vector of R*, we have

E{(z(t +h) — 2(£))*} = B*[G(t + h, 1 + h)
—G(t+h,t)— G(t,t + h) + G(¢,1)]b. (2.27)
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Then, using the moment factoring identity

E{(2(t + h) — 2(0))*} = 3(E{(2(t + h) — 2(1))*})? (2.28)

for zero-mean Gaussian random variables, we can conclude that

E{(z(t+ k) — z(1))*} < MR?, (2.29)

where M is a constant independent of ¢ and 4. It follows fromt the Kolmogorov
continuity theorem ([32], p. 51) that z(¢}, and thus x(¢), have sample path continuous
versions.

2-(ii1) To show that the two time covariance matrix

G(to, o) G(to, 1)
[G(t?,tg) G(t?,t:)] (2.30)

is invertible for 0 < # < #; < T, we note from Lemma 2.1 that since G(t,s) is the
Green’s function of Lg, it admits the representation G = G + G. Thus

G(to, t0) Glto, tl)} _ [G:(to, 1) Glt, tl)] N {(:;(zo, t) G(to, 1) 231)
G(ti,t0) G(n, 1) G(n,10) G(t, 1) G(t, o) G(n,t)|
From the definitions (2.15) of G and (2.12) of G, it is clear that both matrices on
the RHS of (2.31) are nonnegative definite. It suffices therefore to show that the first
matrix on the RHS is invertible when 0 < to < 1 < T.
Now, the matrix K defined in (2.12) is invertible, so that unless ty =0 or ¢, =T,
the 2n x 1 column vector in R?*. But then the column vector

{K*wi(to)a] 2.32)

Ky ()b

must be nonzero, where [a*, b*]* is any nonzero column vector in R?", But then the
column vector

Pi(to) a(to) | [ K ¥3(t0)a
L/’l(tl) 1/’2(t1)][K1/)’{2(z1)b} (2.33)

must be nonzero. But from (2.12) we see that (2.33) is exactly

éns) sl .

Hence the first matrix on the RHS of (2.31) is invertible. This completes the proof of
2-iii.
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2-iv) Next, to prove that x(r) satisfies the full rank noise assumption, we observe that
since G(t,s) is the Green’s function for Lg, it satisfies

oG(tt,t) 0G(t,t)
TR = —Q(1). (2.35)

But Q must be positive definite symmetric, since Lg is positive definite and self-
adjoint. This completes the proof of 2-iv).

2-v) We now prove that x(¢) is reciprocal. Let [, #1] be a subinterval of [0, T}, and
assume 7 and s are inside and outside this subinterval, respectively. For ¢ € [0, T
define

$(0) = E{x(0)] x(t0), (1)}, (236
Then
T
0 = (6t 10) Glea)]| o) Gl | [, (237)

where  denotes the matrix pseudoinverse. Of course, from 2-iii we know that this
pseudoinverse will coincide with the actual inverse except possibly when #) = 0 or
ty = T. In any case, using elementary properties of the pseudoinverse, we see that

T
EG0y 0} = 600 Gleal| o) Sl [ [ 009 | )

On (9, ;) we have L,(E{y(¢)y*(s)}) = 0. This follows from applying L to the RHS
of (2.38). Moreover, it is clear from the definition of y in (2.36) that at times ¢y and #;
the equalities E{ y(10)y*(s)} = G(2,s) and E{y(t1)y*(s)} = G(t1,s) must hold, since
x(-) — y(-) is uncorrelated with x(#) and x(¢;). Thus G(t,s) — E{ y(¢)y*(s)} vanishes
at the endpoints of [t, 11}, and is in the nullspace of L on (fg, #;). Now, from SL1 we
know that Lp is positive, so then by SL2 L has no conjugate points on subintervals
of [0,T]. Hence G(t,s) — E{y(t)y*(s)} vanishes identically for ¢ € [to,t;]. We
conclude that E{ y(1)y*(s)} = G(z,s), and applying this fact to (2.38) gives

¥
G(t,5) = [G(t, to) G(t,11)] gg‘: igg gg‘: 2” [gg‘:g] (2.39)

But the equation (4) of [1] implies that a zero-mean Gaussian process is reciprocal if
and only if (2.39) holds, so that x(¢) is reciprocal on [0, 7. O

A potential application of the above result concerns the computation of the
Karhunen—Loéve expansion of GRDs. The normal procedure for constructing this
expansion [34], section 3.4 consists in finding the eigenvalues and eigenfunctions of
the integral operator R over L2[0, T| with kernel R(t, s). However, since R(z,s) is the
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Green’s function of Lg, if ¢(¢) is an eigenfunction of R corresponding to the
eigenvalue A, it is also an eigenfunction of Lg corresponding to the eigenvalue
1/A. Thus, the problem of finding the Karhunen-Loéve expansion of a GRD
corresponding to a given positive Sturm—Liouville operator Lg reduces to one of
finding the eigenvalues and eigenfunctions of Lz, an easier problem than the corres-
ponding eigenvalue problem for R.

Also, it was shown in [21] that within the class of discrete-time Gaussian reciprocal
processes, the Gauss—Markov processes are characterized by the property that the
inverse of their covariance matrix is tridiagonal, instead of cyclic tridiagonal.
Completing some earlier results of Beghi [4], we now extend this characterization
to the continuous time case. To do so, we restrict our attention to Gauss—Markov
diffusions (GMDs) for which the joint covariance matrix P of x(0) and x(T) is
positive definite.

