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The dynamics and kinematics of reciprocal diffusions were examined in a previous
paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffu-
sions admit a chain of conservation laws, which close after the first two laws for
two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffu-
sions. For the case of quantum diffusions, the conservation laws are equivalent to
Schrodinger’s equation. The Markov diffusions were employed by Schrodinger
[Sitzungsber. Preuss. Akad. Wiss. Phys. Math KI. 144 (1931); Ann. Inst. H. Poin-
caré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton
University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University,
Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of
quantum mechanics, called stochastic mechanics. We propose here an alternative
version of stochastic mechanics based on quantum diffusions. A procedure is pre-
sented for constructing the quantum diffusion associated to a given wave function.
It is shown that quantum diffusions satisfy the uncertainty principle, and have a
locality property, whereby given two dynamically uncoupled but statistically cor-
related particles, the marginal statistics of each particle depend only on the local
fields to which the particle is subjected. However, like Wigner’s joint probability
distribution for the position and momentum of a particle, the finite joint probability
densities of quantum diffusions may take negative values. © 1996 American In-
stitute of Physics. [S0022-2488(96)03402-8]

. INTRODUCTION

Since the early days of quantum mechanics, many researchers have attempted to formulate
quantum mechanics in terms of diffusions processes. These efforts were originally motivated by
the observation that as the real time ¢ is converted to imaginary time i, the Schrodinger and
Fokker—Planck equations, which describe, respectively, the time evolutions of the wave function
in quantum mechanics and the density of a Markov diffusion, are transformed into each other. This
is, for example, the correspondence that was exploited by Kac' to derive a stochastic interpretation
of Feynman path integrals.® This analogy has been used in recent years to develop a stochastic
formulation of quantum mechanics, called Euclidean quantum mechanics, which relies on Markov
diffusions.>* However, since this interpretation is based on the Wick rotation ¢— it, the resulting
stochastic models can be viewed as evocative analogies, but not as a picture of physical reality.

Other attempts at relating quantum mechanics and diffusion processes are more radical, in the
sense that they go beyond analogies and seek to demonstrate that these two theories are, in fact,
equivalent. This line of investigation was initiated by Schrodinger® in 1931, who focused his
attention on Markov diffusions. Unfortunately, Schrodinger’s work was somewhat premature,
since descriptions of Markov diffusions in terms of stochastic differential equations were not yet
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available, and as a consequence his results were not immediately exploited, and were taken up
only later by Zambrini® and Nagasawa.” Inspired by the early work of Fenyes.® a slightly different
approach was proposed by Nelson”'? and other researchers'' to formulate quantum mechanics in
terms of Markov diffusions. The key aspect of this theory, which is usually called Markovian
stochastic mechanics, is that it employs the calculus of stochastic differential equations to give a
precise meaning to kinematic quantities such as velocity and acceleration. Given the wave func-
tion of a quantum process, one associates to it a Markov diffusion with an identical probability
density, where the gradient of the wave function phase specifies the mean velocity obtained by
averaging the forward and backward drifts of the diffusion. However, like Bohm’s hidden vari-
ables interpretation of quantum mechanics,'? both the Schrodinger and Nelson versions of sto-
chastic mechanics are nonlocal, in the sense that a “quantum potential”” needs to be introduced to
relate the forward and backward Fokker—Planck equations of the Markov diffusions with the
Schrodinger equation of the matching wave function. This potential has the feature that for two
dynamically uncoupled and widely separated particles, changes in their joint probability density
affect immediately the forces acting on each particle. This lack of locality gives rise to significant
differences'®!® between Markovian stochastic mechanics and standard quantum mechanics.

We propose here an alternative form of stochastic mechanics based on a subclass of reciprocal
diffusions, called the quantum diffusions. Reciprocal processes were introduced by Bernstein in
1932, who was influenced by Schrodinger’s above mentioned attempt at a stochastic formulation
of quantum mechanics. Reciprocal processes were subsequently studied by Jamison,"> who
showed that over a finite interval, they could be constructed from Markov processes by applying
a change of measure to the joint probability distribution of the end-point values of the process.
This procedure can be used to construct reciprocal diffusions directly from Markov diffusions. In
Refs. 16 and 17, Krener showed that reciprocal diffusions satisfy locally a stochastic form of
Newton’s law, which in the Gaussian case,'® can be used to express reciprocal diffusions as the
solutions of second-order stochastic differential equations. In Ref. 19, a stochastic quantization
procedure was introduced to associate a class of reciprocal diffusions to a dynamical system
satisfied by its Hamiltonian. This construction was used to characterize the kinematics and dy-
namics of reciprocal diffusions. It was shown that reciprocal diffusions satisfy a chain of conser-
vation laws, which is generally infinite, but closes after the first two laws for two disjoint sub-
classes, the Markov and quantum diffusions. The quantum diffusions derive their name from the
equivalence existing between their conservation laws and Schrodinger’s equation for the associ-
ated Hamiltonian.

The stochastic mechanics described here associates to the wave function of a quantum system
a matching quantum diffusion. This construction selects, in the equivalence class of reciprocal
diffusions associated to a Hamiltonian, the diffusion which models the corresponding quantum
process. The quantum dlffusmns have the feature that the closure rule satisfied by their conserva-
tion laws is essentially equnvalent to Heisenberg’s uncertainty principle for the position and mo-
mentum variables. Unlike Markovian stochastic mechanics,'®!® the stochastic mechanics of quan-
tum diffusions is local, in the sense that given two dynamically uncoupled but statistically
correlated particles, the marginal probability density of each particle does not depend on the
parameters of the potentials acting on the other particle. However, one interesting feature of this
new stochastic mechanics is that the end-point densities that must be applied to model certain
quantum processes, such as the excited states of the harmonic oscillator, can take negative values.
The appearance of such negative densitigs should not come as a true surprise if one considers that
the finite joint densities for the positions at successive times obtained here form an extension of
the Wigner joint position-momentum distribution, 2021 which also has the feature of taking nega-
tive values. Note that the marginal density for the position at a single time is always positive, so
that, as argued in Ref. 22, the negativity of densities is not a real drawback, as long as one
considers that observable quantum events have always positive probabilities.

The paper is organized as follows. The stochastic quantization procedure used to associate a
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class of reciprocal diffusions to a dynamical system specified by its Hamiltonian is described in
Sec. II, where the dynamical properties of reciprocal diffusions are reviewed. In Sec. III, the
subclass of quantum diffusions is introduced, and a method is presented for constructing the
quantum diffusion matching the wave function of a quantum system. This construction is simpli-
fied for the case of Gaussian processes in Sec. IV, and then illustrated by considering the minimum
uncertainty wavepacket for a free particle and the ground state of the harmonic oscillator. In Sec.
V, we prove that quantum diffusions satisfy Heisenberg’s position-momentum uncertainty relation.
The locality property of quantum diffusions is demonstrated in Sec. V1. Finally, it is shown in Sec.
VII that negative probabilities must be allowed if one seeks to model certain quantum processes,
such as the excited states of the harmonic oscillator.

1. DYNAMICAL SYSTEMS AND RECIPROCAL DIFFUSIONS

As a starting point, we recall that a process x(¢) eR" defined over [0,T] is reciprocal if for
arbitrary subintervals [s,] of [0,T ], the process interior to [s,f] is independent of the process
exterior to [s,¢], given x(s) and x(¢). When x(-) admits finite joint probability densities, it was
shown by Jamison!® that x(-) is completely specified by (i) the joint probability density
p(x0.0;x7,T) of its values x(0) and x(T) at the ends of the interval [0,T]; and (ii) its reciprocal
transition density r(x,s;y,t;z,u), which is the conditional density of x(z)=y, given that x(s)=x
and x(u) =z, with s<t<\u. In order to correspond to a reciprocal density, a function r must satisfy
two conditions. First, it must be a probability density in y, i.e.

f r(x,s;y,t;z,u)dy=1, (2.1a)
and the identity

r(w,s;x,t;z,v)r(x,t;y,u;z,v)=r(w‘s;y,u;z,v)r(w,s;x,t;y,u), (2.1b)

must hold for all 0<s<t<u<uv<T. This last condition is the analog for reciprocal processes of
the Chapman—Kolmogorov equation of Markov processes. From this characterization, one can
immediately deduce that if a process is Markov, it is necessarily reciprocal, but the converse does
not hold, in general. Also, two reciprocal processes with the same transition density r(x,s;y,t;z,u)
are said to belong to the same reciprocal class, since they exhibit the same local stochastic
behavior.

Let R” be the standard n-dimensional Euclidean space with metric &;=1 for i=j, and =0
otherwise. Consider a dynamical system with Hamiltonian

H(x,p.0)=3(p'— A (x.0)(p;— Ai(x,1)) + $(x,0), (22)

where {¢,A;} denotes a scalar and vector potential pair, and where we employ the standard tensor
contraction convention with repeated upper and lower indices corresponding to a summation.
Under certain smoothness conditions for the potentials {¢,A ;}, a stochastic quantization procedure
was proposed in Ref. 19, which associates a class of reciprocal diffusions to the system (2.2).

The first step of this quantization procedure consists in replacing the momentum p; by —V;
inside the Hamiltonian H(x,p,t), where Vj denotes the differentiation with respect to x’. This
correspondence rule is the stochastic analog of the quantization rule p ;<> —iV; of quantum me-
chanics. This yields the elliptic operator

H=H{V'+A)(V;+4)+ ¢, (2.3a)

=IA+A'V,+HVA+AA)+ P, (2.3b)

J. Math. Phys., Vol. 37, No. 2, February 1996



772 B. C. Levy and A. J. Krener: Stochastic mechanics of reciprocal diffusions

where A denotes the Laplacian. Then the generalized heat operator,

d

L=H-—. 24

is the forward operator of a general Markov diffusion with unit diffusion matrix & drift
b'(x,t)=—A"(x,t) and creation/Killing rate

c(x,t)é%(AiAi—ViAi)(x,t)+ d(x,1). (2.5)

See Ref. 23 for a study of Markov diffusions with creation or killing. The Green’s function
G(x,s;y,t) associated to L is given by

Ly,IG(x’S;yvt):()’ t?S, (263)

G(x,55y,5)=8(x—y), (2.6b)

where the subscripts {y, ¢} specify the variables upon which the operator L is acting. To ensure that
G(x,s;y,t) represents the transition density of a general Markov diffusion, G(x,s;y,t) is also
required to decay as |y|—e.

