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Summary. We describe the theory of reciprocal diffusions in flat space. A recip-
rocal process is a Markov random field on a one dimensional parameter space.
Every Markov process is reciprocal but not vice versa. We descibe the first
and second order mean differential characteristics of reciprocal diffusions. This
includes a new definition of stochastic acceleration. We show that reciprocal dif-
fusions satisfy stochastic differential equations of second order. Associated to a
reciprocal diffusion is a sequence of conservation laws, the first two of which
are the familiar continuity and Euler equations. There are two cases where these
laws can be closed after the first two. They are the mutually exclusive subclasses
of Markov and quantum diffusions. The latter corresponds to solutions of the
Schr̈odinger equation and may be part of a stochastic description of quantum
mechanics.
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1 Introduction

In 1931, E. Schr̈odinger [18] described some similarities between the partial
differential equation of quantum mechanics that bears his name, and a partial
differential equation associated to a Markov process that is pinned at both end-
points. The following year, S. Bernstein [1] formalized some of Schrödinger’s
ideas by introducing the concept of a reciprocal process. In current terminology,
a reciprocal process is a Markov random field on a one dimensional parameter
space. Apparently P. Levy was unaware of Bernstein’s work when he defined the
Markov property for random fields [15], otherwise he might have called them
reciprocal fields.
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Let ξ(t) be an vector valued stochastic process depending on the one dimen-
sional parametert ∈ [t0, tf ]. We refer tot as time although it could be a spatial
parameter. Such a process isreciprocal if conditioned on its valuesξ(t1), ξ(t2) at
the end points of any subinterval [t1, t2] ⊆ [t0, tf ], the process on the interior of
the subinterval is conditionally independent of the process on the exterior of the
subinterval.

Reciprocal processes have also been called quasi-Markov [3] or Bernstein
[22] processes. They are closely related to conditionally Markov processes. The
goal of Schr̈odinger to develop a stochastic theory of quantum mechanics was the
inspiration for stochastic mechanics, as developed by Nelson [16] and others. For
the most part this effort has focused on Markov processes. The Markov processes
form a proper subclass of the reciprocal processes. We believe, for reasons that
are discussed in [14] and in Sect. 7 of this paper, that a satisfactory stochastic
theory of quantum mechanics cannot be based on Markov processes. If such a
theory is possible within the framework of reciprocal processes, it will involve
a different and completely disjoint subclass of the reciprocal processes. We have
termed this subclass the quantum processes. For similar reasons Zambrini has
developed the theory of Euclidean quantum mechanics [23]. We refer the reader
to the above citations and [9] for further results on reciprocal processes.

In [12] it is shown that continuous Gaussian reciprocal process can be real-
ized as the solution of a linear stochastic differential equation of second order
satisfying boundary conditions. In this paper we extend these results to nonGaus-
sian processes and nonlinear stochastic differential equations of second order. For
simplicity, we restrict our attention to processes evolving in flat space. The scale
of the noise imposes a Riemannian or subRiemannian metric on the space. In flat
space the noise is invariant under translations and rotations. This paper is based
on early work in [11]. A path integral description of similar results can be found
in [13].

It follows immediately from the definitions that every Markov process is
reciprocal and every reciprocal process is conditionally Markov in the following
sense. Letξ(t) be a reciprocal process on [t0, tf ] and lets ∈ [t0, tf ]. Let ξ(t |x, s) be
the conditioned subprocess that satisfiesξ(s) = x with the conditional probability
measure. Thenξ(t |x, s) is Markov on the subinterval [t0, s] and is also Markov
on [s, tf ] It need not be Markov on [t0, tf ].

The law of a Markov processξ(t) is determined by its initial distribution and
its two time (forward) Markov transition distribution. We shall assume throughout
that densities exist. Letρ(x0, t0; ...; xk , tk) denote the joint density ofξ(ti ) = xi , i =
0, ..., k and let p(x, s; y, t) be the probability density ofξ(t) = y given that
ξ(s) = x for t0 ≤ s ≤ t ≤ tf . The Markov property implies that fort0 ≤ t1 ≤
t2 ≤ ... ≤ tk ≤ tf ,

ρ(x0, t0; ...; xk , tk) = ρ(x0, t0)p(x0, t0; x1, t1)...p(xk−1, tk−1; xk , tk). (1.1)

The Markov property is invariant under time reversal. The law of a Markov
process is also determined by its final densityρ(xf , tf ) and its backward Markov
transition density, ¯p(x, s; y, t). This is the probability density ofξ(s) = x given



Reciprocal diffusions in flat space 245

that ξ(t) = y for t0 ≤ s ≤ t ≤ tf . Unless stated otherwise, a Markov transition
density is assumed to be a forward Markov transition density.

A function p(x, s; t , y) is a Markov transition density if for fixeds, t it is
Borel measurable inx and a probability density iny and, in addition, it satisfies
the familiar Chapman-Kolmogorov equation

p(x, s; t , y) =
∫

p(x, s; ξ, τ )p(ξ, τ ; y, t)dξ (1.2)

for t0 ≤ s ≤ τ ≤ t ≤ tf .
Two Markov processes are in the sameforward Markov classif they have

the same forward Markov transition density. The Markov class of a process is
not invariant under time reversal, two Markov processes with the same forward
transition density need not have the same backward transition density.

The law of a reciprocal processξ(t) is determined by its joint density
at the end timesρ(x0, 0;xf , tf ) and its three time reciprocal transition den-
sity q(x, s; y, t ; z, u). This is the conditional density ofξ(t) = y given that
ξ(s) = x, ξ(u) = z where t0 ≤ s ≤ t ≤ u ≤ tf . The reciprocal property
implies that fort0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ tf

ρ(x1, t1; ...; xk , tk) = q(x1, t1; x2, t2; xk , tk)...q(xk−2, tk−2; xk−1, tk−1; xk , tk)

×ρ(x1, t1; xk , tk). (1.3)

Notice how the density is propagated inward through the nested sequence of
subintervals

[t1, tk ] ⊇ [t2, tk ] ⊇ ... ⊇ [tk−2, tk ]

obtained by moving one endpoint, in this case the left one, inward at each step.
This respects the reciprocal property. There are other ways of propagating the
density inward, while respecting the reciprocal property. For example, we could
move the right endpoint inward

ρ(x1, t1; ...; xk , tk) = ρ(x1, t1; xk , tk)× (1.4)

q(x1, t1; xk−1, tk−1; xk , tk)...q(x1, t1; x2, t2; x3, t3),

or alternately move the left and right endpoints inward

ρ(x1, t1; ...; xk , tk) = ρ(x1, t1; xk , tk)× (1.5)

q(x1, t1; xk−1, tk−1; xk , tk)q(x1, t1; x2, t2; xk−1, tk−1)...