In the following, the forward and backward first-order differences of a stochastic
processes x(-) are denoted respectively as

dtx(t,h) = x(t + h) — x(2) (2.40a)
d~x(1,h) = x(t) — x(t — h). (2.40b)

Then, if x(¢) is a Gauss-Markov diffusion over [0, 7], it satisfies a first-order
stochastic differential equation of the form

t+h

t+h
d*x(1) :/t A(s)x(s)ds—i—/ B(s)dw(s), (2.41)

t

where w(t) is a standard Wiener process, and B(¢)B*(f) = Q(t). Its covariance can be
expressed as

R(t,5) = {¢(” M) 125 2.42)
(5)¢*(s,0) s=1,
where ¢(z,5) denotes the transition matrix of 4, i.e.
o¢
S (15) = AWB(15) $(s,5) = I (2432)

and the state covariance II(f) = E{x(¢)x*(¢)} satisfies the Lyapunov equation
II(f) = A()II(F) + (1) 4*(t) + Q). (2.43b)

From the representation (2.42) for R(z,s) we immediately deduce that

oR ., _{A(I)R(t,s) t>s 244)

E(’s | 45(0)R(1,5) s>,
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where A, (1) 4 A(t) + Q(1)IT71(¢) denotes the state dynamics matrix of the backward
stochastic differential equation satisfied by x(¢). This implies that if x(¢) is a GMD,
its covariance R(z,s) satisfies separable boundary conditions

oK (0,9) = 40RO, (2:458)
O (1.9) = ATIR(T. ) (2.45b)

for 0 < s < T, where the positive-definiteness of P ensures that the matrices 4(7T)
and A4,(0) remain finite. This suggests that within the larger class of GRDs, the
GMDs are characterized by the feature that their corresponding Sturm—Liouville
BVP admits separable boundary conditions, as we now demonstrate.

THEOREM 2.2 x(t)is a GMD on [0, T] with P invertible, and with covariance R(t,s)
if and only if there exists a positive definite Sturm—Liouville operator Lg with separable
boundary conditions

1#(0) — Agu(0) = 0 (2.46a)
i(T) — Aru(T) = 0 (2.46b)

such that R(1,s) is the Green’s function of Lg.

Proof We have already proved necessity. To establish sufficiency, suppose Ly is a
Sturm-Liouville operator obeying the boundary conditions (2.46a)—(2.46b). Denot-
ing

Ay 0
A=[0° AT], (2.47)

the self-adjointness of Lg implies

Z=Q'A-AQ! (2.48a)
with
-1 _ -1
zé% (@6 oQ )(0) ~(Q“1G—OG*Q“)(T) . (2.48b)
Consider now the problem of constructing a factorization
L=MQ'M (2.49)
with
M=% 40 (2.50a)

dr
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for the formal operator L, where A(¢) denotes a r x n matrix function, and

M = —In%* A%(1) (2.50b)

represents the formal adjoint of M. Matching coefficients of the derivatives on both
sides of (2.49), we find 4(¢) must satisfy the Riccati equation

A+ A2 =F+GA 2.51)

as well as the algebraic constraint

(' 4-407)() =326~ G070, @.52)
Let
S 2@ - a0 106~ 60|, .59

If A(r) satisfies the Riccati equation (2.51), by taking into account the self-
adjointness relations (2.6a)-(2.6b), one gets

S=—4*S — S4. (2.54)
so that
S(r) =¢"(T,)S(T)(T, 1), (2.55)

where ¢(t,s) denotes the transition matrix of 4. Consequently, if 4 satisfies the
Riccati equation (2.51) and S(7') = 0, the constraint S{¢) = 0 is satisfied for all 1. To
ensure S(T) =0, we need only to select A(T) = Ar as initial condition for the
Riccati equation (2.51), where A7 is the matrix appearing in the BC (2.46b), since the
self-adjointness condition (2.48a) guarantees S{7) = 0. For this choice of initial
condition, the existence of a solution A4(¢) to the Riccati equation (2.51) over the
interval (0, 7] is proved in Lemma 2.2 below.
Given the resulting solution A(¢) to (2.51), we can define

H(t,s) 2 %—f (t,s) — A(DR(L, 5). (2.56)

The boundary condition (2.46b) gives H(T,s) = 0, which in combination with the
differential equation

LR(t,s) = M*Q '()H(t,s) =0 (2.57)

for ¢ > s, implies H(t,s) = 0 for ¢ > s. Thus, x(¢) is a Markov process with forward
state-space model (A(r), Q(1)). O
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Remark Comparing (2.46a)—(2.46b) to the BC (2.9) for general GRD, and using
the fact that the matrix « in (2.2b) which parametrizes the BC of a positive Sturm—
Liouville operator is unique up to left multiplication by an invertible matrix, we can
conclude that if x(r) is a GMD, its boundary covariance matrix P is such that
P~!' + Q7 '¥ is block diagonal, which in light of the identity (2.15) for K implies P~!
has the structure

-1 * —K-!
P _[_K* " ] (2.58)

where * denotes an unspecified entry, which was used in [4] to characterize the
GMDs with fixed reciprocal dynamics.

Our proof of the existence of a solution over [0, 7] to the Riccati equation (2.51)
with initial condition A4(T) = A7 relies on a variational characterization of the
smallest eigenvalue of Lg. First, observe by using the self-adjointness conditions
(2.6a)(2.6b) that L can be expressed” as

df _ du du
Lu:—E[Q IE—Su}—SE+Wu (2.59)
with
S 2076 - 600 (2.602)
W (1) é%(Q“F+F*Q“)(t). (2.60b)

Then, integrating by parts, it is easy to verify that for all ¥ € E, where E is the space
defined by the boundary conditions (2.46a)—(2.46b), we have (u, Lu) = J(u) with

u(0) ]
w(T)]’
2.61)

J() é/:[a* u]{?; _;J {Z]dt%—[u*(O) u*(T)](Q‘1A+A*Q‘1)[

where 4 is the matrix defined in (2.47). Furthermore, as shown in [28], section 6.3,
the smallest eigenvalue Ag of Ly admits the variational characterization

. J(u)
Ao = min ——% 2.62
" et JJu)? 262

where the minimization is performed over the space U of piecewise C' n-vector
functions over [0, 7], which contains E as a subspace. We can now prove the
following result.

% Note that for this representation of L, the matrix function ¢ needs only to be C', whereas S and W
must be C! and €Y, respectively.
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LEMMA 2.2 Let L be a positive definite Sturm—Liouville operator with separable
boundary conditions (2.46a)—(2.46b). Then, if Ar is the matrix appearing in the BC
(2.46b), the Riccati equation (2.51) with initial condition A(T) = Ar admits a solution
over (0, T)].