Then, x(¢) is a reciprocal diffusion over [0,T] in the class associated to the Hamiltonian 2.2)
if given an arbitrary set of times ty=0<r;<---<ty=T, the joint probability density of
x(1g),x(ty),...,x(ty) can be expressed as

N-1
p(xo,Lo:3x .15 xn,In) =q(xg,5o 2XNJN)k[[0 G tesXer1:tks1)s 2.7

where the end-point density q(x,,0;x4,7) is positive and satisfies the normalization condition

ff q(x0,0;x7,T)G(x0,0;x7,T)dxg dxp=1. (2.8)

Since the Green’s function G(x,s;y,t) is completely specified by the Hamiltonian H(x,p,t), the
expression (2.7) indicates that all diffusions associated to a given physical system differ only by
the choice of end-point density g(x,0;x7,T). To verify that the finite joint densities (2.7) satisfy
the Jamison conditions (2.1a)-(2.1b), note that for s<t<u, the three-point transition density
r(x,s;y,t;z,u) can be expressed as

G(x,8;y,t)G(y,t;z,u)
G(x,s;z,u)

r(x,s;y,t;z,u)= (2.9

Then (2.1b) can be verified by inspection, and the fact that r(x,s;y,f;z,u) is a density in y is a
consequence of the transition property,

G(x,s;z,u)=f G(x,5;y,8)G(y,t;z,u)dy (2.10)
of the heat kernel G.

The end-point density g appearing in (2.7) is related to the joint probability density of x(0)
and x(T) through the relation

P(x0,0:x7,T)=q(x0,0;x7, TG (x4,0;x7,T). (2.11)
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From the structure (2.7) for the finite joint densities, we deduce that when the interval of definition
of a reciprocal diffusion is restricted from [0,T] to a subinterval [s,f] with 0<s<¢t<<T, the density
q(x,s;y,t) that needs to be applied to the new end points (s,?) is given by

Q(X,S;th)z j J’ G(X0,0;X,S)G(y,t;XT,T)q(X0,0;XT,T)dX() de' (212)

The expression (2.12) implies that g(x,s;y,t) with s<r satisfies the two evolution equations,
Lx,:q(x?S;y’t):O, (2133)
LY q(x.5:y.1)=0, (2.13b)

where L* denotes the adjoint operator of L.

Within the general class of reciprocal diffusions specified by the Hamiltonian H(x,p,t), it was
shown in Theorem 2.1 of Ref. 19 that the subclass of Markov diffusions has the feature that for
any subinterval [7,s] of [0,T], the end-point density g(x,s;y,¢) admits the separable structure

q(x,s3y,1)=qx,5)qs(y.1), (2.14)

where g¢(x,?) and q,(y,t) obey, respectively, the forward and backward heat quations,
Lgf(x,t)=0, L*q,(x,1)=0, (2.15)

with initial conditions g (x(,0) and q,(x7,T), respectively.
The identities (2.7) and (2.12) imply that the density p(x,r) of a reciprocal diffusion x(¢) can
be expressed as

p(x,t)=q(x,t;x,t):f f G(x0.0:x,8)G(x,t;x7,T)q(xg,0;x ¢, T)dxy dx7, (2.16)
so that it is completely fixed by ¢. In the Markov case, this expression reduces to

plx.t)=qdx,1)q,(x,t), (2.17)

which represents a modification due to Schrodinger of the standard representation for the density
of a Markov diffusion, where instead of viewing p as the solution of either a forward or a
backward heat equation, it is expressed as a product of components ¢, and g, propagating in both
time directions. These two components describe the information about the diffusion process speci-
fied at each end of the interval f0,7]. In Schrodinger’s attempt at reformulating quantum mechan-
ics in terms of Markov diffusions, which is further elaborated in Refs. 6 and 7, the identity (2.17)
is employed as a substitute for the usual representation,

p(x,t)=(x,t)¥*(x,1), (2.18)

for the density of a quantum process in terms of the wave function y(x,t) generated by Schrod-
inger’s equation. Unfortunately, as we shall see below, the potentials {A;,¢#} used to construct the
wave function i are inconsistent with those employed to generate the matching Markov diffusion.

In Ref. 19, several important properties of reciprocal diffusions were derived, which are now
summarized. We denote the mean position and the centered first- and second-order differences of
the process x(¢) as

Z(1,h) =Yt +Rh) +x(1—h)), (2.19a)
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d'x(t,h)= 10t +h)—x(t—h)), (2.19b)
dzx(t,h)=x(t+h)+x(t—h)—2x(t)A (2.19¢)
Then, it was shown in Ref. 19 that the three-point transition density r(x—uh,t—h;x,t;x+uh,t

*th) of x(t)=x given x(t*h)=x+uh can be approximated locally by a Gaussian distribution for
d’x(t,h) with mean

E[d2x"lx(z:h)=f:uh]=F“(f,u,z)h2+0(h5/2), (2.20)
and variance
E[d%x' d2xf'lx(trh)=fiuh]=2ha"f+0(h5’2). (2.21)
In relation (2.20), if
dA,.,=ﬂ{— oA (2.22)
axt  gx!

denotes the exterior derivative of A i

F =dA i—[22 | %A 2.23
i(x!u’t)_ ij(x’t)u a—xg E— (x’t)’ ( . )

represents the force applied to a particle with position x and velocity u due to the potentials
{A",¢}. Thus (2.20) can be viewed as a stochastic form of Newton’s law, since it states that the
conditional mean acceleration,

) d’x’
a’=E 72—

x(tth)=iith, (2.249)

for the process at time ¢ equals the force based on the mean position x(¢,h) and empirical velocity
u(t,hy=d lJc(t,h)/h estimated from the positions at times £+ 4. Note that this form of Newton’s
law is noncausal, since the conditioning is taken with respect to positions at times £—#4 and ¢+ 4.
From a physical point of view, we see that the local motion of a reciprocal diffusion is obtained by
superposing the classical motion specified by the force F; with some random fluctuations, which,
according to the expression (2.21) for the conditional variance, have a size proportional to 42,
Note also that the definition, (2.24) of the acceleration differs from the one employed by Nelson®19
+ in his derivation of Newton’s law for Markov diffusions. See Ref. 24 for a detailed comparison of
the two accelerations.

Let
M(a,b,t)2In g(a—b.t;a+b,t) (2.25)
and
_ 1M 0 2.26
Wi(a,f)—iw(a, ,t), (2.26a)
L oM 2.26b
Wij(a,t)—zm(a,o,t), (2.26b)
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3

8 a6 ab7 aoF (0 (2.26¢)

7ila, )=

Then, in addition to the above characterization for the mean acceleration, it was shown in Ref. 19
that the conditional density of the first difference d'x(¢,h) given the mean position x(¢,h), is
locally Gaussian with mean

E[d'x(1,h)|x(t,h)=x]=v'(x,t)h+ O(h?), 227
where
oI, R -Alx,)+wix,t), (2.28)
represents the mean velocity of the process, and with covariance
E[(d'x"—vi(x,0)R)(d'x/ —vi(x,0)h)|x(t,h) =x]= 8h12+ 7 (x,t) 2+ o(h?). (2.29)

By analogy with the kinetic theory of gases, for which the 1/h term of the covariance expansion
(2.29) is not present, we call a'/(x,1) the stress tensor of the Gaussian velocity distribution
specified by (2.27) and (2.28).

An important difference between the stochastic Newton law and velocity distribution obtained
above is that whereas the conditional distribution for d’x specified by (2.20)-(2.21) is the same
for all diffusions in the same reciprocal class, the velocity distribution given by (2.27)-(2.29)
depends on the density function g(x,s;y,t) through the functions w'(x,t) and 7Y(x,t), so that
different diffusions within a same reciprocal class will admit different conditional velocity distri-
butions.

Finally, it was shown in Ref. 19 that reciprocal diffusions admit an infinite chain of conser-
vation laws, which can be generated by considering the function g(x,;y,t) obtained by letting
s—t in the end-point density of the reciprocal diffusion over [s,¢]. The identities (2.13a)—(2.13b)
imply g(x,t;y,t) obeys the evolution equation

dq
E(x,t;y,t)=(HX’,—H;",,)q(x,t;y,t). (2.30)

Then, the function

m(a,b,t)2q(a—b,t;a+b,t), (2.31)
plays the role of generating function for the conservation laws. Specifically, by performing a
Taylor series expansion of m(a,b,t) in the vicinity of b=0 and taking into account the definitions
(2.262)—(2.26b) of w; and r;;,'we find m(a,b,r) admits the power series representation,

j9
) bibl
m(a,b,t)=p(a,t)| 1 +2wa,t)b'+4(7;;+ww;)(a,t) -
. bbbk
+8( Tt mwt mw+ mpw it wawiwe)(a,t) 6 teee, (2.32)

for small b. The chain of conservation laws of reciprocal diffusions is then obtained by performing
the change of coordinates x=a—b and y=a+b and matching successive powers of b on both
sides of (2.30). The constant term yields the law of mass conservation,
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ap

—+Vilpu)=0. (2.33)

The linear terms in b’ give the conservation of momentum,

d )
5;(pvj)+V’(pP,-j)=ij(x,v,t), (2.34)

where F; is the force defined in (2.23) and where, by analogy with fluid dynamics,
P,-j(x,t)é(Tr,-j+v,-vj)(x,t), (2.35)

is called the flux of momentum tensor. Finally, matching the quadratic terms in 5/b%, we obtain the
tensor form

d . . .
7 (pP; )+ Vi (pSy)=p(dA;; Py +dAy P+ fo+fiv)) (2.36)
of the conservation of energy. In this expression,

dA; ¢

filx,t)=— (-{; + @) (x,1), 2.37)

corresponds to the electric component (the part independent of v) of the force F;, and if we
introduce the tensor

. 1 %A
Tiplx, )= Tk 7 37k (x,1), (2.38a)
Sijk(x’t)é(o-ijk+ iUt Tt Ut o0, (), (2.38b)

represents the flux of energy tensor. Then, if we denote the internal energy by E = = jf/2,, and take
the trace of (2.36) by using the skew symmetry of the tensor dA,;, we obtain the scalar form

P
o \P

of the energy conservation law of fluid mechanics, where the term v jvj/2 represents the kinetic
energy.