For q to be a reciprocal transition density, all must yield the same value. Re-
ciprocal densities can also be propagated outward but we shall not do so in this
paper.

Jamison [9] has shown that for a functionq(x, s; y, t ; z, u) to be a reciprocal
transition density, it must be a density iny and satisfy fort0 ≤ t1 ≤ t2 ≤ t3 ≤
t4 ≤ tf
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q(x1, t1; x2, t2; x4, t4)q(x2, t2; x3, t3; x4, t4)

= q(x1, t1; x3, t3; x4, t4)q(x1, t1; x2, t2; x3, t3). (1.6)

This ensures that (1.3), (1.4), (1.5) and other inward propagations of the density
yield the same joint densities. Notice that (1.6) is the four time transition density
of the process, the joint density ofξ(t2) = x2, ξ(t3) = x3 given ξ(t1) = x1, ξ(t4) =
x4 computed in two different ways using Bayes’ rule and the reciprocal property.
We denote the four time transition density byq(x1, t1; x2, t2; x3, t3; x4, t4).

Suppose thatp(x, s; y, t) and p̄(x, s; y, t) are the forward and backward two
time transition densities of a Markov process. Its three time transition density is
given by Bayes’ rule,

q(x, s; y, t ; z, u) =
p(x, s; y, t)p(y, t ; z, u)

p(x, s; z, u)
=

p̄(x, s; y, t)p̄(y, t ; z, u)
p̄(x, s; z, u)

. (1.7)

This is a reciprocal transition density since Markov processes are reciprocal.
Similar expressions exist for other multi-time transition densities, e.g., the four
time transition density is

q(x1, t1; x2, t2; x3, t3; x4, t4) =
p(x1, t1; x2, t2)p(x2, t2; x3, t3)p(x3, t3; x4, t4)

p(x1, t1; x4, t4)
, (1.8)

and so (1.6) holds trivially.
Two reciprocal processes (in particular, Markov processes) are said to be in

the samereciprocal classif they have the same reciprocal transition density. This
concept is invariant under time reversal.

Jamison [9] has shown that all reciprocal transition densities arise from
Markov transition densities. Ifq(x, s; y, t ; z, u) is a reciprocal transition density
then, by the conditionally Markov property of reciprocal processes,

p(x, s; y, t) = q(x, s; y, t ; xf , tf ) (1.9)

is a Markov transition density for eachxf , tf and alls ≤ t < tf . If we start with
a reciprocal transition density, define a Markov transition density by (1.9) and
another reciprocal transition density by (1.7) then the two reciprocal transition
densities agree on [t0, tf ). If we start with a Markov transition density, define a
reciprocal transition density by (1.7) and another Markov transition density by
(1.9) then the two Markov transition densities are not necessarily equal but they
are in the same reciprocal class.

Any reciprocal process with transition densityq can be constructed in the fol-
lowing fashion. Supposeξ(t) is a Markov process in the reciprocal class ofq such
that its endpoint densityρ(x0, t0; xf , tf ) is positive for allx0, xf . Partitionξ(t) into
subprocessesξ(t |x0, t0; xf , tf ) by conditioning the endpointsξ(t0) = x0, ξ(tf ) = xf .
Under the conditional measure, the subprocesses are Markov processes in the re-
ciprocal class ofq. Choose an arbitrary endpoint density ¯ρ(x0, t0; xf , tf ) and form
the mixture of the subprocesses with this weight. The result is the general recip-
rocal process in the class ofq.
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By a Markov diffusion, we mean the strong solutionξ(t) of an Ito stochastic
differential equation

d+ξi = bi (ξ, t)dt + σi
j (ξ, t)d+wj (1.10)

ξ(t0) = ξ0 (1.11)

wherew(t) is a standard Wiener process,ξ0 is a random vector independent of
w(t) andd+ denotes that this is a forward Ito equation. We distinguish between
Stratonovich and Ito integrals by the use ofdw(s) and d+w(s) respectively.
The processξ(t) is adapted to the increasing filtrationFt generated byξ0 and
{w(s) : 0≤ s ≤ t}. The forward and backward difference operators are defined
as

d±ξi (t , dt) = ± [ξ(t ± dt)− ξ(t)] wheredt > 0 (1.12)

In a slight abuse of notation, we use the same notation for their differential limits
asdt ↓ 0 as in (1.10). Throughout this paper we adopt the summation convention
on repeated indices.

The scale of the noise induces a Riemannian (or subRiemannian) metric on
ξ space. Letaij = σi

kσ
j
k . If it exists, the inverseaij defines the metric. The space

is flat if aij = δij . We only consider diffusions in flat space, i.e.,ξ lives in n
dimensional standard Euclidean space,Rn, andσi

j = δi
j .

The diffusion issmoothif b(ξ, t) is three times continuously differentiable
with partials that are globally bounded. The latter assumption is imposed to
simplify the exposition, it can be relaxed. Because of the assumptions onb and
σ, the associated Markov transition densityp(x, s; y, t) is smooth for alls < t .
This is easy to see asp(x, s; y, t) satisfies the forward partial differential equation

∂

∂t
p(x, s; y, t) +

∂

∂yi
(p(x, s; y, t)bi (y, t))− 1

2
∂2

∂yi ∂yi
p(x, s; y, t) = 0. (1.13)

and the backward equation

∂p
∂s

(x, s; y, t) +
∂p
∂xi

(x, s; y, t)bi (x, t) +
1
2

∂2p
∂xi ∂xi

(x, s; y, t) = 0. (1.14)

Partial derivatives will be denoted as follows

bi
,0 =

∂bi

∂t
,

bi
,j =

∂bi

∂xj
,

bi
,jk =

∂2bi

∂xj ∂xk
.