Proof Consider the system

HE s

with initial conditions
X(T)Y=1, Y(T)=Ar. (2.63b)

Then, as long as X(¢) is nonsigular, the matrix A(f) = Y (£)X~1(¢) solves the Riccati
equation (2.51). But X(¢) must be nonsingular over (0, T]. To see this, note that it
satisfies LX = 0 with the boundary condition (2.46b). Suppose there exists a time
to >0 and a nonzero vector ¢ € R" such that X(#)c = 0. We can always extend
u(t) 2x (t)c to the left of £y by an identically zero function. The resulting function is
piecewise C' and

J(u):/T[u* u*][gsl ;If][Z]dt—u*(T)Q‘l(T)ATu(T). (2.64)

ly

Integrating by parts gives

,
J(u) = / u* (1) Lu(t)dt — w*(£)Q " (ko) + u* (T)Q 7 ((T) — A7u(T)) =0, (2.65)

iy

so that we have constructed a nonzero function u € U such that J(u) = 0, which
violates the positive definiteness assumption for Lg. Thus X (¢) is invertible over
(0, T], and A(¢) exists over (0, T].

3 GRDS AS WEAK SOLUTIONS OF STURM-LIOUVILLE BVPs

Consider a continuous time GRD x(¢) over [0, T]. By analogy with the discrete-time
case considered in [21], we now proceed to demonstrate that x(r) satisfies a stochastic
BVP with “cyclic” BCs, i.e conditions which couple together first order differences of
the process x(-) at t = 0, T, and x(0), x(T). In addition to the forward and backward
first-order differences defined in (2.40a)—~(2.40b), the zeroth, first, and second-order
centered differences of x(-) are written as

d°x(t, k) = = (x(t + h) + x(¢t — h)) (3.1a)

b=

dx(t.h) = S(d (L, h) + dx(t,h) = = (x(t+ ) = x(t— ) (3.1b)

[
Mo —
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d*x(t,h) = d¥x(t,h) — d~x(t,h) = x(t + h) — 2x(¢) + x(1 — h)). (3.1¢)

When using this notation we will usually supress the 4 argument, as in d2x(¢).
It is shown in [17] (see also [20], [22]) that

E{d®x(0)|x(t — h), x(t + h)} = G()d' x(t)h + F()d’x(1)h* + o(h?) (3.2a)
E{d’x(t)d*x* (¢)|x(¢ — h), x(t + h)} = 20(0)h + o(H?), (3.2b)

where Q(7), G(t) and F(t) are expressed in terms of the covariance R(t,s) of x(-) as
indicated in (2.20a)-(2.20c). Consequently, the normalized residual

e(1,h) £ =0~ (0)[d®x(t) — E{d®x(1)|x(t — h), x(t + h)}] (3.3)
satisfies
Uh o[- 2X 0+ 60 LD (0 + Foasto)| 4ot (e
with
E{e(t,h)e*(t,h)} = 207 (t)h + o(K?). (3.4b)

Furthermore, the reciprocity property of x(z) and definition (3.3) of the residual
e(t,h) imply e(t,h) is uncorrelated with the process x(-) outside the interval
(t—ht+h),ie

E{e(t,h)x*(s)} =0 for |s—¢|>h. (3.5)

THeoreM 3.1 If x(t) is a GRD over [0,T), it satisfies the discretized stochastic
BVP

Lix(t) = £(t, h) (3.6a)
Byx = b(h), (3.6b)

with
Lt 2 070~ 20 + 60 G 0 + F)a%x(0) 37

and

mre —pq 1|0 e ry) et (338)
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where £(t, h) and b(h) represent respectively the discretized conjugate process of x(t) in
the interior and on the boundary of |0, T|, which satisfies

E{&(t,h)x* ()} = o(h°) for [t—s|>h (3.9a)
E{b(h)x*(s)} = o(k°) for se[h, T —hl. (3.9b)

Proof The expression (3.4a) implies £(z, h) = e(t, h)/h* + o(h°), so that (3.9a) is a
consequence of (3.5). Employing a simple projection argument, we find

E{d*x(0)|x(h),x(T)} = [S11x(h) + S12x(T))h + o(h) (3.10a)
E{d™x(T)|x(0),x(T — h)} = [Sux(0) + Sux(T — h)]h + o(h), (3.10b)
where
S = [g; *;;] 3.11)
satisfies

5(0,07)  GR(0,7)
F(T,0) F(T.T7)

SP = . (3.12)

Since the end-point covariance matrix P is not necessarily invertible, the equation

(3.12) does not specify S uniquely. However, consider now the scaled boundary
residual

2o [ S0, o
From (3.10a)—(3.10b)), we deduce it admits the expansion
% — —PQ"' % [jj;‘((g))] +T [;‘é%] +o(h?), (3.14)
where by combining (3.12) and (2.12) we find T obeys
TP = (1 + PQ¥)P. (3.15)
This implies
T=1+PQ '¥+YP! (3.16)

where Pt is a basis of the left null space of P, and Y is an arbitrary matrix of
appropriate dimensions. However, since

pt [;((g,ﬂ =0, (3.17)
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we can replace T by I+PQ~!W in the residual expression (3.14). Again, the
reciprocity property of x(-) and construction (3.13) of the residual r(h) imply it is
uncorrelated with the process x(-) over [h, T — 4], i.e.

E{r(h)x*(s)} =0 for se[h T —h. (3.18)

Observing that b(h) = r(h)/h + o(h®), this implies (3.9b). |

As h | 0, neither £(z,h) nor b(h) converge in a classical sense, which is to be
expected from the nonsmooth nature of the sample paths of x(¢). &(¢,h) does
converge in the sense of generalized functions to a random generalized function
&(r) defined in [20]. The limit of the boundary vector b(h) as & | 0 cannot be defined
as a separate entity, since b(h) contains components proportional to d*x(0)/k and
d”x(T)/h whose limits as h | 0 do not exist. However, the following lemma provides
some information about the statistical behaviour of b(k) as h tends to zero.