The above procedure for generating the conservation laws of reciprocal diffusions makes clear
that they usually form an infinite chain, since each successive law contains a divergence term
involving the next conserved quantity in the chain. However for the Gaussian case, i.e., when

ij

| ) .
+ 5 Vi(pS:)=pfv’ (2.39)

| )
E+§l)jvl

A,—(x,t)ZA,-j(t)xj, ¢(x,t)=%¢,-j(t)xixj, (240)
are, respectively, linear and quadratic in x, and In g(x,0;x7,T) is a quadratic form of x, and x;,
the tensor 0;,(x,t) given by (2.38a) is identically zero, so that S, ;« depends only on the previous
conserved quantities in the chain. Inthis case, the chain closes after the first three laws. Specifi-
cally, in the Gaussian case, p(x,t) and v(x,#) admit the parametrization

p(X,t)=N(Xc(t),Kx(t)), (2413)

v(x,t)=xc(1)+ V(1) (x—x(1)), (2.41b)
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where N(m,K) denotes a normal distribution with mean vector and covariance matrix K. Here
x¢(t) represents the classical trajectory in the absence of random fluctuations and K, (t) denotes
the covariance matrix of x(r). The stress tensor ; does not depend on x, and can be represented
by an n X n matrix m(¢). Let

L(t)=AT(1)~A(1), (2.42a)

dA
Ly(t)=—®(1)— 7z (2.42b)

where A(7) and ®(¢) are the n X n matrices representing the tensors A ;j and ®,; in the parametri-
zation (2.40) of the covector and scalar potentials, and T denotes the matrix transpose. Then, the
conservation laws (2.33), (2.34), and (2.36) can be expressed compactly® as

40 .
?=AQ+QA s (2.43)
with
K, K.V
0=k, wrveyr) (2.442)
0 1,
A= Lo | (2.44b)
2 1

which obviously forms a closed system.

lil. CONSTRUCTION OF QUANTUM DIFFUSIONS

The general family of reciprocal diffusions contains two interesting and disjoint subclasses,
the Markov and quantum diffusions, for which the chain of conservation laws closes after the first
two. These two classes are characterized by the requirement that the functions w;(x,z) and
7;;(x,1) given by (2.26a)-(2.26b) must satisfy the closure rules,

W[-(X,t):V[S(X,t), (313)

€
mi(x,t)= 1 V.V, Inp(x,1), (3.1b)

where S(x,r) is an arbitrary function, and where e=1 for Markov diffusions and e=—1 in the
quantum case. Note that (3.1a) is satisfied whenever the exterior derivative of w;=v,+A; equals
zero. Using this last observation, it is easy to verify that for the Gaussian case, the closure rules
reduce to

Li()=V(5)—- V(). (3.22)
€
m(0)=—7 K1), (3.2b)

where K, V, and L, are as defined in (2.41)-(2.42). By using the representation (2.43) of the
conservation laws, we can also verify that if the closure rules (3.2) hold at one instant in time, at
that instant we have
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€

d L,+VvT v—d
Et_(l+ )—‘E n

T+

K;‘) =0, (3.3)

so that the closure rules continue to hold for the complete time interval over which (2.43) admits
a solution. In other words, once closed, the conservation laws remain closed.

For the non-Gaussian case, to discuss the consequences of the closure rules (3.1), it is con-
venient to rewrite the conservation laws (2.33), (2.34), and (2.36), which are expressed in Eulerian
form, in the equivalent Lagrangian form

oap . .
E+v,-V'p+p Viv;=0, (3.4a)
9, i i
p—57+pvinj+V(pvr,»j)—ij=0, (3.4b)
o)y i i i i
p 5 tpu; Vi +Vipoij) = pl(dAji= V) m'+(dA ;= Vu) 7], (3.4c)

Then, if we introduce the function

R(x,t)=15In p(x,t), 3.5

and use (3.1a) to specify S(x,t), it is easy to verify that under the closure rules (3.1a)—{3.1b), the
first two conservation laws can be expressed in terms of R and S as

R . . 1 _.
—(—97+(V’S—A’)ViR+ 3 ViV, S—A4;)=0, (3.6)
Vl(x,t)=0, (3.7a)
with
as 1 . . € )
I(x,n)& —~t3 (VIS-A NV S—A)+ o+ 5 (VIR V,R+AR). (3.7b)

The identity (3.7a) implies that I(x,r) depends on r only, i.e., I(x,t)=1I(f). At this point, it is
useful to note that for a fixed w;, the relation (3.1a) specifies S(x,¢) only up to a function of ¢, say
f(¢). This function contributes a term equal to f(¢) to I(r), which can be used to set /(r)=0. Thus,
under the closure rules (3.15, we have shown that the first two conservation laws are equivalent to
the coupled evolution equations (3.6) and (3.7b), with /=0, for R and S. Note that except for the
addition of the term —exw/2, with

Apllz
Ké_(viR V,-R+AR):——WZ—, (38)

the equation I(x,t) =0 is identical to the Hamilton—Jacobi equation of classical mechanics.
In the Markov case, for which e=1, if we denote

qx,t)=exp(R—S)(x,1), (3.9a)

qs(x,t)=exp(R+S8)(x,1), (3.9b)
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it is easy to verify that Eq. (3.6) and (3.7b) can be rewritten as the decoupled forward and
backward heat equations (2.15) for g, and g, . With this choice, the product

g x,t)g,(x,t)=exp 2R(x,t)=p(x,1) (3.10)

corresponds precisely to the identity (2.14) for the probability density of a Markov diffusion.
Similarly, for the quantum case, for which e=—1, if we introduce the wave function

P(x,t)=exp(R+iS)(x,1), (3.11)

the coupled equations (3.6) and (3.7b) correspond, respectively, to the real and imaginary parts of
Schrodinger’s equation,

oY
i —a}-——HQtﬁ(x,t), (3.12)

where we have set Planck’s constant =1, and where the Hermitian operator,
H,=§(—iV-AW~iV;—A))+ ¢, (3.13)

is obtained by applying the correspondence principle p;« —iV; of quantum mechanics to the
Hamiltonian H(x,p,t). The wave function Ax,?) obtained in this manner satisfies

|(x,1)|>=exp 2R(x,t)= p(x,t), (3.14)

and is thus consistent with the probability density of the quantum diffusion we are considering.

Comparing the coupled evolution equations (3.6) and (3.7b) for e=1 and e€=—1, one finds
that the probability density p of a quantum diffusion with potentials {A;,¢} is consistent with the
density of a Markov diffusion with potentials {A;,¢'}, where

&' =+, (3.15)

with « given by (3.8). This identification forms the basis for the reinterpretation of quantum
mechanics based on Markov diffusions proposed by Schrodinger’ and later refined by Zambrini®
and Nagasawa.'” In this respect, it is worth noting that the correction term « relating the physical
potential ¢ to the potential ¢’ of the matching Markov diffusion is identical, except for a factor of
2, to the “quantum potential” introduced by Bohm'? in his causal formulation of quantum me-
chanics in terms of hidden variables (see Ref. 26 for comprehensive accounts of Bohm’s theory).
The factor of 2 arises because the correcting potential that must be applied to the stochastic
Hamilton—Jacobi equation (3.7b) to transform the Markov motion (e=1) into a quantum one
(e=—1) is twice as large a$ the correction needed to go from the classical motion (e=0) to the
quantum motion. One problem associated with the introduction of a quantum potential is, of
course, that it implies an action at a distance whereby two widely separated particles can affect
each other instantaneously, thus violating the locality of classical physics, according to which the
dynamics of each particle should be governed only by local force fields.

Nelson’s stochastic mechanics’™!! relies also on Markov diffusions. However, unlike Schro-
dinger’s approach, which redefines the force fields to incorporate a quantum potential, it redefines
the acceleration. Specifically, for a Mérkov diffusion x(¢#), Nelson’s stochastic acceleration takes
the form

al(t)=%D_D,.+D D _)x(1), (3.16)

where D, and D _ denote the mean forward and backward derivatives corresponding to x(¢). In
flat space, and for an arbitrary tensor T(x,), these derivatives are defined as
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D T(x(¢),t)=lim l

E[T(x(t+h),t+h)—Tx(1),1)], (3.17a)
h—0 h
D _T(x(t),t)=lim ilz E,[T(x(t) 1)=Tx(t—h),t—h)], (3.17b)
h—0

where E, denotes the conditional expectation given x(t). It is shown in Ref. 24 [see Eq. (7.4)] that
for a standard Markov diffusion with forward drift b'(x,?), which corresponds to setting A'=—p'
and ¢=—(b'b,+V'b,)/2, and diffusion metric &, ;- the acceleration aj(t) satisfies

ap(t)=F'(x(6),v(x(r),1),6) + Vik(x(1).1), (3.18)

where F(x,uv,t) is the force defined in (2.23),
v(x(t),0)=5D,+D_)x(1), (3.19)

coincides with the mean velocity specified by (2.27), and « is the quantum potential given in (3.8).
Consequently, when Nelson’s acceleration is evaluated for a Markov diffusion with modified
potentials {A;,¢'}, we obtain

ay(t)=F(x(6),v(x(1),1),1), (3.20)

so that the acceleration equals the force associated to the unmodified potentials {A;,#}. Thus, even
though Nelson’s stochastic mechanics employs exactly the same Markov diffusions as Schrod-
inger’s theory, in the Newton law ma=F, where we have set m= 1, the correction term associated
to the quantum potential is shifted from the right to the left-hand side through a redefinition of the
acceleration. Not surprisingly, it was discovered that Nelson’s stochastic mechanics is nonlocal, a
feature that, although it is viewed as a virtue by advocates of Bohm’s theory (see Ref. 27 for a
discussion of stochastic mechanics from a Bohmian viewpoint), led Nelson (Ref. 10, p. 127) to
write “But the whole point (of the Markovian stochastic mechanics) was to construct a physically
realistic picture of microprocesses, and a theory that violates locality is untenable.”