The above definitions can be extended to reciprocal processes using the con-
ditionally Markov property. For example, a reciprocal processξ(t) is a smooth
reciprocal diffusion in flat spaceif there is a smooth Markov diffusion in flat
space in its reciprocal class. We shall only consider smooth Markov and recipro-
cal diffusions in flat space and for brevity we occasionally refer to such processes
as Markov and reciprocal diffusions.
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2 Differential characteristics

Recall that a solution of the first order stochastic differential equation (1.10)
satisfies the diffusion (also known as Feller) postulates

E(d+ξi |ξ(t) = x) = bi (x, t)dt + O(dt2), (2.1)

E(d+ξi d+ξj |ξ(t) = x) = aij dt + O(dt2), (2.2)

E(|d+ξ|k |ξ(t) = x) = O(dt2) if k > 2. (2.3)

These postulates assert that the process is forward differentiable in a conditional
mean sense. We callbi the forward velocityandaij (= δij ) the forward diffusion
coefficient. They are theforward Markov characteristicsof the process and are
a complete set of invariants of the forward Markov class as they completely
determine the forward Markov transition densityp(x, s; y, t) by the forward or
backward PDE.

The conditional moments of the backward difference have similar expansions

E(d−ξi |ξ(t) = x) = b̄i (x, t)dt + O(dt2), (2.4)

E(d−ξi d−ξj |ξ(t) = x) = āij dt + O(dt2), (2.5)

E(|d−ξ|k |ξ(t) = x) = O(dt2) if k > 2. (2.6)

It is well-known [16] that thebackward velocitȳbi and thebackward diffusion
coefficientāij satisfy

b̄i = bi − ∂ ln ρ
∂xi

(2.7)

āij = aij (2.8)

assuming that lnρ is differentiable. The pair̄bi and āij are called thebackward
Markov characteristicsand completely determine the backward Markov class.

Recall that Nelson [16] defines the current velocityv(x, t) and osmotic ve-
locity u(x, t) of a Markov diffusion processξ(t) as

vi = (bi + b̄i )/2, (2.9)

ui = (bi − b̄i )/2. (2.10)

Define the centered evaluation and the centered first and second differences as

d0ξ(t , dt) = [ξ(t + dt) + ξ(t − dt)] /2, (2.11)

d1ξ(t , dt) = [ξ(t + dt)− ξ(t − dt)] /2, (2.12)

d2ξ(t , dt) = ξ(t + dt)− 2ξ(t) + ξ(t − dt), (2.13)

then

E(d0ξi |ξ(t) = x) = x + O(dt), (2.14)

E(d1ξi |ξ(t) = x) = vi (x, t)dt + O(dt2), (2.15)

E(d2ξi |ξ(t) = x) = 2ui (x, t)dt + O(dt2). (2.16)
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Note u has the dimension of a velocity, but it appears in the leading term
of the conditional mean of the second difference where one would expect a
quantity with the dimension of an acceleration. Nelson [16] defines the stochastic
acceleration of the process, which he denotes byai , as follows

E(
d+b̄i (ξ(t), t) + d−bi (ξ(t), t)

2
|ξ(t) = x) = ai (x, t)dt + O(dt2). (2.17)

Note thatai ,j is the diffusion coefficient andai is Nelson’s stochastic accelera-
tion. But none of these quantities,bi , b̄i , vi , ui , ai , are reciprocal invariants, that
is, invariants of the reciprocal class of the process.

By changing the conditioning in a way suggested by the reciprocal prop-
erty, one obtains a more natural definition of stochastic acceleration in terms of
quantities which are reciprocal invariants. A smooth reciprocal diffusion is twice
mean differentiable in the following sense. Letdt be a small positive scalar and
let x, dx be n vectors.

Theorem 2.1 Let ξ(t) be a smooth reciprocal diffusion in flat space and let b be
any forward Markov velocity in the reciprocal class ofξ(t) then

E(d2ξi |d0ξ = x, d1ξ = dx) = f i (x, t)dt2 + gi
j (x, t)dxj dt

+dt2 O(dt, dx), (2.18)

E(d2ξi d2ξj |d0ξ = x, d1ξ = dx) = 2δij dt + dt2 O(dt, dx), (2.19)

E(d2ξi d2ξj d2ξk |d0ξ = x, d1ξ = dx) = dt2 O(dt, dx), (2.20)

E(d2ξi d2ξj d2ξk d2ξl |d0ξ = x, d1ξ = dx) = 4(δij δkl + δikδjl + δil δjk )dt2

+dt2 O(dt, dx), (2.21)

E(|d2ξ|k |d0ξ = x, d1ξ = dx) = dt2 O(dt, dx)

if k > 4, (2.22)

where f andg are reciprocal invariants given by

f i = bi
,0 + bj

,i b
j + bj

,ij /2, (2.23)

gi
j = bi

,j − bj
,i . (2.24)

The first formula (2.18) asserts that in traveling betweenx − dx andx + dx
over the interval [t − dt, t + dt], the process experiences a mean acceleration
f (x, t)+g(x, t)dx/dt. The second (2.19) asserts that the process also experiences a
very large random acceleration whose variance isO(1/dt). In contrast to Nelson,
we define thestochastic accelerationto be f (x, t) + g(x, t)dx/dt where x =
(ξ(t+dt)+ξ(t−dt)/2 is the centered position anddx/dt = (ξ(t+dt)−ξ(t−dt)/(2dt)
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is the centered velocity for smalldt > 0. It is a consequence of the flat space
assumption that in (2.19) the coefficient ofdt is 2δij and there is nodt2 term.

Because the conditioning is equivalent toξ(t±dt) = x±dx, f andg are deter-
mined byq(x−dx, t −dt; y, t ; x + dx, t + dt) and hence are reciprocal invariants,
they depend only on the reciprocal class of the process. Using other methods,
Clark [4] has shown thatf , g defined by (2.23,2.24) and the scale of the noise
σi

kσ
j
k are a complete set of reciprocal invariants. They completely determine the

class of a reciprocal diffusion. Since we are restricting our attention to recipro-
cal diffusions in flat space,f and g completely determine the reciprocal class.
In particular this implies that two forward velocities are in the same reciprocal
class iff they define the samef andg via (2.23,2.24).

In terms of the backward velocity,̄b (2.7), the reciprocal invariants are given
by

f i = b̄i
,0 + b̄j

,i b̄
j − b̄j

,ij /2, (2.25)

gi
j = b̄i

,j − b̄j
,i . (2.26)

It follows immediately from (2.7) that (2.24) and (2.26) are equivalent. The equiv-
alence of (2.23) and (2.25) follows from the Fokker-Planck equation satisfied by
ρ,

0 =
∂

∂t
ρ(x, t) +

∂

∂xj
(ρ(x, t)bj (x, t))− 1

2
∂2

∂xj ∂xj
ρ(x, t) (2.27)

which implies

0 =
∂2

∂t∂xi
ln ρ(x, t) + bj (x, t)

∂2

∂xj ∂xi
ln ρ(x, t) + bj

,i (x, t)
∂

∂xj
ln ρ(x, t)

+bj
,ij (x, t)− ∂

∂xj
ln ρ(x, t)

∂2

∂xj ∂xi
ln ρ(x, t)− 1

2
∂3

∂xj ∂xj ∂xi
ln ρ(x, t)

(2.28)

A smooth reciprocal diffusion is also once mean differentiable in both the
forward and the backward senses if the logarithm of its density is differentiable,
i.e., if there existsb, a, b̄, ā satisfying (2.1-2.6). Moreover these quantities satisfy
(2.7,2.8). When studying the first order behaviour of a reciprocal diffusion, it
more natural to employ the centered first difference and the centered conditioning
as it is more compatible with that of Theorem 2.1.