LemMaA 3.1 If x(¢) is a GRD over [0, T] with covariance R(t,s) the boundary vector
b(h) specified by (3.6b) satisfies

[R(0,0) R(0,T)] $=0
lim E{x(s)b*(h)} = 0 0<s<T (3.19)
o [R(T,0) R(T,T)] s_7

Proof For 0 <5< T, (3.19) follows from (3.9b). For s =0 and s = T, we can
recover (3.19) by evaluating the LHS of (2.18) at these two values of s, and being careful
to interpret 22 (0, s) at s = 0 as %(0+,0),2%¢(T,s) at s = T as %G (T, 7). O

Note that the BVP (3.6a)~(3.6b) can be formulated for any stochastic process x(-)
on [0, 7], in particular for any zero-mean Gaussian process with continuous sample
paths, regardless of reciprocality. However, in this case the driving noise £(z, ) and
boundary vector b(h) do not correspond any longer to the discretized conjugate
process of x(-), and do not satisfy the properties (3.92)-(3.9b). Our goal for the
remainder of this section is twofold:

(1) Givenazeromean Gaussian process with continuous sample paths a.s., but not
necessarily reciprocal, give a precise definition of what it means for x(¢) to solve
the BVP

Lx(t) = &(1) (3.20a)
Bx = b, (3.20b)

which is obtained by formally letting # | 0in (3.6a)—(3.6b), where Bis the linear
boundary functional defined in (2.9).

(2) Once a precise definition of (3.20a)—(3.20b) is obtained, use it to characterize
those zero mean Gaussian processes with continuous sample paths a.s. that are
reciprocal.
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We use the following result to motivate our proposed definiton for the solution of
(3.20a)—(3.20b).

LEMMA 3.2 Let u(f) € L2[0, T\ with ii € L2[0, T) be a solution of the deterministic
BVP

Lu(t) = f(1) (3.21a)
Bu=b, (3.21b)

where f () € L2[0, T} and b € R". Then, for all ¢ € E, where E is the subspace defined
by (2.9), we have

(Lo = 6.1+ |y @ 62)

where ¢* denotes the boundary vector

¢ =[¢"(0) ¢"(T) ¢*(0) ¢(T)] (3.23)

Proof* It is immediate from superposition that

T
u(t) = /0 R(t,5)/(s)ds + (1 (Dpa(O)]b, (3.24)

where R(t,s) is the Green’s function for Lg. That the 2nd term in (3.24) does in fact
satisfy the nonhomogeneous BC (3.21b) may come as a surprise but can be verified
directly. For ¢ € E, we use the representation (3.24) of u together with integration by
parts to get

— | Z —Q_1 I
where Z is the matrix given by (2.48b). From the self-adjointness of L it can be
shown that

Z=Q 'Y -¥Q!, (3.26)
from which (3.22) follows. [l

Now consider a zero mean Gaussian process x(¢), not necessarily reciprocal, and
having continuous sample paths a.s.. We can always apply the discretized operator
L, to x, as well as the discretized boundary functional B,. The results of applying
these operations are denoted as £(t,h) and b(h), respectively, so that we obtain a
discretized system of the form (3.6a)—(3.6b). For each h > 0, define the random linear
functional Y, on E by the rule ¢ € E — Y,(¢), where

N-1 .
Vi) 2 S 6 (el hh+ & | |Q bk, (3.27)
k=1 I
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with A = T/N and 1, = kh. Now define the random linear functional ¥ on E by the
rule ¢ € E — Y(¢), where

Y(4) £ (Lo, x). (3.28)

We have the following theorem.

THEOREM 3.2 Let x(t) be a zero-mean Gaussian process on [0, T| having continuous
sample paths almost surely. Then, for all ¢ € E, Y,($) converges almost surely to Y (¢)
ash |0, ie.

V6 € E Pllim YVy(¢)=Y(g)| = 1. (3.29)

Proof Although a fair amount of calculation is required, the basic idea is almost
trivial. We simply undo, at the discrete level, the integration by parts underlying the
definition of Y,(¢). Let w € € be such that x(w) € CI0, T (the set of such w’s has P
measure 1 by hypothesis). Applying summation by parts to Y(é,w) = Yu(¢) gives

N-2 d2 dl *
N0 = Y [-5(@9) - 5600 + A0 wxeh
k=2
+3[(G*07'9) (tn-2)x(tn—1) + (G*Q 7' )" (tw-1)x(1w))] (iia)
~ (G0 ') (1)x(t0) + (G*Q' )" (22)x(11)] (iib)
- " (3.30)
+ Q') (twv-1)x(twr) — T(Q‘lgb)*(zl)x(n ) (iii)
(071 (x ) (0) + (@79 () () (va)
+ ¢ [";P*]Q"b(h)- (ivb)

As h | 0, (i) converges to Y(¢), and the boundary terms (ii) through (iv) converge to

. d, . S [Q7Y - ¥ Q'] [x(0)

* 1 * T “ 1 * T *

(@0 'y sl + e ol +1 | & ST [HR)
From the identity (3.26) and the self-adjointness relation (2.6a), we can then
conclude that (3.31) is zero, thus proving Theorem 3.2. O

Remark The deterministic identity (3.22) suggests that Y(¢) admits also the
mnemonic representation

ro= [ swewa+s e (3.3

which at this point is purely formal.
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We recall that for 4 > 0 a GRD satisfies the discretized BVP (3.6a)-(3.6b), or at
h = 0 the mnemonic BVP (3.20a)-(3.20b). We can distinguish a GRD on [0, T} from
an arbitrary zero-mean Gaussian process having continuous sample paths a.s. by
means of the following characterization of GRDs:

THEOREM 3.3 x(t) is a GRD on [0, T if and only if
lim E{Y4(¢)x"(s)} = E{Y($)x"(5)} = ¢"(s) (3.33)

forallp e Eand 0 < s < T.