The problem is, of course, that the conservation laws of Markov diffusions are not equivalent
to Schrodinger’s equation, and our objective here is to develop a stochastic mechanics, which
instead of focusing on Markov diffusions, will apply to the quantum diffusions obtained by setting
€=—1 in the closure rules (3.1). As a first step, we need to prove that such diffusions exist.
Specifically, in the specification (2.7) for the reciprocal diffusions associated to a Hamiltonian with
potentials {A;,&#}, the only element that does not depend on the physics of the problem is the
end-point density q(x,s;y,1). We need therefore to construct densities g such that the closure rules
(3.1) hold with e=—1. In addition, since we seek to model quantum phenomena, it would be nice,
if given a wave function ¥(x,t) satisfying Schrodinger’s equation, we could construct the match-
ing g directly from ¢. -

To elucidate the structure of the density g(x,s;y,t) for quantum diffusions, consider the
function M(a,b,t) defined in (2.25). Taking into account the definition (2.26b) of m;;(a,t) and
observing that

M(a,0,t)=1In p(a,t)=2R(a,t), (3.21)
the closure rule (3.1b) can be expressed as

M M
+
da* da' " ab* ab’

(a,0,1)=0. (3.22)
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This constraint is, of course, satisfied if

M *M
+
da* aa’ " ab* ab!

(a,b,t)=0, (3.23)

for all @ and b in R", where we recognize the Cauchy—Riemann conditions for an analytic
function of the n complex variables z*=a*+ ib*.
Specifically, M(a,b,t) can be viewed as the real part of an analytic function,

F(z,t)=M(a,b,t)+iN(a,b,!), (3.24)
with z=a+ib e, for which the Cauchy—Riemann conditions take the form

M N

—F = pF (3.252)
M aN
Ek- = - m . (3.25b)

These conditions imply (3.23). Furthermore, substituting (3.25b) inside the expression (2.26a) for
w, gives

oM N
2wk(a,t)=£;(a,0,t)=—m(a,O,t), (3.26)

so that the closure rule (3.1a) is also satisfied with
285(a,t)=—N(a,0,t). (3.27)

To summarize, the end-point density g(x,#;y,t) obtained by shrinking to zero the interval of
definition [s,2] of a reciprocal diffusion corresponds to a quantum diffusion, provided

q(x,t;y.t)=exp M 5 T (3.28)

y+x y—x )
AR

where M (a,b,t)=Re F(z,t) is the real part of an analytic function of z. Furthermore, from (3.21)
and (3.27), the evaluation of F(z,t) for z=a+i0 eR" gives

Fa+i0t)=M(a,0,t)+iN(a,0,t)=2(R(a,t)—iS(a,t))=21In y*(a,?), (3.29)

Le., F(z,t) can be viewed as obtained by analytical continuation of the function 2 In *(a,t)
defined over R". Note that this’is only possible as long as p(a,r) =| ¥(a,t)|* does not admit nodes,
1.e., values of a for which the density is zero. When nodes are present, In ¢*(a,t) has singularities,
so that a straightforward analytic continuation is not possible, although F(z,¢) can still be defined
as a meromorphic function.

To analyze the effect of the nodes of p(x,t) on the end-point density, let ln ¢(z,t) with
z=a+ib denote the analytical continuation of In y{a,t) to C". Then the expression (3.28) for the

end-point density can be rewritten as 5

+x —-X
e ed ,t) (3.30)

Q(x,ﬁ%t);ll/f( 5 —iT

so that whenever p(x,¢) has a node at x=x,, g(x,t;y,¢) has a node at x=y=x,. Note also that the
structure (3.30) of the end-point density is the analog for quantum diffusions of the separable
structure (2.14) of Markov diffusions.
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Assuming at this point that a function q(x,t;y,t) of the form (3.28) has been constructed, to
obtain the end-point density q(x,s,y,t) for an interval [s,7] of nonzero length, we can either
propagate the evolution equation (2.132) backward in time, with initial condition ¢(x,t;y.1), or
propagate (2.13b) forward in time starting from g(x,s;y,s). In both cases, this corresponds to
propagating a heat equation in an unstable direction, i.e., we are trying to push back the heat
toward its source. Consequently, solutions will usually exist only over a finite time interval, thus
suggesting that quantum diffusions have generally a finite lifetime. In addition, although g(x,
t;v,1) given by (3.28) is always non-negative, for s<t, the solution q(x,s;y,t) of (2.13a) or
(2.13b) may become negative for some values of x and y, as will be shown in Sec. VII.

IV. GAUSSIAN PROCESSES

The construction procedure we have just outlined can be simplified further for the case when
the potentials {A, ¢} have the structure (2.40) and the wave function t(x,t) is Gaussian, in which
case the corresponding quantum diffusion is a Gaussian process. Specifically, following Ref. 10,
Sec. 16, assume that

In ¢(x,0)=R(x,0)+iS(x,1), (4.1a)

with
R(x,1)= = 3(x=x (D)) R(6) (e =x (1)) + fr (1), (4.1b)
S(x,0)= 30— xc())S(1) (x—x (1) +xTp (1) + £5(1), (4.1c)

where fg(t), f s(#) are functions of ¢ only. x~(¢) denotes the classical trajectory of the particle, and
pe(t)=xc(f)+A'(xc,t) represents the momentum along this trajectory. In this case,

p(x.0)=|y(x,0)|? (4.2)
is a Gaussian distribution with mean x(¢) and covariance matrix
K(t)=R™Y(1)2. (4.3)

Since 2 In y*(a,r) is quadratic in a, its analytical continuation is obtained by replacing a with
z=a+ib, which gives

Fz,0)= = @=xc()TR(D &= xc(1) =iz =xc(1))S(1)z —x (1))~ 2i2Tp (1) +fF(,),(4 N

where fp(t) depends again on ¢ only. Taking the real part, we find

M(a,b,t)y=—(a—b ;xc(t))TR(t)(a+b—xC(t))+ 2bTS(t)(a—xc(t))+2prC(t) + fult).
(4.5)

Substituting this expregsion inside the identities (2.26a)—(2.26b) for w(a,t) and the stress tensor
7(a,t) gives

wla,0)=pc(6)+S(t)(a—xc(1)), (4.6a)
R(t)
7'r(a,t)=—2—. (46b)

Clearly, 7 satisfies the closure rule (3.1b), and (4.6a) can be rewritten in terms of the mean
velocity v'=w’'—A" in the form (2.41a) with
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V(6)=S(¢)—A(1), @.7

where A(r) denotes the matrix representing the tensor A; ; in (2.40).
Next, the expression (3.28) for g(x,t;y,t) yields

1 —xe(t)
In g(x,£53,0)= = = [(x=x (1) (= xe(6))T10(1,0) ;‘_’;EE,)
(¢)
=[x o =xe)) L5 11,0, @“8)
with
_[S(t) R(1) }
g(t,t)= R(t) -S| 4.9)
Assume now that g(x,s;y,t) has the structure
In g(x,s;y,6)=— % [ —xc(s) 6 —xc())710(s,1) J;:iz((":;]
—[=xc(s) G =xc() Tp(s,t) + £, (5,1), (4.10a)
with
( t)_{Qn(s,t) Qxy(s,t)} (4.10b)
QD=0 (5.0 0,0 :
Pi(s.t)
p(s,t)= py(s,t)}’ (4.10¢)

By substituting this expression and the representation (2.40) of the potentials {A,,¢} inside the
heat equation (2.13a) for g(x,s;y,t), we find it reduces to the ordinary differential equations,

dQ | Qu—AT(s) P(s) 0

_Z(Svt)'—[ ny ][Qxx_A(s) Qxy]+[ 0 0}7 (411)
d . . AT(s)(p,—A -
“ﬁ(s,,):{g:”](px_m)xds)~xc(s))_[ (0.~ A(s)xc(5) (S)XC(S)J,

(4.12)

where @ is the matrix representing the tensor ®, ; in (2.40). By observing that the position x - and
momentum p ¢ for the classical trajectory, satisfy Hamilton’s equations,

oH

XC=5;=pC—AxC, (413&)
, oH
pC:'——a'x‘:A (pC_AxC)—¢Xc, (413b)

it is easy to verify that the differential equation (4.12) is satisfied by

ps,t)=pc(s), py(s,t)=—pc(t). (4.14)
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Thus, once the classical trajectory has been evaluated, to specify the end-point density g(x,s;y,t),
we only need to solve the matrix Riccati equation (4.11) for s<t, with initial condition (4.9).
To illustrate the above results, we consider two simple examples: the minimum uncertainty
wave packet and the coherent state of the harmonic oscillator.
Example 4.1: For a free particle, we have

A(x,t)=o(x,t)=0, (4.15)

so that the Green’s function,

1 (y—x)?

G(x,s;y,t)= m exXp— '2‘0_—”

(4.16)

is the standard heat kernel. The wave function corresponding to a minimum uncertainty wave
packet centered about the classical trajectory xo(f)=xy+ vt is given by

(x~xo—irfug)? rivg 417
Ylx,0)= aA(r+it/r)? exp 2(r?+it) 2 @.17)
The real and imaginary parts R and S of In ¢ have the form (4.1b)—{(4.1c) with
r t
R()= 5, S(O)=—=— (4.18)

rt+e rt+e?
and where the momentum p ~(t) =v, along the classical trajectory remains constant. The density
p(x,t) is therefore Gaussian, centered about x(t), with standard deviation,

2\ 172

1
Ux(t)— ;72—

t

r2+ ;f 4.19)

The momentum density, which is obtained by Fourier transforming i{x,t), and squaring the
resulting transform, is also Gaussian with mean v, and standard deviation,

o,(t)=—. 4.20)

The position-momentum uncertainty product,
o (o, (1)=5(1+21r")"72, 4.21)

equals the Heisenberg lower bound of § at =0, which explains why this process is called a
minimum uncertainty wave packet. The factor r represents the ratio of the position and momen-
tum standard deviations, i.e., their relative spreading, at t=0.

According to (4.7) and (4.6b), the mean velocity and stress tensor of the quantum diffusion
modeling this process are given by

v(x,t)=vo+ t(xr:—j_i(ztﬁ, (4.22a)
r2
7r(x,t)= m (4.22b)
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Note that as t—oo, the mean velocity,
v(x,t)~vg+ (x—xc())t=(x—xg)/t, (4.23)

is obtained by modeling trajectories passing through x at time ¢ as straight lines originating from
xo. Solving the Riccati equation (4.11) yields

Q(s,n)=

t r?
r2 ’ (4'24)

r*+st -5
which specifies g(x,s;y,1).