Theorem 2.2 Letξ(t) be a smooth reciprocal diffusion in flat space whose density
satisfiesρ(x, t) > 0 for all t ∈ (t0, tf ), x ∈ Rn. There exist vector fields b(x, t)
and b̄(x, t) satisfying (2.1-2.8) with aij = āij = δij . For all t ∈ (t0, tf ), x ∈ Rn,
the current velocityv(x, t) (2.9) and a symmetric matrix field P(x, t) satisfy

E(d1ξi |d0ξ = x) = vi (x, t)dt + O(dt2), (2.29)

E(d1ξi d1ξj |d0ξ = x) =
1
2
δij dt + Pij (x, t)dt2 + O(dt3), (2.30)
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E(d1ξi d1ξj d1ξk |d0ξ = x) =
1
2

(vi (x, t)δjk + vj (x, t)δik + vk(x, t)δij )dt2

+O(dt3), (2.31)

E(d1ξi d1ξj d1ξk d1ξl |d0ξ = x) =
1
4

(δij δkl + δikδjl + δil δjk )dt2

+O(dt3), (2.32)

E(|d1ξ|k |d0ξ = x) = O(dt3) if k > 4. (2.33)

Furthermore

E(d2ξi |d0ξ = x) = (f i (x, t) + gi
j (x, t)vj (x, t))dt2

+O(dt3), (2.34)

E(d2ξi d2ξj |d0ξ = x) = 2δij dt + O(dt3), (2.35)

E(d2ξi d2ξj d2ξk |d0ξ = x) = O(dt3), (2.36)

E(d2ξi d2ξj d2ξk d2ξl |d0ξ = x) = 4(δij δkl + δikδjl + δil δjk )dt2

+O(dt3), (2.37)

E(|d2ξ|k |d0ξ = x) = O(dt3) if k > 4. (2.38)

Note the difference in the conditioning in (2.29) and (2.15). Because of (2.29),
the vector fieldv is also called thecentered velocity. The matrix fieldP is called
the momentum flux coefficientof the process. Neitherv nor P is a reciprocal
invariant.

Zambrini [22] and Cruziero-Zambrini [5] have considered another definition
of stochastic acceleration. Ifξ(t) is a diffusion andφ(x, t) a smooth function then
define

Dφ(x, t) = E(d+φ(ξ(t), t)|ξ(t) = x) (2.39)

D∗φ(x, t) = E(d−φ(ξ(t), t)|ξ(t) = x) (2.40)

Their stochastic acceleration is

1
2

(DD + D∗D∗)ξ (2.41)

The Zambrini-Cruziero acceleration appears in an equation which characterizes
the extremals of a stochastic variational problem. Thieullen [20] has shown that
the Zambrini-Cruziero stochastic acceleration equalsf + gv for Gauss-Markov
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and 1 dimensional Markov diffusions. This holds for all Markov diffusions as
we now show. The Zambrini- Cruziero stochastic acceleration is not a reciprocal
invariant because of the presence ofv.

From equations (2.1), (2.4) and the forward and backward Ito rules we have

Dξi = bi (ξ, t) (2.42)

D∗ξi = b̄i (ξ, t)ξ (2.43)

DDξ i = bi
,0(ξ, t) + bi

,j (ξ, t)bj (ξ, t) +
1
2

bi
,jj (ξ, t) (2.44)

D∗D∗ξi = b̄i
,0(ξ, t) + b̄i

,j (ξ, t)b̄j (ξ, t)− 1
2

b̄i
,jj (ξ, t) (2.45)

From (2.7) and (2.28) it follows that

D∗D∗ξi = bi
,0(ξ, t) + bi

,j (ξ, t)bj (ξ, t) + bj
,i (x, t)

∂

∂xj
ln ρ(x, t)

+bj
,ij (x, t)− 1

2
bi
,jj (ξ, t) (2.46)

so

1
2

(DD + D∗D∗)ξi = bi
,0(ξ, t) + bi

,j (ξ, t)b
j (ξ, t)

+
1
2

bj
,i (x, t)

∂

∂xj
ln ρ(x, t) +

1
2

bj
,ij (x, t)

= f i (ξ, t) + gi
j (ξ, t)vj (ξ, t) (2.47)

Both of the above theorems are proven by local short time asymptotic expan-
sions of Markov and reciprocal transition densities originally presented in [11].
The details are a bit tedious and will consume the rest of this section. The sub-
stance of the proof of Theorem 2.1 can be seen in the following rough asymptotic
analysis.

Supposep(x, s; y, t) is the Markov transition density of solutions of the Ito
equation (1.10) in flat space. For small|y − x| and t − s > 0

p(x, s; y, t) ∼ (2π(t − s))−n/2

× (1− bi
,j (x, s)(t − s)/2)

× exp(−|y − x − b(x, s)(t − s)|2
2(t − s)

). (2.48)

From (1.7) it follows that the induced reciprocal transition function is approxi-
mately

q(x − dx, t − dt; y, t ; x + dx, t + dt)

∼ (πdt)−n/2 (1 +
(
bi
,j (x − dx, t − dt)− bi

,j (y, t)
)

dt/2)

× exp

(
−|y − x + dx− b(x − dx, t − dt)dt|2

2dt
− |x + dx− y − b(y, t)dt|2

2dt

+
|dx− b(x − dx, t − dt)dt|2

dt

)
. (2.49)
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We expand and obtain

q ∼ (πdt)−n/2 exp(−|y − x|2
dt

) (2.50)

× (1− (yi − xi )(bi
,0dt + bi

,j (y
j − xj + dxj )− bj

,i (dxj − bj dt) + bj
,ij dt/2)

where the left side is evaluated atx−dx, t−dt; y, t ; x+dx, t +dt and the right side
at x, t . Assuming the neglected terms aredt2 O(dt, dx), one obtains (2.18-2.22).