Proof  Since almost sure converges implies convergence in probability, we can
deduce from Theorem 3.2 that for all ¢ € E, the zero mean Gaussian random

variable Y(¢) — Y4(¢) converges to 0 in probability. From the Gaussian property it
then follows that

lim E{(Y(9) - ¥4(9))’} =0. (3.34)

Let (€2, F,P) be the probability space underlying the x(z) process. Then (3.34)
indicates that Y (¢) — Y4(¢) converges to zero in the Hilbert space L*(Q, F, P) of
scalar random variables having finite 2nd moment that are measurable with respect
to F. From continuity of the inner product in a Hilbert space it follows that

lim E{¥i(¢)x(5)} = E{¥(@)x(s)}, (3.39)

where x;(s) is the ith component of x(s), so that the first equality in (3.33) holds.
We need to show that the second equality holds iff x(¢) is a GRD. Now,

T T
E{Yn(¢)x"(5)} = E{ UO (ch)*(t)x(t)dt} x*(s)} = /0 (L) ()R(t,s)dt.  (3.36)
Clearly (3.36) equals ¢*(s) if and only if their transposes are equal, i.e. if and only if
T

/0 R*(t,5)(Lo)(£)dt = ¢(s). (3.37)

But

T T

| Reswawa= [* R ows 0 - oLaee, 639

where M is the integral operator whose kernel is R and whose domain is L2[0, 7.
Clearly ((M o Lg)¢)(s) = ¢(s) iff M = L;!, i.e. iff R is the Green’s function for Lg.
But by Theorem 2.1, R is the Green’s function for Lg iff x(¢) is a GRD on [0, T).
Note that (Lg! o Lg)¢ must equal ¢ throughout [0, T, not just on (0,7), by the
smoothness requirements of E. O
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Theorem 3.3 can be used to give a more precise interpretation to the mnemonic
representation (3.32) of Y(¢). Let ¢ and 6 be two functions in E. Then, from (3.33)
and the definition (3.28) of Y (), we find

E{Y(9)Y"(6)} = (¢, L6) = (Lg,0), (3.39)

which provides an implicit description of the combined statistical properties of the
generalized noise £(¢) and vector b. The statistics of £(¢) can be inferred from (3.37),
since when ¢ and 6 belong to the subspace C[0,T) C E, the boundary term
proportional to b drops out of the mnemonic representation (3.32) for Y(¢) and
Y (), and we can immediately deduce from (3.39) that £(¢) is a generalized Gaussian
process with zero-mean and covariance

E{E(0)¢"(5)} = Lib(t — ), (3.402)

which in light of (3.33) satisfies
E{&()x"(5)} = Lo(t — s), (3.40b)

and thus constitutes the conjugate process of x(-), as was already noted in [20]. On
the other hand, the boundary vector b is only a formal symbol, whose statistical
properties cannot be characterized independently of those of £(¢).

4 FIRST ORDER MODEL OF GRDs WITH NEGATIVE STRESS TENSOR

The objective of this section is to recast the n-dimensional stochastic Sturm-Liouville
BVP (3.20a)(3.20b) satisfied by GRDs into a 2n-dimensional first-order BVP of the
type examined in [17, 2, 26]. It turns out this is possible only for GRDs with a
negative definite stress-tensor. As background, we recall [20, 19, 22] that the
kinematics and dynamics of a reciprocal diffusion x(f) can be described in terms of
its probability density p(x,), mean velocity v(x,¢) and stress tensor m(x,t). For a
GRD these quantities admit the parametrization

p(x, 1) ~ A (0,R(t, 1)) (4.12)

v(x,t) = V(t)x = % <%—f(z+, 1)+ %—f (", z)) Rt )x (4.1b)
2 2

(1) = % <§t—£ (tt,0) + gr(;i(z‘, t)) —V()R(t,0)V*(1), (4.1¢)

and the conservation laws can be expressed compactly as

d

= - 42
SR=AQ+ QA 4.2)
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with
ol R(tt) R(t,)V*(1)
Q() [V(t)R(t, 0 w(t) + V(R 1) V*(t)] (4.32)
A 0 I,
A(t):[F(t) G(t)]. (4.3b)

The reader is referred to [10, 11] for a detailed study of the conservation laws of
GRDs. It is the stress tensor 7(f) that concerns us here.

Consider a GRD x(¢) over [0,7] and the mnemonic BVP (3.20a)—(3.20b) it
satisfies. Let also L = M*Q~'M be a factorization of L, where M has the form
(2.50a). As was shown in Section 2, the matrix A(z) specifying M must satisfy the
Riccati equation (2.51) and algebraic constraint (2.52), which as noted earlier holds
throughout [0, 7] provided it holds for one z. The existence of a matrix funtion A(¢)
satisfying both (2.51) and (2.52) over [0, T] can be established by noting that Lp is
positive definite, and adapting the argument of Lemma 2.2 to the case of Dirichlet
conditions (see p. 46 of [20] for a brief proof).

In [20], it was shown that for an arbitrary factor M, the generalized noise process
&(t) admits the representation

dw

&) =M™ (), (44)

where w(f) is a zero-mean Gaussian independent increments process taking values in
R", of intensity Q(¢), i.e.

tAS
E(wow 0} = [ 0, @.5)
with continuous sample paths a.s. Here ¢ A s = min(¢, s). Let
A 1A0) 0
A= [ 0 A(T)]' (4.6)
For the case when
CE2P+PQ (¥ -AP @.7)

is a covariance matrix, we now demonstrate that the counterpart of the
representation (4.4) for the boundary vector b takes the form

bh=-PQ! [:,:((2,))] +c, 4.8)

where ¢ is a zero-mean Gaussian random vector independent of w with covariance C.
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To give a precise interpretation to the formal expressions (4.4) and (4.8), note that
if we integrate by parts the formal representation

x(t) = /0 R(1,$)€(s)ds + b1 (1) va(t)]b @9)

of the solution of the mnemonic BVP (3.20a)-(3.20b), and substitute (4.4) and (4.8),
we obtain the alternate expression

X(t)=/0 (MR(s, )" Q7 (s)dw(s) + [11() ¥a(2)]e, (4.10)

which is now well defined, since the first term corresponds to a standard Wiener
integral, and the second term depends only on the Gaussian vector ¢. In obtaining
{(4.10), we have used to identity

[R(1,0) R(t, T)] = [1h1 (1) to(1)]P (4.11)

which is a direct consequence of the decomposition (2.17) for R, where R and R
admit the representations (2.13) and (2.16), respectively. We then have the following
result, which constitutes the justification of (4.4) and (4.8).