Since both g(x,s;y,t) and the Green’s function G(x,s;y,?) are Gaussian, the process x(t) is
Gaussian, so that it is entirely described by its mean and autocovariance functions. By combining
the expressions (4.10) and (4.16) for g and G, we find that for s<z, the Jjoint density of x(s) and
x(t) is given by

x
p(x,s;y,t)=G(x,s;y,t)q(x,s;y,t)=N([ cts) ,P(s,t)), (4.25a)
xc(t)
where
1 r2+s2r? r2+st/r2—(t—s) )
=— 4.25b
P(s,t) 2| rttstirt—(1—s) r2+ 122 ? ( )

denotes the covariance matrix of x(s) and x(¢). Thus, if z(z) =x(¢) —x(t) represents the devia-
tion of x(z) with respect to the classical trajectory, z(t) is Gaussian, with zero mean, and auto-
correlation function

K(t,5)=E[z()z(s)]=5(r* +1s/r*—|t—s]). (4.26)
Taking into account Newton’s law and the characterization of Gaussian reciprocal diffusions given

in Refs. 18 and 25, we find that over an arbitrary interval [0,T], z(¢) satisfies the second-order
stochastic differential equation,

Frz(t)y=&(1), (4.27a)
d2
B2 — s (4.27b)
with Dirichlet conditions
z(0)
L(T)]~N(O,P(O,T)). (4.28)

The driving noise &), which is usually called the dual or conjugate process of z(¢), is a gener-
alized Gaussian process independent of z(0) and z(7), with zero mean and autocorrelation

E[£(1)E(s)]=Zrd(t—5). (4.29)
The Green’s function of %r can be used to decompose the solution of (4.27)—(4.29) into a

component depending only on the noise &) and a component representing the effect of the
boundary conditions, so that over [0,T], z(¢) can be represented as

J. Math. Phys., Vol. 37, No. 2, February 1996



786 B. C. Levy and A. J. Krener: Stochastic mechanics of reciprocal diffusions

B T—t¢ t
Z{(t)=B(r)+ 5 z(0)+ T «T), 4.30)

where B(r)=W(t) —tW(T)/T is a Brownian bridge process, independent of z(0) and z(T). Since
the interval length T is arbitrary, the quantum diffusion corresponding to a minimum uncertainty
wave packet has an infinite lifetime. This can also be seen by noting that a stochastic model
equivalent to the one obtained above is given by

Z(t)=W(t)+z(0)(1—=1t/r?), 4.31)

where W(1) is a Wiener process independent of z(0). See Ref. 28, Sec. 5 for general results on the
representation of scalar Gaussian reciprocal processes in terms of the Wiener process.
Example 4.2: The harmonic oscillator has for potentials,

(wx)?
5

A(x,1)=0, ¢(x,1)= 4.32)

Since the Lagrangian L(x,p,t)=px—H(x,p,t) is quadratic, the Green’s function can be ex-
pressed (see Ref. 2, Sec. 3.5) as

G(x,s;y,1)=C(t—s)exp—Sc(x,5;y,1), (4.33a)

where

Sc(x,s;y,t)=f L(xc,xc,u)du (4.33b)

denotes the action for the classical path linking x(s)=x to x(r) =y, and C(t—s) is a function of
t—s. Evaluating S yields

Se=3 Sin(wOZt—s)) [ +y?)cos(w(r~5)) = 2xy], (4.34a)

and substituting (4.32a) inside expression (2.10) for the transition property of the Green’s function,
we can identify

w 12

—-s)=—— ] . 34

Cli=s) (277 sm(w(t—s))) (4.34b)

An important property of the Green’s function G(x,s;y,r) is that, viewed as a function of y, it

- decays as |y|— for t—s<m/2w, but for (t—s5)>n/2w, it grows exponentially with y, so that the

Green'’s function does not exist for intervals of length larger than T=m/2w, which represents

one-quarter of the period of the harmonic oscillator.

The wave function corresponding to a coherent state centered about the classical trajectory

xc(£)=1cos(wt), where | denotes the oscillation amplitude, takes the form (4.1) with

R(t)=w, S(1)=0, (4.35)
and where the momentum along the classical trajectory is given by Pc(t)=xc(t)= —lw sin(wr).

According to (4.7) and (4.6b), the mean velocity and stress tensor of the quantum diffusion
modeling this process are given by

v{x,t)=pc(1), (4.36a)
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m(x,0)=w/2. (4.36b)

Note that since the mean velocity v(x,) does not depend on x, the wave packet does not undergo
any deformation with time and retains its coherence, hence the name of the process. The solution
of the Riccati equation (4.11) is given by

1)
cos(w(t—s))

Q(s.t)=

sin(w(f—s)) 1 }

. 4.37
1 sin(w(t—s)) “37)

Both ¢(x,s;y,t) and G(x,s;y,t) are again Gaussian, so x(¢) is a Gaussian process. The joint
density of x(s) and x(t) takes again the form (4.25a), with

1
P(s,t)= —

7 (4.38a)

1 y(t—s)
y(t—s) 1 ’

where

cos(w(t—s)+ m/4)
cos(/4) ’

Y(t—s)=cos(w(t—s))—sin(w(t—s))= (4.38b)

denotes the correlation coefficient of x(¢) and x(s). Note that for Ht—ys) to be a correlation
coefficient, its magnitude must be less than unity, which requires ¢ — s < /2. Thus, the deviation
2(1)=x(t) —xc(t) of x(t) with respect to the classical trajectory x~(#) is Gaussian, with zero
mean and autocorrelation function

1 cos(w(t—s)+ m/4)

K(t,s):E[z(t)z(s)]=ﬁ cos(7/d) ) (4.39)

This process, which is called the shifted cosine process, was introduced by Carmichael, Massé,
and Theodorescu,” while completing a classification of scalar stationary Gaussian reciprocal
processes proposed earlier by Jamison.*® In Ref. 18, it is shown that this process is defined over a
finite interval of length T=7/2w, and satisfies the second-order stochastic differential equation,

Fuz(t)=&(r), (4.402)
Iy a’ 2
Fy=— P7 (4.40b)
with boundary condition
2(0)=—z(T)~N(0,1/(2w)), (4.41)

where the driving noise &¢) is a generalized Gaussian process independent of z(0) and z(T), with
zero mean and autocorrelation )

E[£(1)&(s)]= % 8(1~s). (4.42)

The relation (4.40a) shows that the dynamics of the shifted cosine process are those of an
oscillator subjected to random fluctuations &#). The noise &) is not white but has a local
correlation structure depending on the oscillator dynamics %}, . The lifetime 7/(2w) of the shifted
cosine process corresponds to only one-quarter of the period of the harmonic oscillator. To con-
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struct a model valid for longer periods of time, since the ground state of the harmonic oscillator is
stationary, it is natural to expect that its model should not depend on the choice of time origin. The
boundary condition z(7/(2w))=—z(0) therefore suggests the rule

2+ m/(2w))=~2(1), (4.43)

for extending z(-) to all times. However, this choice implies Z(ttnalw)=z(t) for n integer,
whereas Heisenberg’s position operator satisfies X(t+nm/w)=(—1)"X(r). This difference, and
in particular its effect on the evaluation of multitime quantum correlations, requires further analy-
sis. (]

V. POSITION-MOMENTUM UNCERTAINTY

Although the position-momentum uncertainty relations form a corerstone of standard quan-
tum mechanics, their role has been somewhat diminished in the development of Markovian sto-
chastic mechanics.’' This difference arises in part from difficulties in giving an operational defi-
nition to the momentum process.’? Indeed, unlike the Hilbert space formulation of quantum
mechanics, where position and momentum play completely symmetric roles, stochastic mechanics
privileges position variables. While this last feature is retained by the stochastic mechanics of
quantum diffusions described here, the position-momentum uncertainty relations will regain a key
role. Specifically, we show they are a consequence of the closure rule (3.1b) with e=—1, and are
thus characteristic of quantum diffusions.

As a starting point, consider the empirical momentum process,
pH(th)=uk(1h) + AR (x(1),0), .1

where u(t;h)=d lx(t;h)/h is the empirical velocity of the diffusion. The expression (2.27) for the
conditional mean of d'x(¢;h) given the mean position x(z;4) implies

E[pk(t;h)lf(t;h)=x]=vk(x,t)+Ak(x,t)+o(l)=wk(x,t)+o(l), (5.2)

so that as #—0, the conditional mean of the abstract momentum process p(t) given the position
x(t) can be defined as

E[p*(£)|x(r)=x]2 lim E[pk(t;h)li(t;h)=x]=wk(x,t). (5.3)
h—0
Taking into account the closure rule (3.1a) gives

Elp,()]= f wi(x,0)p(x,0)dx = f (e, )V S(x, ) (x,t)dx= f PH(x.0) (=i Vih(x,1))dx,
(5.4)

so that the usual correspondence principle,
P —iVy, (5.5)

holds for this momentum definition. .

The correlation matrix of the abstract momentum p(1) is harder to define, since according to
the characterization (2.27), (2.29) of the velocity distribution, the empirical momentum pX(t;h)
has a size proportional to 412, However, following Ref. 2, p. 179, we can define it as the
correlation of the empirical momentum evaluated for two successive infinitesimal time intervals.
Specifically, we consider
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[ h ok hoh\ [ dit )(dxl_
g = —pll = = D)= 28 pak ]| 250 gt
”(’ 2’2)"(’ 2’2) (h AT

/oA

: (5.6)

where dx . =*(x(1* h)—x(1))/h. Observing that the cross-product of the forward and backward
differences d"x and d”x can be expressed in terms of the centered first- and second-order
differences d'x and d’x as

dx® dx' =d'x* d'x' - tdPxt dix, (5.7)

and using expressions (2.21) and (2.29) to evaluate the conditional covariances of d’x and d'x
given the mean position x(z;h), we find

E[p(t+h12;h12)p' (1 — hI2,h12)|%(t;h) = x]= 7 (x,0) + u* (x, ) w!(x,0) + o(1).  (5.8)
This implies
E[p"(t)p"(D)|x(r)=x]= lim E[p*(t+h12;h12)p'(t—h12,h12)|%(t;h) = x]
h—0
=M, +wh(x,w!(x,1). (5.9)

Taking into account the closure rules (3.1a)—(3.1b), it can then be checked that
E[Pk(f)Pl(’)]=f (Tt wew ) (x,t)p(x,t)dx
=j G0 (— 5 ViV R(x,0)+ V. S(x,0)V,S(x, 1)) (x,1)dx

=j lﬁ*(xvt)(—vkvl(/](xvt))dx) (510)
so that we have again the usual correspondence principle,
pip1—=(—iV)(=iVy). (5.11)
Note, however, that this correspondence depends on the unusual rule employed in (5.9) to evaluate
the conditional correlation matrix of the momentum given the position.