We shall use related Gaussian transition densities as the leading term in
our asymptotic expansions. Suppose we consider the linearization of the Ito
differential equation (1.10) around somex ∈ Rn,

d+ξi = (bi (x, t) + bi
,j (x, t)(ξ j − xj ))dt + d+wi . (2.51)

The Markov transition densitypx(y, s; z, t) of solutions of this equation is Gaus-
sian with meanµM (y, s; t) and covarianceRM (s; t),

µi
M = yi +

(
bi + bi

,j (y
j − xj )

)
(t − s)

+
(
bi
,0 + bi

,j b
j +
(
bi
,0j + bi

,kbk
,j

)
(yj − xj )

)
(t − s)2/2

+O(t − s)3, (2.52)

Rij
M = δij (t − s) +

(
bi
,j + bj

,i

)
(t − s)2/2 + cij (t − s)3

+O(t − s)4, (2.53)

where the evaluations ofb and its partials are atx, s. The form ofcij is imma-
terial to what follows.

The corresponding reciprocal transition density

qx(y, s; ξ, τ ; z, t) =
px(y, s; ξ, τ )px(ξ, τ ; z, t)

px(y, s; z, t)

is also Gaussian with meanµr (y, s; τ ; z, t) and covarianceRr (s; τ ; t),

µi
r = ψi (τ )−

(
bi
,j + bj

,i

)
(zj − yj )

(t − τ )(τ − s)
2(t − s)

,

−
(

bi
,0 + bj

,i b
j
) (t − τ )(τ − s)

2
+(t − τ )(τ − s)O(t − s, z − y), (2.54)

Rij
r = δij (t − τ )(τ − s)

(t − s)
+ (t − τ )(τ − s)O (t − s) , (2.55)

where the evaluations ofb and its partials are atx and any time in [s, t ]. The
curveψ(τ ) is the straight line (the geodesic in flat space)

ψi (τ ) =
t − τ

t − s
yi +

τ − s
t − s

zi . (2.56)
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Notice that the second order expansions of the mean and covariance ofqx are
a bit simpler than those ofpx , another indication of the utility of the reciprocal
point of view.

In particular, the mean and covariance ofqx(x − dx, t − dt; y, t + σdt; x +
dx, t + dt) are

µi
r = xi + σdxi

−1− σ2

2

((
bi
,0 + bj

,i b
i
)

dt2 +
(

bi
,j − bj

,i

)
dxj dt

)
+(1− σ2)dt2 O(dt, dx), (2.57)

Rij
r =

1− σ2

2
δij dt + (1− σ2)O(dt3), (2.58)

where the evaluations ofb and its partials are atx, t and anyσ ∈ [−1, 1]. This
proves Theorem 2.1 for Gaussian reciprocal processes, a result found in [12].

Lemma 2.3 Let p(y, s; z, t) and px(y, s; z, t) denote the Markov transition densi-
ties of solutions of the Ito differential equation (1.10) and its linearization (2.51)
around x. There existsε sufficiently small so that if y and z are withinε of x then

p(y, s; z, t) = px(y, s; z, t) [1 (2.59)

−bi
,ij

[
(yj − xj ) + 2(zj − xj )

] (t − s)
6

+ bi
,jj (zi − yi )

(t − s)
12

+bi
,jk

(zi − yi )
6

× [(yj − xj )(yk − xk) + (yj − xj )(zk − xk) + (zj − xj )(zk − xk)
]

+O(t − s)2 + (t − s)O(y − x, z − x)2 + O(y − x, z − x)4
]

where the evaluations of b and its partials are at x and anyτ ∈ [s, t ].

Proof. The proof is based as a stochastic variation of the parametrix method of
E. E. Levi [7] and Varadhan’s estimate [21]. For anyτ , s ≤ τ ≤ t , define

π(y, s; τ ; z, t) =
∫

p(y, s; ξ, τ )px(ξ, τ ; z, t)dξ. (2.60)

Clearly

π(y, s; s; z, t) = px(y, s; z, t), (2.61)

π(y, s; t ; z, t) = p(y, s; z, t), (2.62)

so

p(y, s; z, t) = px(y, s; z, t) +
∫ t

s

∂π

∂τ
(y, s; τ ; z, t)dτ. (2.63)
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Now

∂π

∂τ
=
∫
∂p
∂τ

(y, s; ξ, τ )px(ξ, τ ; z, t) + p(y, s; ξ, τ )
∂px

∂τ
(ξ, τ ; z, t)dξ, (2.64)

wherep satisfies the forward equation

∂

∂τ
p(y, s; ξ, τ ) +

∂

∂ξ i
(p(y, s; ξ, τ )bi (ξ, τ ))− 1

2
∂2

∂ξ i ∂ξ i
p(y, s; ξ, τ ) = 0 (2.65)

andpx satisfies the backward equation

∂px

∂τ
(ξ, τ ; z, t) +

∂px

∂ξ i
(ξ, τ ; z, t)(bi (x, τ ) + bi

,k(x, τ )(ξk − xk))

+
1
2
∂2px

∂ξ i ∂ξ i
(ξ, τ ; z, t) = 0. (2.66)

Integration by parts yields

∂π

∂τ
=
∫

p(y, s; ξ, τ )
∂px

∂ξ i
(ξ, τ ; z, t)β i (ξ, τ ; x) dξ

=
∫

p(y, s; ξ, τ )px(ξ, τ ; z, t)
∂ ln px

∂ξ i
(ξ, τ ; z, t)β i (ξ, τ ; x) dξ (2.67)

where
β i (ξ, τ ; x) = bi (ξ, τ )− bi (x, τ )− bi

,j (x, τ )(ξj − xj ) (2.68)

and
∂ ln px

∂ξ i
(ξ, τ ; z, t) =

zi − ξi

t − τ
+ O(t − τ )0. (2.69)

Since b is smooth (C3 with bounded partials)

β i (ξ, τ ; x) =
1
2

bi
,jk (x, τ )(ξj − xj )(ξk − xk) + O(ξ − x)3. (2.70)

Next we employ Varadhan’s estimate

p(y, s; ξ, τ ) =
1

(2π(τ − s))n/2
exp−1

2

( |ξ − y|2
(τ − s)

+ O(τ − s)0

)
(2.71)

which holds uniformly on compact subsets ofy, s, ξ, τ space [21]. In particular

p(y, s; ξ, τ ) = px(y, s; ξ, τ )O(τ − s)0. (2.72)