THEOREM 4.1  Let x(t) be a GRD with covariance R(t,s). If its corresponding second-
order differential operator admits a factorization L = M*Q~'M such that the matrix C
given by (4.7) is symmetric nonnegative definite, the zero-mean Gaussian process
specified by the RHS of (4.9) has covariance R(t,s), so that it constitutes a realization

of x(1).

Proof Let y(t) be the process defined by the RHS of (4.10). It covariance can be
expressed as

T
E(0)y'(9)} = / (MuR(u, )" Q™" () M, R(t, )du

sl

Wi(s) (4.12)

) ) C [

Integrating by parts, and taking into account (4.7), (4.11), and the boundary
condition (2.23), we find

E{y()y"(s)}
IR
= R(t,5) + [{1 (1) 1/)2(’)]{(1 +PQ™Y) [11:((;)1:53)} -PQ™ l% ((;)"7 ss))} }
R (4.13)

as desired. O
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The only issue left unresolved by Theorem 4.1 is whether we can always find a
factor M, or equivalently a solution A(-) of the Riccati equation (2.51) with side
constraint (2.52), such that the matrix C given by (4.7) is symmetric nonnegative
definite. It turns out that C is always symmetric, since

C-C=P[(Q'¥Y-¥Q')-(Q'A-AQ NP @14
=P[Z- (Q'A-AQH)|P=0, '
where we have the identity (3.26) and the side contraint (2.52) satisfied by A(-).
Unfortunately, as we shall see below, it is not always possible to select 4(-) such that
C is nonnegative. Specifically, such a construction can be accomplished only for the
class of GRDs with a negative definite stress tensor.

However, before establishing this result, we present an alternative construction of
the process x(¢) obtained in (4.10) for the case when C is nonnegative. As starting
point, note that when the formal identities (4.4) and (4.8) are substituted inside the
mnemonic BVP (3.20)-(3.20b) for x(t), we obtain

M Q! (Mx(t) - ‘;—vtv) =0 (4.152)
— (0) -1 di(x - W) (0)
[+PQ 'YW [x _pPQl| @ = (4.15b)
( x(r) 4(x—w) (T)
This new problem is also formal, but if we introduce the auxiliary variable
. dw
z(8) = Q7 ()| Mx(z) — =) (4.16)

the problem (4.15a)-(4.15b) can be expressed as a 2n-dimensional first-order
stochastic differential equation

J[‘ZQ] =H() [28} dt + m dw(i) (4.17a)
with two-point boundary value condition
8[] & 1+ PQ(¥ - A)) [;‘((g))] _p [_ZZ(?;)] —o (4.17b)
where
= [10 ’Oln]’ H() = [A(()t) ff)*((tt))]' (4.17c)

Since this stochastic BVP is of the form considered in [17, 2, 26], it is no longer
formal, and its solution can be expressed as a Wiener integral plus boundary terms.
The existence and uniqueness of a solution to (4.17a)~(4.17b) depends entirely on the
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well-posedness of the corresponding deterministic BVP, which can be established as
follows.

LEMMA 4.1 Let S be the subspace of vector functions [u*(t) v*(1)]" € C},[0, T] such
that

u
8" =, (4.18)
v
and denote by Ng the differential operator obtained by applying
AL d
N=J——-H(t 4.19
15 - H©) (4.19)

to functions in S. Then Ng is invertible if and only if Lg is invertible, and the
Green’s function I'(t,s) of Ns can be expressed in terms of the Green’s function
R(t.s) of Lg as

[ (MR 0)0) R(t,5)
R PV e RIS 7 ) AR

Proof If [u*(¢) v*()]” is a nonzero function of S such that
N[”(’i] 0, 4.21)

by observing that v(r) = Q~! Mu(t), we conclude that u is nonzero. Then eliminating
v from (4.21) and the boundary condition (4.18), we find Lu = 0 and Bu = 0. This
proves that Lg is invertible if and only if N is invertible. To show that the Green’s
function of Ng has the form (4.20), note that the Green’s function must satisfy

NI'(1,s) = L,6(t —s) (4.22a)

with
Ar(-,s) =0. (4.22b)
From the fact that R(t,s) satisfies LR(t,s) =0 with the boundary condition
BR(-,s) = 0, we can immediately deduce that the kernel I'(z,s) specified by (4.20)
satisfies NT'(¢,s) = 0 for > s and 1 < s, as well as the boundary condition (4.22b).

Consequently, to establish it is the Green’s function of Ng we only need to show that
it satisfies the jump condition

JI(tt,t) = T(¢7,0)] = b (4.23)

Since its (1, 2) block is R(t,s), which is continuous across the diagonal ¢ = s, the
(1, 2) block does not have any jump, as desired. The jump of the (2, 2) block is given
by

-0~ (1) (%—f(z*, 1) — %—I:(f, z)) =1, (4.24)
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where we have used the definition (2.20a) of Q. Proceding similarly, we also find the
jump of the (1, 1) block is I,,. Finally, the jump of the (1, 2) block can be expressed as

0? & 3] OR
At = - 00| (S0 - S0 - a0(G 0 -G 0)
OR OR  _ . ol
- (E<t+’t) —E(t ,z))A (t)]Q (). (4.25)
From (2.202) and (2.20b), we have
0°R &R, _ .
Eta_s(’+’ 1) — %(t 1) =(Q - GO)(1). (4.26)

Then substituting the definition (2.20a) of Q inside (4.25), and taking into account
(2.6a), we obtain

(QG" — GQ) — (@4" — 4Q) =0, (4.27)

N o=

—0ARQ =0 —-GQ+ Q4" - AQ =

where the last equality is a consequence of the side constriant (2.52) satisfied by A.
This implies that T obeys the jump condition (4.24), so that it is the Green’s function
of N S-. O

To obtain a complete expression for the solution of the stochastic BVP (4.17a)-
(4.17b), it is also useful to observe that

n(r) & Q_fﬁj}fp)l 0 Q_fpj}fp)z(t) (4.28)
satisfies
Nn(r) =0 (4.292)
with the boundary condition
B = L. (4.29b)

Then we have the following result.