From expressions (5.9) and (5.3) we see that the entries of the conditional covariance matrix
K, |x(t) of the momentum p(t) given the position x(¢) take the form

Kppei(x,0)=cov(p(8),p(0)|x(2) = x)= my(x,1). (5.12)

Taking expectations, this implies

E[Kplx,kl(x(l),’)]:f my{x,t)p(x,t)dx. (5.13)

On the other hand, the covariance matrix” K »(1) of p(¢) is given by

K, u(t)=cov(p(1),pi(t))= J’ Lamx, ) + (i, 0) = E[p(£) D(w (x,8) — E[p(£) )T p(x,t)dx.
(5.14)
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Comparing (5.13) and (5.14), we obtain
K ()= E[K, ()], (5.15)

which just expresses the fact that the knowledge of x(¢) reduces the momentum variance.

Our derivation of the position-momentum uncertainty relations relies on the following lemma,
which is an adaptation of standard results of Bayesian estimation theory.

Lemma 5.1: Let X be a random vector of R" with probability density p(x). Its mean vector
and covariance matrix are denoted by m and K, respectively, i.e.,

E[X¥]=m*,  E[(X*—m*)(X'-m')]=K*. (5.16)

Then, if we consider the Fisher information matrix J with entries

Ju=—E[V,V,In p(X)], (5.17)
the matrix
K -—I
P= g (5.18)

is non-negative definite. If K is positive definite, this implies
J=K1. (5.19)

Proof: Consider the random vectors A=X—m and B=V In p(X). Both have zero mean, A
has covariance matrix K, and

Jd Jd
E[AkB,]=E{(X"—m") 7 In p(X)]=f (xk—m")(ﬁ In p(x))p(x)dx

= f %i (x*=m*)p(x)dx=— &, (5.20a)

d J a d
E[Bsz]:E[W In p(X) > In P(X)]=J' 7% In p(x) 7 In p(x)p(x)dx

P
= —f o In p(x)p(x)dx=Jy;. (5.20b)
The identities (5.20) indicate that the matrix P given by (5.18) is just the covariance matrix of A
and B, and thus must be non-negative. In this covariance matrix, J— K ™! is the Schur complement
of the (2,2) block K, so that it is non-negative. ]

The Lemma 5.1 can be combined with the quantum closure rule (3.1b) to derive the following
result.

Theorem 5.1: If x(¢) is a quantum diffusion with position covariance matrix K (1), it satisfies
the matrix position-momentum uncertainty relation,

‘K, ()=E[K,()]=iK, (1), (5.21)

where the conditional covariance matrix K p|x(t) and the covariance matrix K p(1) are specified by
(5.12) and (5.14), respectively.

Proof: Let J(1) denote the Fisher information matrix corresponding to the quantum diffusion
x(t) with density p(x,t). Taking into account (5.13), the closure rule (3.1b) implies
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E[K,(0)]= (1), (5.22)

which, when combined with inequalities (5.15) and (5.19), yields (5.21). |

The key step in the above derivation was the use of the quantum closure rule to derive the
equality (5.22). This implies that the uncertainty relation (5.21) is specific to quantum diffusions
and may not hold for other reciprocal diffusions. Also, as expressed in (5.21), the position-
momentum uncertainty relation is slightly stronger than the usual version, since it holds for the

averaged conditional covariance matrix E[Kp|x(x(t),t)] of the momentum, given the position.

VI. LOCALITY

An important test for evaluating the realism of stochastic formulations of quantum mechanics
is whether such formulations preserve locality. Indeed, in spite of the existence of interpretations
of quantum mechanics, such as Bohm’s theory,”® which are apparently nonlocal, when viewed as
a set of computational rules for evaluating statistical averages, quantum mechanics is inherently
local, in a sense that will be described below. Unfortunately, as was demonstrated in Ref. 10,
Markovian stochastic mechanics does not have this property, and must therefore be rejected as a
proper model of quantum phenomena. In contrast, we show that the new form of stochastic
mechanics described here is local.

To demonstrate this fact, consider a general reciprocal diffusion,

xl(t)}

x,(¢)

x(t)= (6.1)

not necessarily of quantum type, but where the components x,(¢) and x,(¢) are dynamically
uncoupled. This means that the Hamiltonian (2.2) admits the decomposition

H(x,p,t)=H (x1,p,t)+ Hy(x5,p3,1), (6.2)

where {A (x,,1),¢(x,,0)} and {A,(x,,t),¢,(x,,t)} are the potentials affecting each of the
diffusion components. From the form (6.2) of the Hamiltonian, we can deduce that the Green’s
function G(x,s;y,t) corresponding to H can be factored as

G(x,5;y,0)=G(x;,5;¥1,8)Go(x2,5:y2,1), (6.3)

where G, and G, are the Green’s functions corresponding to H, and H,, respectively. This
structure can be used to derive the following result.

Lemma 6.1: Let x(t) be a reciprocal diffusion with two dynamically uncoupled components
x (1) and x,(¢). Then each component x(¢) or x,(¢) considered separately is a reciprocal diffu-
sion. Furthermore, if x(¢) is a quantum diffusion, its component x,(¢) is of quantum type if and
only if the function R and § given by (3.5) and (3.1a) admit the additive decomposition,

R(X,t):R[(xl,t)+R2(X2,t), (643.)
S(X,f):Sl(xl,t)+Sz(X2,t), (64b)
or equivalently if the wave function (s,r) decomposes multiplicatively as

Wlx,t) = (x1.0)hy(x,,1). (6.5)

Proof: Substituting (6.3) inside expression (2.7) for the joint density of x(z,), x(£,),....x(fy)
and integrating over the x, components, we find that the marginal joint density of
x(19),x{ty),...,.x (ty) can be expressed as
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N-1
pilxio.toixy .1 ;“~;X1N’tN):QI(xlOvtO;xlN’tN)k[[O Gt X et e 1) (6.6)

where the end-point density ¢,(x,,s;y,,?) is given by
‘II(XI»S;)’IJ):[ Ga(xa,85y2,1)q(x,5:y,1)dx; dy,, (6.7)

with x"={xT x7] and y'={y!,yI1. The structure (6.6) of the finite joint densities of x,(¢) indi-
cates it is a reciprocal diffusion. However, if x() is a quantum diffusion, there is no guarantee that
x (1) will also be of the quantum type. Specifically, consider the partition

vi(x,1) mlx,t)  mp(x,e)

vy(xn) | TRO=

(6.8)

v(x,t)={

mu(x,1)  y(x,t)
of the mean velocity and stress tensor in terms of their x; and x, components. According to the

characterization (2.27) and (2.29) of the velocity distribution, the mean velocity vi'(x,,t) and
stress tensor 7y (x,¢) for the marginal probability distribution of x(-) can be expressed as

UT(le):f v (x,0)payi(xg,tlxy ,0)dxy, (6.9a)

"T(Xhl‘):f 7Tn(xat)P2|1(x2,f1x|»t)dxz+f W (x.t)—vT(x.1))
X(v,(x,t)—v'l"(xl,t))Tp2|1(x2,t|x,,t)dxz, (6.9b)

where Pzn(xz,f[xl ;1) denotes the conditional probability density of x,(¢) given x,(). Note that
since the covector potential A; depends only on x/,

vi(x)— ot x ) =w(x,0) —wi(x,,). (6.10)
Then if x,(¢) is a quantum diffusion, w{* and 7" must satisfy the closure rules,
wi(x,6)=V8(x,,1), (6.11a)

-1
w';'(x,,t)valv{m pi1(x,,1), (6.11b)

where p,(x,t) defiotes the marginal probability density of x,(r) and V, is the gradient with
respect to x;. Substituting these closure rules and the closure rules for x(¢), we find that after
integration by parts, (6.9b) can be rewritten as

1 .
02’4— f Vl In pzll(vl In p2|1)rp2“ dX2+f (WI_WT)(WI_WT)szll de, (612)

which implies

«

O=V1 In p2“=V1(R(x,t)—Rl(xl,t)), (6133)
O0=w —wi=V (S(x,1)=5,(x,,1)), (6.13b)
so that R and S admit the decomposition (6.4). O
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Note that the conclusion that dynamically uncoupled components of quantum diffusions need not
be quantum diffusions is consistent with the standard interpretation of quantum mechanics, which
holds that statistically coupled components of a quantum process cannot be analyzed separately. It
is also worth observing that the multiplicative structure of the decomposition (3.5) is preserved by
the Schrodinger equation (or the equivalent conservation laws of quantum diffusions), so that if
(3.5) holds for one ¢, it holds for all ¢.

Nevertheless, as indicated by Lemma 6.1, dynamically uncoupled components of quantum diffu-
sions are reciprocal diffusions. This result is now employed to demonstrate locality. We use the
fact that if ¢x,7) is the wave function of two dynamically decoupled, but possibly statistically
coupled particles, quantum mechanics has the following locality property. Let O, be a Hermitian
operator involving only the position and momentum operators of x(¢). Then, since the Heisen-
berg representation O,(¢) of O, depends only on the Hamiltonian H, the inner product,

(#(x,1),0,¥(x,1)), (6.14)

is independent of the potentials {A,, ¢»}.

Theorem 6.1: Let x(¢) be a quantum diffusion constructed from a wave function with two
dynamically uncoupled components x,(¢) and x,(#). Then, the end-point density ¢ ,(x,s;y.t) of
x (1) does not depend on the potentials {A,,¢,} acting on x,(1).