So plugging (2.69,2.70,2.72) into (2.67) and utilizing (2.54,2.55), we obtain

∂π

∂τ
= px(y, s; z, t)

∫
qx(y, s; ξ, τ ; z, t)O(τ − s)0∂ ln px

∂ξ i
(ξ, τ ; z, t)β i (ξ, τ ; x) dξ

= px(y, s; z, t)

[
O(t − s)0 +

1
(t − s)

O(y − x, z − x)2

]
, (2.73)
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and from (2.63)

p(y, s; z, t) = px(y, s; z, t)
[
1 + O(t − s) + O(y − x, z − x)

]
. (2.74)

We return to (2.67) and plug in (2.69,2.70,2.74) to obtain

∂π

∂τ
= px(y, s; z, t)

∫
qx(y, s; ξ, τ ; z, t)

[
1 + O(τ − s) + O(y − x, z − x)2

]
×
[

zi − ξi

t − τ
+ O(t − τ )0

] [
1
2

bi
,jk (x, τ )(ξj − xj )(ξk − xk) + O(ξ − x)3

]
dξ

= px(y, s; z, t)

[
−bi

,ij (ψj (τ )− xj )
(τ − s)
(t − s)

+ bi
,jj (zi − yi )

(t − τ )(τ − s)
2(t − s)2

+bi
,jk (zi − yi )(ψj (τ )− xj )(ψk(τ )− xk)

1
2(t − s)

+O(t − s) + O(y − x, z − x)2 +
1

t − s
O(y − x, z − x)4

]
(2.75)

which after integration with respect toτ yields (2.59). QED

Proof of Theorem 2.1. From (1.7)

q(x−dx, t −dt; y, t ; x + dx, t + dt) =
p(x − dx, t − dt; y, t)p(y, t ; x + dx, t + dt)

p(x − dx, t − dt; x + dx, t + dt)
.

(2.76)
By the above lemma

q = qx
[
1− bi

,ij (x, t)
(
(yj − xj )dt/2− dxj dt/6

)− bi
,jj (x, t)dxi dt/6

+bi
,jk (x, t)

(
(yj − xj )(yk − xk)dxi /3− (yi − xi )(yj − xj )dxk/3

)
+O(dt2) + dt O(dx, y − x)2 + O(dx, y − x)4

]
(2.77)

where q and qx are evaluated atx − dx, t − dt; y, t ; x + dx, t + dt. Now qx is
Gaussian with mean and and covariance given by (2.57,2.58) so∫

(yi − xi )qdy = −1
2

((
bi
,0 + bj

,i b
i + bj

,ij /2
)

dt2 +
(

bi
,j − bj

,i

)
dxj dt

)
+dt2 O(dt, dx) (2.78)∫

(yi − xi )(yj − xj )qdy =
1
2
δij dt + dt2 O(dt, dx) (2.79)∫

(yi − xi )(yj − xj )(yk − xk)qdy = dt2 O(dt, dx) (2.80)

∫
(yi − xi )(yj − xj )(yk − xk)(yl − xl )qdy =

1
4

(δij δkl + δikδjl + δil δjk )dt

+dt2 O(dt, dx) (2.81)

and the higher moments aredt2 O(dt, dx). QED
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Proof of Theorem 2.2. Let ξ(t) be a smooth reciprocal diffusion in flat space
whose density satisfiesρ(x, t) > 0 for all t ∈ (t0, tf ), x ∈ Rn. If we impose the
condition thatξ(tf ) = xf then we obtain a Markov diffusion and we can compute
its forward Markov characteristics. Letb be any smooth forward velocity field in
the reciprocal class ofξ(t), (2.23,2.24) and letp(y, s; z, t) be the forward Markov
transition density of solutions of the Ito equation (1.10). The Markov transition
density ofξ(t) conditioned onξ(tf ) = xf is

q(y, t ; z, t + dt; xf , tf ) =
p(y, t ; z, t + dt)p(z, t + dt; xf , tf )

p(y, s; xf , tf )
. (2.82)

We expand the second term in the numerator

q(y, t ; z, t + dt; xf , tf ) = p(y, t ; z, t + dt)

[
1 +

∂ ln p
∂yi

(y, t ; xf , tf )(zi − yi )

+
∂ ln p
∂t

(y, t ; xf , tf )dt + O(t − s, z − y)2

]
. (2.83)

Using Lemma 2.3 we obtain

E(d+ξi |ξ(t) = y, ξ(tf ) = xf ) = bi (y, t) +
∂ ln p
∂yi

(y, t ; xf , tf )

+O(dt2), (2.84)

E(d+ξi d+ξj |ξ(t) = y, ξ(tf ) = xf ) = δij dt + O(dt2). (2.85)

Note that the conditional forward velocity

bi (x, t |xf , tf ) = bi (x, t) +
∂ ln p
∂xi

(x, t ; xf , tf ) (2.86)

varies with conditioning but the diffusion coefficient does not. Because of the
reciprocal property, adding the additional conditionξ(t0) = x0 does not change
the forward velocity

b(x, t |x0, t0; xf , tf ) = b(x, t |xf , tf ).

Suppose the endpoint density of the unconditionedξ(t) is ρ(x0, t0; xf , tf ) then
the unconditioned forward velocityb(x, t) is given by Bayes rule

ρ(x, t)b(x, t) =
∫ ∫

b(x, t |x0, t0; xf , tf )q(x0, t0; x, t ; xf , tf )ρ(x0, t0; xf , tf )dx0dxf .

(2.87)
Next we derive the backward Markov characteristics of a reciprocal diffusion

conditioned in the past,ξ(t0) = x0. The backward Markov transition density is

q(x0, t0; y, t − dt; z, t) =
p(x0, t0; y, t − dt)p(y, t − dt; z, t)

p(x0, t0; z, t)
. (2.88)
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We expand the first term in the numerator

q(x0, t0; y, t − dt; z, t) = p(y, t − dt; z, t)

[
1− ∂ ln p

∂zi
(x0, t0; z, t)(zi − yi )

−∂ ln p
∂t

(x0, t0; z, t)dt + O(t − s, z − y)2

]
. (2.89)

Let pz(y, t − dt; z, t) denote the Gauss Markov transition density of solutions of
(2.51) with x = z. By Lemma (2.3)

p(y, t − dt; z, t) = pz(y, t − dt; z, t)
[
1 + dt O(z − y) + O(z − y)3

]
= (2π dt)−n/2 exp−|z − y|2

2dt
× [1 + (zi − yi )

(
bi (z, t)− bi

,j (z, t)(z
j − yj )

)
+O(dt) + O(z − y)3

]
, (2.90)

hence

E(d−ξi |ξ(t) = z, ξ(t0) = x0) = bi (z, t)− ∂ ln p
∂zi

(x0, t0; z, t)

+O(dt2), (2.91)

E(d−ξi d−ξj |ξ(t) = z, ξ(t0) = x0) = δij dt + O(dt2). (2.92)

Once again we see that the conditional backward velocity

b̄i (x, t |x0, t0) = bi (x, t)− ∂ ln p
∂xi

(x0, t0; x, t) (2.93)

depends on the conditioning but the diffusion coefficient does not. Adding an
additional condition in the future does not change the backward velocity

b̄(x, t |x0, t0; xf , tf ) = b̄(x, t |x0, t0).