THEOREM 4.2 Let x(t) be a GRD with covariance R(t,s). If its operator L admits a
factorization such that the matrix C given by (4.7) is nonnegative definite, x(t)
coincides up to law with the first component of the solution of (4.17a)—(4.17b), which
admits the representation (4.10).

Proof As shown in {17, 2], the solution of the stochastic BVP (4.17a)—(4.17b) can
be expressed as

[x(z)] _ /OTr(z,s) m w(s) + (). (4.30)
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Substituting the structure (4.20) and (4.28) of I'(z, s) and n(z), it is easy to verify that

the first component of the solution admits the representation (4.10), so that it has
covariance R(¢,s). O

Next, we derive a necessary and sufficient condition for the nonnegativity of the
matrix C given by (4.6). Let

T
wl = /0 o(T,5)0(s)¢* (T, s)ds (4.31)

be the reachability Gramian of the pair (4, 0'/?), where Q'/? denotes an arbitrary
matrix square-root of Q. Since Q(?) is positive definite for all ¢, the Gramian W~! is
positive definite. Then the factor 4(-) and C can both be parametrized in terms of W
as shown below.

LEMMA 4.2 We have
_ —K!
Q¥ -A)=-P"'2 -[ W } WK W), (4.32)

so that C can be expressed as
C=P-PP'P. (4.33)
Furthermore, the identity (4.31) implies
A(T) = 4n(T) - QT)W, 4.39)

which indicates that the inverse Gramian W specifies uniquely the initial condition
A(T) for the Riccati equation (2.51).

Proof Substituting the factorization (2.49) into the BVP (2.7)(2.8) satisfied by
¥i(1) with i = 1,2 gives

O (OMYi(1) = ¢*(a;, )W, (4.35)

where ¢; is a reference time, and W; a constant matrix. Integrating this expression
gives

Yi(t) = o(t,0)i(0) + /Ot o(t,5)0(s) 9" (a;, 8)dsW;. (4.36)

For i = 2, selecting @; = T and setting 1 = T in (4.36) gives W, = W. Similarly, with
a; = 0, one finds

Wy = —¢"(T,0)Wé(T,0). @.37)
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Then, substituting these identities inside (4.35) gives (4.32), where we have used the
fact that

K= 07(0)42(0) = Q7' (0)(My)(0) = ¢*(T,0) W. (4.38)

Comparing (4.32) with (2.58), it is easy to verify that the matrix P is the boundary
covariance matrix for a Gauss—Markov process X(¢) in the reciprocal class®. The
notation IT7'(0) = 0 means that all components of the initial state X(0) have infinite
variance.

Finally, the identity (4.34) corresponds to the (2,2) block of (4.32). It satisfies the
algebraic constraint (2.52), and thus provides a valid initial condition for the solution
A(-) of the Riccati equation (2.51). This identity establishes a bijection between
inverse Gramian matrices W and the solutions A(-) of (2.51). O

In the remainder of this section, it will be assumed that the endpoint covariance
matrix P is invertible. Then, the above discussion indicates that the problem of
finding a factor M of L such that the covariance matrix C of the boundary vector ¢ is

nonnegative reduces to one of finding a symmetric positive definite matrix W such
that

PICcP' =P ' —P (W) >0, (4.39)

where the dependence of P~! on W is denoted explicitly. The existence of such a W
can be characterized as follows.

THEOREM 4.3 Let x(t) be a GRD on [0, T| with stress tensor w(t), whose endpoint
covariance matrix P is invertible. Then, there exists a positive definite matrix W such
that (4.39) holds, or equivalently such that the matrix C in (4.6) is nonnegative, if and
only if n(t) < 0 on [0, T).

Proof Let
w o [~k W]
S(w) 2 [—K“] Pl . (4.40)
w

Clearly P~! — P~'(W) is the Schur complement* of the W diagonal block in ().
Since the inverse Gramian W is positive definite, (4.39) holds if and only if

(W) > 0. (4.41)

It turns out that this type of linear matrix inequality has been studied extensively in
the context of linear quadratic optimal control and stochastic realization theory [24].
Specifically, if D = —1,/2, R =P~ and

0 _ K1
w=) =[]

3 Two GRD:s are said to be in the same reciprocal class if they admit the same operator L, or following
the terminology of [9], if they have the same set of local reciprocal invariants.
4See [16], p. 656 for a definition of the Schur complement of a matrix.
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the inequality (4.41) can be rewritten as

DW + WD* WH* — H*
= < .
HW — H -R =0, (4.43)
which is exactly in the form considered in [24].
This means that we can characterize the solutions of (4.43) in terms of the so-
called Kalman—Yakubovich—-Popov positive real lemma [3]. Let

W ={W:W =W 5(W)=>0}, (4.44)

be the set of symmetric matrices satisfying the inequality (4.43). Then #  is
nonempty if and only if the s table rational matrix

A R - o 0 0
O . (s)=—-+H(sl,-D)" H=P "+ |k (4.45)
2 s+% 0
is positive real, i.e. if
0o £
O(s) =@, (s) + O (=) =P + | 5(‘)“ (4.46)
%+s

is positive for all s on the imaginary axis. Furthermore, there exists a one-to-one
correspondence between the elements of #” and the classes of equivalence of minimal
spectral factors ‘

S(s) = HE (4.47)
S+3

of ®(s). As a reminder S(s) is a spectral factor of ®(s) if @(s) = S(s)S*(—s), and two
spectral factors Sj(s) and S>(s) of @(s) are said to be equivalent if they are related to
each other through right multiplication by a constant orthonormal matrix T, i.e.,
S2(s) = S1(s)T with T*T = I,. Note that we do not restrict our attention to square
spectral factors. Each factor S(s) is parametrized by the matrices B and J, which in
turn specify a W in #~ through the identity

B
(W) = [J] (B* J*], (4.48)
which yields W = BB*.