Proof: The argument is patterned after that of Ref. 10, Theorem 23.1. Setting s=¢ in (6.7), the
end-point density of x, takes the form

ql(al—bl,t;aﬁ-bl,t):j exp M(al,az,bl,O,t)daz

= f exp{M(ay.a;,b,,0,t)—M(a;,a,,0,0,1)]p(a,,a;,t)da;,
(6.15)

where p(x,,x,,t) is the joint density of x{(¢) and x,(¢). But in (6.15),
M(al ,a?_,bl,(),t) _M(al ,az,0,0,t) :RC[F(Zl ,az,t)—-Z In lﬂ*(al ,az,t)], (616)

where F(z,,z,,t) is the analytical continuation of 2 In ¢*(a,,a,,t). Since in expression (6.16),
zy=a,+i0 is real, the analytic continuation needs to be performed only with respect to the z;
variables, which requires taking derivatives of 2 In ¢*(a,,a,,t) with respect to the entries of a,
only. Noting that ¢q,(a;—b,.t;a,+b,t) is non-negative real, by integrating (6.15) against an
arbitrary function f(a,), we find

J flapg(a,—by,t;a;+by,t)da,=(Y(a,,a,,1),0,(b)¥(ay,a,,1)), (6.17)

where O,(b,) is Hermitian, so that the left-hand side of (6.17) does not depend on {A,,¢&,}. Since
f(ay) is arbitrary, this implies that the end-point density q(x,,#;y,t) does not depend on the
potentials {A,,¢,}. a

To illustrate this result, we consider an example used by Nelson in Ref. 10, pp. 125-126 and
Ref. 13 to demonstrate that his version of stochastic mechanics is nonlocal.

Example 6.1: Consider a quantum diffusion x(z) with components x,;(r) and x,(¢), which
correspond to the positions of two correlated but dynamically uncoupled particles, where the first
particle is free and the second is a harmonic oscillator with frequency w and rest position x,4. The
initial wave function is given by
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I 1
W(x,0)= L (x—x0) K1 (0)(x—xq), (6.18a)
with
2 1
Kx(0)=[l 1J (6.18b)
and
x0=[z£ ) (6.18¢)

where the rest positions x;, and Xy of the two particles are assumed to be widely separated. Then,
although x (1) and x,(r) are statistically correlated, the locality property requires that the statistics
of the x(r) process should not depend on the frequency w. This is due to the fact that, in the
absence of any instantaneous action at a distance, the first particle does not know which frequency
@ has been selected for the harmonic oscillator.

To verify that this is the case, note that since the Hamiltonian is quadratic and the initial wave
function is Gaussian, the wave function remains Gaussian and can be expressed as

¢(x,1)=expl = 5(x = x0) ¥ (1) (x = x¢) + a(1)], (6.19)

where a(t) denotes a normalizing constant. Then the Schrodinger equation reduces to the Riccati
equation,

av
[ ——=—L+¥OV¥, (6.20)
dt
where
® 0 0
“lo o 6.21)

is the matrix representing the scalar potentials of the free particle and harmonic oscillator. Solving
this equation with initial condition 2K (0) gives

(4+in)B(1)—4iw sin(wr) 2

V()= ——

B(e) 2 2 cos(wt) + é sin(wt) | (6.222)

with
B(t)=cos(wt)+2iw sin(wt). (6.22b)

Then the real and imaginary parts R(x,¢) and S(x,t) of In y(x,1) take the form (4.1b)—(4.1¢) with
xc(t)=xg, pc(t)=0, and

5 t? r
+ — — ——
2 cos(wt) ie sin( wt)

QR() '=K(1)= . (6.23)

t 1
cos(wt) — ie sin(wt) cos? wr+ ol sin?(wt)
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t
- —w sin(wt)— 7 cos(wt)

K (6)S()= (6.24)

T ie sin( wt) (Ela—w) sin(wt)cos( wt)

Fourier transforming ¢Ax,?) and squaring the magnitude of the resulting transform, we also find
that the momentum process p(¢) has a zero-mean Gaussian density with covariance matrix

-1
x

4

K, ()= 2 +S()K (2)S(1). (6.25)
Since §(0)=0, the process x(r) has minimum uncertainty at ¢ =0,

‘The end-point density g (x,¢;y,t) takes the form (4.8)—(4.9), and to complete the construction
of the quantum diffusion corresponding to the wave function (6.19), we would need, in principle,
to evaluate g(x,s;y,) by propagating the backward heat equation (2.13a). However, this compu-
tation is rather tedious. A simpler approach consists in observing from the characterization of
Gaussian reciprocal diffusions in terms of their Newton law given in Ref. 18, that for an interval

[0.T] over which it is defined, z(t)=x(¢) — x, is a solution of the second-order stochastic differ-
ential equation,

Zrz ()= §,(1) (6.26a)
Buza(t)=§&(1), (6.26b)
with Dirichlet boundary conditions
z(0)

where

z{ K. (0) K(O,T)} (6.275)

K(T,0) K(T)
In this equation, the operators % and % are given by (4.27b) and (4.40b), respectively, and the

noises £,(¢) and &(¢) are two independent generalized Gaussian processes, independent of z(0)
and z(7), with zero mean and autocorrelations

E[£(1)€,(s)]=Frb(t~5), (6.28a)
E[£(0)€y(5))=Zyd(t—5). (6.28b)

In (6.27b), K(t,5)=E[z(t)z"(s)} denotes the matrix autocorrelation of z(t), which still remains to
be determined.

In our analysis, the length T of the interval is selected as one-quarter of the period of the
harmonic oscillator, i.e., T=m/2w. Then, the Green’s functions of the operators %5 and %, with
homogeneous Dirichlet boundary conditions at =0 and =T are given by

-

t
( 1- —)s, for t=y,

Cp(t,s)= ( T (6.29)
t

N

1- T)’ for s=1¢,
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and

1
— cos(wt)sin(ws), for t=s,

Cylt,s)= (6.30)

|
— sin{wt)cos ws, for s=t.
)

As shown in Ref. 18, the solution of the stochastic boundary value problem (6.26)—(6.28) can be
expressed as

T—1t t
Zl(t):11(1)+TZ1(0)+'7‘,','Z[(T), (6.31a)
22(1) =15(t) + cos(wt)z,(0) + sin(wt)z,(T), (6.31b)
where
T
I;(t)=f [ p(t,5)€(s)ds, (6.32a)
0
T
L()= f [ p(2,5)€:(s)ds, (6.32b)
0

are two independent zero-mean Gaussian processes with covariances I' z(¢,s5) and I' (¢, 5), respec-
tively. This implies that I,(¢) is a Brownian bridge process, i.e., I,(t)=W,(£)—tW (T)/T, where
W (-) is a standard Wiener process. The only element missing in the above specification of z(t) is
the correlation matrix K(0,T) of the end-point vectors z(0) and z(T). Evaluating the autocorrela-
tion function of the solution z(f) given by (6.31), and comparing with the expression (6.23) for
K (1) gives

-1 o
2

E[2(0)z'(T)]1=K(0,T)= Ll (6.33)

2w

from which we deduce that the autocorrelation of the process z(t) is given by

ts |t—s|
K (t,s)=E[z((D)z,(s)]=2+ 72 (6.34a)
K(t,s)=E[z;(t)z5(s)]=cos( ws)— 4t—w sin{ ws), (6.34b)
1 1
Ko (t,s)=E[z2(£)z5(s)]= — 5o sin(w|t—s|) +cos wt cos ws+ 507 sin ot sin ws.
(6.34¢)

From (6.34a), we see that the covariance function of the x,(¢) =z(¢) +x, process is independent
of the frequency w of the harmonic oscillator, thus demonstrating locality.

[t is also worth noting that the components z,(¢) and z,(¢), viewed as isolated processes, are
not quantum diffusions. To verify this fact, note that according to Lemma 6.1, z; and z, are
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zero-mean Gaussian reciprocal diffusions. Given such a diffusion with autocorrelation K(¢,s), it is
shown in Ref. 18 that the matrix V(¢) parametrizing the mean velocity in (2.41b), and the stress
tensor m(7) can be expressed as

_1(01( . K N\ 635

V(t)*z E(t ,t)+?(t ,t))K (¢.1), (6.35a)
1 2 2

’TT([)ZE ((” s o+ FYrY (t',t))AV(t)K(t,t)VT([). (6.35b)

Applying these expressions to the autocorrelation functions K| and K, in (6.34a) and (6.34c) gives

t/4 |
Vl(t):m, Wl(t):m:i-l(;ll(t), (6363)
1
Vz(t)Kz(t,t)=(%—w)sin(wt)cos(wt), {6.36b)
o I
my(t)=|2| cos*(wt)+ o sin®(wr) =3 sz (1). (6.36¢)

Thus, the stress tensors 7,(r) with i =1,2 are proportional to the inverse covariances K;ll(t), but

the coefficient of proportionality is 3, instead of }, as required by the closure rule (3.2b). 0

Finally, it is worth noting that the reciprocity property of quantum diffusions can be viewed as
locality in time, in the sense that given x(¢—h) and x(¢+ k), the position x() is conditionally
independent of x(s) for s outside the interval [t —h,t+ k], so that, in some sense, the stochastic
mechanics of quantum diffusions achieves locality in both space and time.

VIl. NEGATIVE PROBABILITIES

For all the quantum processes considered up to this point, such as the Gaussian processes of
Sec. IV, the end-point density g(x,s;y,) of the quantum diffusion associated to the wave function
#(x,t) was always positive. Unfortunately, this property does not hold when p(x,1)=|¢(x,1)|?
has some nodes. To see this, note that the density g(x,¢;y,r) obtained from (3.27) is non-negative
but takes zero values whenever x=y =x,, where x;, denotes an arbitrary node of p(x,?). But the
heat equation (2.13a) for g(x,s;y,r) with s<r implies that it satisfies the integral equation,

q(x,t;y,t)Zf G(z,83x,6)q(z,s;y,t)dz. 7.1)

In this expression, the Green’s function G(z,s;x,t), which is the transition density of a Markov
diffusion with creation or killing, is positive for all z and x. Consequently, zero values on the left
side of the above identity can only occur if the integrand q(z,s;y,t) takes both negative and
positive values. To illustrate this phenomenon, consider the excited states of the harmonic oscil-
lator.