The unconditioned backward velocitȳb(x, t) satisfies

ρ(x, t)b̄(x, t) =
∫ ∫

b̄(x, t |x0, t0; xf , tf )q(x0, t0; x, t ; xf , tf )ρ(x0, t0; xf , tf )dx0dxf .

(2.94)
To compute the centered mean velocity (2.29), we start with the joint density

of ξ(t − dt), ξ(t + dt) conditioned onξ(t0), ξ(tf )

q(x0, t0; x−z, t−dt; x+z, t+dt; xf , tf ) (2.95)

=
p(x0, t0; x − z, t − dt)p(x − z, t − dt; x + z, t + dt)p(x + z, t + dt; xf , tf )

p(x0, t0; xf , tf )
.

As before we expand the first and third terms in the numerator aroundx, t and
obtain
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q(x0, t0; x−z, t−dt; x+z, t+dt; xf , tf ) (2.96)

= p(x − z, t − dt; x + z, t + dt)q(x0, t0; x, t ; xf , tf )

×
[

1 +
∂ ln p
∂xi

(x, t ; xf , tf )zi +
∂ ln p
∂t

(x, t ; xf , tf )dt

−∂ ln p
∂xi

(x0, t0; x, t)zi − ∂ ln p
∂t

(x0, t0; x, t)dt + O(t − s, z)2

]
.

We apply Lemma (2.3) to obtain

p(x − z, t − dt; x + z, t + dt) = px(x − z, t − dt; x + z, t + dt)

× [1 + dt O(z) + O(z)3
]

= (π dt)−n/2exp− |z|2
dt

× [1 + 2zi
(
bi (x, t) + bi

,j (x, t)z
j
)

+O(dt) + O(z)3
]

(2.97)

so the conditional centered velocity

vi (x, t |x0, t0; xf , tf ) =
∫

zi

2dt
p(x − z, t − dt; x + z, t + dt)dz (2.98)

satisfies

v(x, t |x0, t0; xf , tf ) =
1
2

(bi (x, t |x0, t0; xf , tf ) + b̄i (x, t |x0, t0; xf , tf ))dt

+O(dt2). (2.99)

Now

ρ(x, t)vi (x, t) =
∫
vi (x, t |x0, t0; xf , tf )q(x0, t0; x, t ; xf , tf )ρ(x0, t0; xf , tf )dx0dxf

(2.100)
and (2.87,2.94) yields (2.29). Assertations (2.30-2.33) are derived in a similar
fashion.

The assertions (2.34-2.38) follow immediately from Theorem 2.1 and the
nesting of conditional expectations, e.g.

E(d2ξi |d0ξ = x) = E(E(d2ξi |d0ξ = x, d1ξ = dx)|d0ξ = x). (2.101)

QED
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3 Stochastic ODE’s of second order

It is our goal to define asecond order stochastic boundary value problemof the
form

d2ξi = f i (ξ, t)dt2 + gi
j (ξ, t)dxj dt + ηi (ξ, t)dt2 (3.1)

ξ i (t0) = xi
0 (3.2)

ξ i (tf ) = xi
f (3.3)

wheref , g are defined by (2.23,2.24) for some smooth vector fieldb, η(x, t) is
a generalized random field, formally defined by

ηi (x, t) =
d2wi (t)

dt2
+ bi

,j (x, t)
dwi (t)

dt
− 1

2
bj
,ij (x, t) (3.4)

with w(t) a standardn dimensional Wiener process andx0, xf are randomn
vectors.

A first attempt at a definition is the following. A reciprocal processξ(t) with
almost surely continuous sample paths is a solution of the second order stochastic
boundary value problem (3.1-3.3) ifξ(t) satisfies the integral equation

ξ i (t) =
tf − t
tf − t0

xi
0 +

t − t0
tf − t0

xi
f (3.5)

+
∫ tf

t0

Γ (t , s)
[
f i (ξ(s), s)ds + gi

j (ξ(s), s)dξ j (s) + ηi (ξ(s), s)ds
]
.

whereΓ (t , s) is the Green’s function of the differential operatord2

dt2 with Dirichlet
boundary conditions

Γ (t , s) =

{− (tf − t
)

(s− t0) /
(
tf − t0

)
if t > s,

− (tf − s
)
/ (t − t0) /

(
tf − t0

)
if t < s

. (3.6)

From the definition ofη(x, t) we see that (3.5) is equivalent to

ξ i (t) =
tf − t
tf − t0

xi
0 +

t − t0
tf − t0

xi
f (3.7)

+
∫ tf

t0

Γ (t , s)
[
f i (ξ(s), s)ds + gi

j (ξ(s), s)dξ j (s)
]

+
∫ tf

t0

Γ (t , s)

[
d2wi (s)

ds2
+ bi

,j (ξ(s), s)
dwj (s)

ds
− 1

2
bj
,ij (ξ(s), s))

]
ds.

But this is not a complete definition for we have not defined the various stochastic
integrals. Rather than defining them directly, we shall assume that they obey the
standard rules of calculus and then transform them into well-defined integrals.
For example, integration by parts yields∫ tf

t0

Γ (t , s)
d2wi (s)

ds2
ds = wi (t)− tf − t

tf − t0
wi (t0)− t − t0

tf − t0
wi (tf ), (3.8)
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and so (3.5) is equivalent to

ξi (t) =
tf − t
tf − t0

xi
0 +

t − t0
tf − t0

xi
f (3.9)

+
∫ tf

t0

Γ (t , s)
[
f i (ξ(s), s)ds + gi

j (ξ(s), s)dξ j (s)
]

+
∫ tf

t0

Γ (t , s)

[
bi
,j (ξ(s), s)dwi (s)− 1

2
bj
,ij (ξ(s), s))ds

]
+ wi (t)− tf − t

tf − t0
wi (t0)− t − t0

tf − t0
wi (tf ).