However, positivity of ® everywhere on the imaginary axis is actually equivalent
to positivity of @ at the origin. To see this, let w be real and notice that

_ L, 0 L, 0 o o] Jo o
O(w)= | 4, (0O " 4 [+ ]y 2w [P 2| 449

1+2iw 1-2iw 1424w 1-2iw
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Clearly (4.49) is positive if and only if @(0) is.

By applying standard formulas for the inverse entries of the block matrix P, we
can explicitly calculate the block entries of @(0). The Schur complement of the (2,2)
block of @(0) can then be calculated explicitly. Denote this Schur complement as A.
Then

~A=R(T,T) - [R(T, 0) + %K} R71(0,0) [R(O, T)+ %K] : (4.50)

But —A is exactly the Schur complement of R(0,0) in the matrix E defined as

R(0,0) R(O,T)} 1[0 K] (4.51)

_[R(T,O) R(T,T)| "2|K 0

I

It follows that @(0) is positive if and only if E has signature (n,n), i. e., it has n
positive eigenvalues and n negative eigenvalues. But it is shown in [10] that

Di(n) (][0 ()]
[1/)1(!) wi(t)}“[wim d)z(,)] = Q(1), (4.52)

where () is given by (4.3a), so that E has signature (n, ) if and only if #(f) < 0 on
[0, 77. O

Remark The evolution equation (4.2) implies that the inertia of (), i.e., the
triple formed by its numbers of positive, zero, and negative eigenvalues, remains
constant for all ¢. Since the Schur complement of R(z, ¢) inside §2(¢) is 7(¢) and R(z, 7)
is positive definite for all ¢, the inertia of w(¢) is also preserved for all ¢. In particular
m(#) < 0 over the interval [0, 7] if and only if =(0) < 0.

To interpret Theorem 4.3, it is useful to use as benchmarks two important sub-
classes of the general class of GRDs, namely the Gaussian Markov and quantum
diffusions. They are characterized [22] by the property that

(1) = 3 QR (1,0Q() (4.53)

with ¢ = —1 in the Markov case, and + 1 in the quantum case. Thus, as expected, the
Markov diffusions satisfy the condition w(f) < 0, whereas the quantum diffusions,
which draw their name from the equivalence existing between their conservation
laws and Schrédinger’s equation [22], and for which (4.53) is an expression of
Heisenberg’s uncertainty principle, do not meet the condition of Theorem 4.3.

As the following theorem indicates, the class of GRDs with 7(f) < 0 contains in
fact all diffusions obeying first-order stochastic BVPs.

THEOREM 4.4 If x(¢) solves a well-posed first-order stochastic BVP of the form

dx = A(t)xdt + dw

(4.54a)
u = Upx(0) + Urx(T)
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where w(t) is a zero-mean Gaussian independent increments process with intensity Q(t)
and u is a zero-mean Gaussian vector independent of w with variance I, x(t) is
reciprocal with 7(1) < 0.

Proof Tt is shown in [17] that the well-posedness of the BVP (4.54a)—(4.54b) is
equivalent to the invertibility of x = Uy + Ur¢(T,0), where ¢(t,s) is the transition
matrix of 4 defined in (2.43a). We can therefore assume that y = 1, in which case
the Green’s function can be expressed as

_ J 9(£,0)Up9(0, ) 1>
) = {0 o0, (2o #33
Then, the solution of (4.54a)(4.54b) is given by
T
x(t) = ¢(¢,0)u +/ L(t, s)dw(s), (4.56)
0
where the integral is a Wiener integral.
The covariance of x(f) takes the form
T
R(t,5) = (00" (5,0) + [ Tlt, QI (s, 7)dr, (4.57)
0
and it is straightforward to verify that
9 R(t,s) = A()R(t,5) + Q()[* (s, ¢) (4.58)

ot

for t # 5. Then, if M is defined as in (2.50a) and L = M*Q~' M, the identity (4.58)
implies

LR(t,s) = M;T"(s,1) = L,6(t — ), 4.59)

where the last equality uses the fact that T'(¢,s) is a Green’s function for M. This
proves that x(¢) is reciprocal.
Using (4.58) to evaluate the expression (4.1b) for V' (), we find

V(e = A(f) + % (QS) () R™(1, 1) (4.60a)
with
S(1) AT, ) + T(r, 1) = ¢(£,0)(2Us — I,)$(0, 1). (4.60b)

Similarly, an evaluation of the expression (4.1c) for w(z) gives

(1) = AR DA () +5(0S YDA () + 5 AWD(SOE) ~ VR )V (1)
(4.61)

= 2 (08 (OR™(1,0(5Q)() <0
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which proves that solutions of BVPs of the form (4.54a)—(4.54b) have a negative
stress tensor. O

5 CONCLUSIONS

In this paper, we have shown that there exists a bijection between GRDs and positive
definite Sturm-Liouville operators, which identifies the covariance of a GRD with
the Green’s function of the corresponding Sturm-Liouville operator. This bijection
was used to construct GRDs as weak solutions of a stochastic Sturm—Liouville BVP.
For the case of GRDs with a negative stress tensor, a realization of GRDs in terms
of a 2n-dimensional first-order stochastic BVP was given. In doing so, we focused
our attention exclusively on self-adjoint boundary conditions with the same structure
as the homogeneous BCs (2.23) for the covariance R(z,s). However, since only
GRDs with a negative stress tensor can be realized as solutions of the first-order
BVP considered is Section 4, it is natural to ask whether the remaining GRDs could
be realized by considering first-order problems with different BCs. For the case of
initial conditions, preliminary results obtained in [18] suggest in fact that all GRDs
can be realized as components of a 2n-dimensional Markov process.
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