Example 7.1: The wave functions corresponding to the eigenstates of a harmonic oscillator
with frequency w are given by

.
x2

@ 1/4 1 ®
. — 12 I I
lpn(x*t) (Tr) (znn!)lﬂ H,,((l) X)CXP [ 2 tiw

n+ %) t}, (7.2)

where the H,(y)s are the Hermite polynomials. They satisfy the recursion
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Hn(Y):ZyHn—l()’)_z('l—l)H,,_z(y), (733.)
for n=2, with
Ho(y)=1, H|(y)=2y. (7.3b)

Since ¢, (x,r) depends on ¢ only through its phase, the probability  density
Pr(x.0)=p,(x)=|¢,(x,0)|* of each eigenstate is time invariant. In (7.2), n=0 represents the
ground state of the harmonic oscillator, and n=1 the excited states. Note that the ground state is
obtained by setting x~(¢) =0 in the coherent state examined in Example 4.2. The excited states

have nodes at the values of x corresponding to zeros of the Hermite polynomials H, (0"x). For

example, for the first two excited states, py(x) has a node at x=0, and p{(x) has nodes at
x=*1/(2w)"*. This implies that the function
2In yi(a,0)=—wa*+21n H,(0"a)+f,(1), (7.4a)
with
1 w
fa()= ) ln(;r—) —ln(22n!)+iw(2n+ 1), (7.4b)
has logarithmic singularities at these nodes. Consequently, the function

Fo(z,t)=-wz’+2In H,(0"2)+f,(1), (1.5)

obtained by analytic continuation of 2 In ¥*(a,t) is meromorphic. Its real part,

M, (a,b)=—w(a*—b*)+In[|H,(w"(a +ibD21+ fag (7.6a)
with
_l w 2
fun=3In = ~In(2%1), (7.6b)

has the feature of being time invariant. From (2.26b)-(2.26¢), we find that the mean velocity and
stress tensor of the quantum diffusions modeling the eigenstates of the harmonic oscillator take the
form

vplat)=v,(a)=0 (7.7a)
2
 2da?

77,,(a,t):7r,,(a)=§ In H,(w'"%a), (7.7b)

for values of a that do not correspond to nodes of p,(a). The zero value of the mean velocity just
reflects the stationarity -of the eigenstates.
Then the expression (2.35) for the end-point density gives

w\ 12
qn(x,t;y,t):(;) P, (x,y)exp—wxy, (7.8a)
where X
| y+x y—x
_ 12 4
P, (x,y) Za H,,(w ( > i— )) (7.8b)

is a polynomial of degree 24 in x and y. In particular,
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Po(x,y)=1, Pi(xy)=w(x’+y?), (7.9a)
Py(x,y)= t[(Awyx—2)+40*(y?—x?)?]. (7.9b)

Note that ¢,(x,t;y,t) does not depend on ¢, and, as expected, g,(x,¢;y,?) has a node at x=y=0
and ¢,(x,1;y,t) has nodes at x=y * 1/2w)""*.

To solve the backward heat equation (2.13a) for ¢,(x,s;y,f), it is convenient to perform the
transformation

qn(x,5;y,0)= P (x,5;y,0)qo{x,5:y,1), (7.10)

where go(x,s;y,1) is the end-point density for the ground state of the harmonic oscillator. It can be
evaluated by setting x(t) =p (1) in the expression obtained for the coherent oscillator of Ex-
ample 4.2. This gives

(sin{fw(r—5))(x*+y?)+2xy)|, (7.11a)

qo(x,s;y,t)zD(t‘S)eXP[_ 2 cos(w(t—s))

with

@ 172
D(I—S)Z(m) . (7.11b)

Note that since the initial condition qy(x,#;y,t) does not depend on ¢, and the spatial part,

-
T2

d2
E—z-+(wx)2) (7.12)

of the heat operator L, | is time invariant, gy(x,s;y,t) depends only on ¢—s. Under the transfor-
mation (7.10), the heat equation (2.13a) for g, is transformed into the equation

117 J | 9 P 0 7.13
3o o nqo(x,s,y,t)g W(x,53y,1)=0, (7.13)

for P, with s=<t. Since

J
™ In go(x,s;y,t)= ) (sin(lw(t—s5))x+y) (7.14)

cos(w(t—
is linear in x and y, and the initial condition P,(x,t;y,.t) for this equation is a polynomial of
degree 2n, P,(x,s;y,t) remains a polynomial of degree 2n in x and y for all s=<¢. Matching the
coefficients of like powers of x and y in (7.13), this equation can be transformed into a system of
ordinary differential equations for the coefficients of P,.

For the first excited state of the harmonic oscillator, we obtain

P(x,s;y,0)= (x*+y?)+2xy sif(w(t—s))— % sinRw(t—s))|, (7.15)

w
cos*(w(t—s))
which even for small values of £—s takes negative values in the vicinity of the node x=y=0 of
g(x,6;y,1).

Finally, since q,(x,t;y,t) does not depend on ¢, and the spatial part H of the heat operator L,
is time invariant, the end-point density gq,(x,s;y,t) depends only on ¢—s. This implies that the
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quantum diffusions modeling the excited states of the harmonic oscillator are all stationary, since
their finite joint densities (2.7) are invariant under time shifts. O

The above example shows that, given a quantum process whose wave function H(x,t) in-
cludes nodes, the end-point density g(x,s;y,t) of the corresponding quantum diffusion must
necessarily take negative values. Although this feature may appear troubling at first sight, it is not
completely inconsistent with standard probability theory, provided that instead of selecting the
Borel cylinder sets as the family of events associated to the finite joint densities (2.7), we select a
smaller family of events E whose probability P(E) satisfies 0=P(E)=I. In other words, as was
already argued from a physics perspective in Ref. 22, we can employ negative probabilities as an
intermediate bookkeeping step, as long as all “observable” events have a positive probability, and
provided the operations we perform respect the axioms of probability theory. In this respect, note
that the set of “observable” events is highly restricted in quantum mechanics, since such events
must concern quantities represented by commuting operators. For example, for the position and
momentum processes, only events concerning the position only, or the momentum only, are
observable. Since most operators do not commute, the emphasis in quantum mechanics is usually
on marginal densities, such as for the position, or the momentum only. By contrast, the goal of
stochastic mechanics in either Markovian or non-Markovian form, is to construct finite joint
densities for the position process at successive times ¢ |Scesp=---=yy,, even if the position
operators {X(¢;),|<i<N} in the Heisenberg representation do not commute.

The first attempt at accomplishing an objective of this type, at least in a limited way, dates
back to the introduction by Wigner? of a Joint density for the position and momentum of a particle
at time . Specifically, the Wigner distribution, which is defined as

1 y
W(x,p,t)zﬁflﬂ x+5,t

t//*(x—})z—,t)exp—ipy dy, (7.16)

has the feature that its marginals with respect x and p correspond to the position and momentum
probability densities of quantum mechanics. However, an aspect of the Wigner distribution that
some researchers find unappealing is that it takes negative values. For example, the Wigner
distribution for the eigenstates of the harmonic oscillator is given by?!

(-1 (4H) (—-ZH) )
W, (x,p,t)= - Ln-;-exp - (7.17a)
where
2 2
(wx)
H(x,p)=p7+ > (7.17b)

is the harmonic oscillator’s Hamiltonian, and L,(y) is the nth Laguerre polynomial. From the first
few Laguerre polynomials,

Lo(y)=1, Li(y)=1-y, Ly(y)=1-2y+y? (7.18)

we see that while W(x,p,¢) is positive for the oscillator’s ground state, it takes negative values for
the excited states. The fact that the Wigner distribution can be negative inspired efforts to find
distributions that would always be positive. However, it was later shown?® that if, beyond the
requirement that the marginals of W(x,p,t) should coincide with the position and momentum
densities, a few additional conditions are imposed, W(x, p.t) is unique.

Note that the Wigner distribution is closely related to the end-point density g(x,t;y,t) of
quantum diffusions, since the inverse Fourier transform w(x,z,t) of W(x,p,t) with respect to p
takes the form
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w(x,z.0) =¢(x+2/2,t)f* (x~2/2,1), (7.19)

which should be contrasted with the expression (3.27) for g(x,t;y,t). Thus, the finite joint den-
sities we have constructed for quantum diffusions can be viewed as extended Wigner distributions
for the position variables at arbitrary times. Observe also that in the expression (2.7) for the finite
joint densities, the only quantity that can be negative is the end-point density g(x,s;y,t). The
marginal densities p(x,1)=g(x,t;x,t) are always non-negative, since by construction the density
q{x.t;y,1) given by (3.27) is always non-negative, and the three-point transition densities r(x,
s;ytzu) with s<t<<y are also positive.

VIil. CONCLUSIONS

In this paper, we have presented a comprehensive reformulation of stochastic mechanics,
which instead of using Markov diffusions, relies on a subclass of reciprocal diffusions, the quan-
tum diffusions, whose conservation laws are equivalent to Schrodinger’s equation. This new form
of stochastic mechanics presents several advantages over earlier Markovian theories of Schro-
dinger or Nelson. First, it is not necessary to introduce a quantum potential in the Newton law
satisfied by the diffusions in order to make their evolution consistent with Schrodinger’s equation.
The new mechanics is local, and the uncertainty principle arises naturally from the closure rules
defining quantum diffusions.

In spite of the apparent agreement between quantum mechanics and the stochastic mechanics
of quantum diffusions, the two theories have significant differences. Quantum mechanics is less
ambitious than stochastic mechanics in the sense that it is primarily concerned with the evolution
of marginal densities for the position or momentum variables of a physical system. No attempt is
made at evaluating joint probability densities for the positions at different times, since, in general,
the Heisenberg operators X(¢) and X(s) representing the positions at different times ¢ and s do not
commute, so that these positions are not simultaneously observable. On the other hand, stochastic
mechanics assigns joint probability densities p(xg.tg:Xxy,t15...,.xy,ty) to the positions at different
times. These joint densities yield marginals for the position and velocity variables at a single time
t, which are consistent with the rules of quantum mechanics, in the sense that the conservation
laws for p(x,r) and v(x,t) are equivalent to Schrodinger’s equation. However, the finite joint
densities may themselves be devoid of physical significance, as evidenced by the fact that they can
be negative. Through Newton’s law, stochastic mechanics provides a nice interpretation of the
relation existing between quantum and classical mechanics, but it represents a model rather than a
physical theory.

The new stochastic mechanics sketched here is incomplete in several respects. First, many
important quantum mechanics phenomena, such as interference, scattering, statistics of indistin-
guishable particles, or measurement theory, need to be given a stochastic formulation within the
new theory. It would also be of interest to obtain a variational derivation of the closure rules
(3.12)—(3.1b) similar to the one proposed in Ref. 33 for Markovian stochastic mechanics, but
possibly with a different action functional. Finally, as was noted in the discussion of the harmonic
oscillator of Example 4.2, we need to examine how quantum diffusions with a finite lifetime can
be combined to describe quantum processes over longer periods of time.
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