Instead of individually defining the other stochastic integrals∫ tf

t0

Γ (t , s)gi
j (ξ(s), s)dξ j (s) (3.10)

and ∫ tf

t0

Γ (t , s)bi
,j (ξ(s), s)

dwj (s)
ds

ds =
∫ tf

t0

Γ (t , s)bi
,j (ξ(s), s)dwj (s), (3.11)

we manipulate (3.9) so that it contains only well-defined integrals.
Supposeξ(t) is a solution of (3.9), we define

ζ i (t) =
tf − t
tf − t0

(xi
0 − wi (t0)) +

t − t0
tf − t0

(xi
f − wi (tf )), (3.12)

zi (t) = ξ i (t)− ζ i (t)− wi (t). (3.13)

Then

zi (t) =
∫ tf

t0

Γ (t , s)
[
f i (ξ(s), s)ds + gi

j (ξ(s), s)dξ j (s)
]

(3.14)

+
∫ tf

t0

Γ (t , s)

[
bj
,i (ξ(s), s)dwj (s)− 1

2
bj
,ij (ξ(s), s)ds

]
,

ζ̇ i = xi
f − xi

0 − wi (tf ) +wi (t0), (3.15)

dzi = dξ i − ζ̇ i dt − dwi . (3.16)

From the definitions off , g we obtain

zi (t) =
∫ tf

t0

Γ (t , s)
[
dbi (ξ(s), s)− bj

,i (ξ(s), s)
(
dξ j − bj (ξ(s), s)ds− dwj (s)

)]
.

(3.17)
Assumingz(t) is C1 this becomes

zi (t) =
tf − t
tf − t0

∫ t

t0

ci (z(s), s)ds− t − t0
tf − t0

∫ tf

t
ci (z(s), s)ds

−
∫ tf

t0

Γ (t , s)cj
,i (z(s), s)

[
żj (s) + ζ̇ j − cj (z(s), s)

]
ds, (3.18)
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where

c(z, t) = b(z + ζ(t) +w(t), t). (3.19)

This motivates the following definition.

Definition 3.1 A stochastic processξ(t) is a strong solution of the second order
stochastic boundary value problem (3.1-3.4) for given x0, xf , w(t) if almost surely
the processesζ(t), z(t) defined by (3.12,3.13) are C1 and satisfy (3.18).

Notice that this is essentially a sample path concept, no definition of stochastic
integration is required.

Theorem 3.2 Supposeξ(t) is a Markov diffusion satisfying the Ito equation
(1.10). Let x0 = ξ(t0), xf = ξ(tf ). Thenξ(t) is a strong solution of the second
order stochastic boundary value problem (3.1-3.4).

Proof. By definition

ξ i (t) = ξi (t0) +
∫ t

t0

bi (ξ(s), s)ds +wi (t)− wi (t0). (3.20)

Notice this is an ordinary integral for almost every sample path sinceb is smooth
and the sample paths ofξ(t) are continous a.s. Letζ(t), z(t) be defined by
(3.12,3.13). Clearlyζ(t) is C1 and so isz(t) since

zi (t) =
t − t0
tf − t0

(xi
0 − wi (t0)− xi

f +wi (tf )) +
∫ t

t0

bi (ξ(s), s)ds. (3.21)

If we evaluate (3.20) att = tf and plug into (3.21), we obtain

zi (t) =
tf − t
tf − t0

∫ t

t0

bi (ξ(s), s)ds− t − t0
tf − t0

∫ tf

t
bi (ξ(s), s)ds. (3.22)

By differentiating (3.21) we obtain

żj (t) + ζ̇ j − bj (ξ(t), t) = 0 (3.23)

so z(t) satisfies (3.18). QED

Next we state and prove a useful lemma.

Lemma 3.3 A pair of smooth vector fields b(x, t) and b̄(x, t) are in the same
reciprocal class iff

b̄i (x, t) = bi (x, t) + h,i (x, t), (3.24)

where h(x, t) satisfies the logarithmic backward equation

0 = h,0 + h,j b
j +

1
2

h,jj +
1
2

(h,j )
2. (3.25)
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Remark.This is called the logarithmic backward equation because its solutions
are the logarithms of solutions of the backward equation (1.14). This formula
(3.24) is the h-transform of Doob.

Proof of Lemma.Supposeh(x, t) satisfies the logarithmic backward equation and
b(x, t) and b̄(x, t) satisfy (3.24). Clearly

ḡi
j = b̄i

,j − b̄j
,i

= bi
,j − bj

,i − h,ij + h,ji

= gi
j . (3.26)

And

f̄ i = b̄i
,0 + b̄j

,i b̄
j +

1
2

b̄j
,ij

= bi
,0 + bj

,i b
j +

1
2

bj
,ij + h,i 0 + h,ij (bj + hj ) + h,j b

j
,i +

1
2

h,ijj

= f i +

(
h,0 + h,j b

j +
1
2

(h,j )
2 +

1
2

h,jj

)
,i

= f i . (3.27)

But by Clark [4], f , g and the scale of the noiseσi
kσ

j
k = δij are a complete set of

reciprocal invariants sob(x, t) and b̄(x, t) are in the same reciprocal class.
Now supposeb(x, t) and b̄(x, t) are in the same reciprocal class and let

ki (x, t) = b̄i (x, t)− bi (x, t). (3.28)

Sinceg = ḡ, k is a closed one-form onRn, hence exact so there existh̄ such that

h̄,i (x, t) = ki (x, t). (3.29)

Sincef = f̄ , (
h̄,0 + h̄,j b

j +
1
2

(h̄,j )
2 +

1
2

h̄,jj

)
,i

= 0 (3.30)

for i = 1, . . . , n. Hence there existsα(t) such that

h̄,0 + h̄,j b
j +

1
2

(h̄,j )
2 +

1
2

h̄,jj = α̇. (3.31)

Defineh(x, t) = h̄(x, t)− α(t) then (3.24,3.25) hold. QED

Theorem 3.4 Consider the second order stochastic boundary value problem (3.1-
3.3) wherew(t) is a standard Wiener process independent of the boundary con-
ditions x0, xf and assume the joint density of x0, xf is positive everywhere. There
exists a reciprocal diffusionξ(t) which satisfies (3.1-3.3) strongly.
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Proof Let p(x, s; y, t) be the Markov transition density of solutions of the Ito
equation (1.10), letq(x, s; y, t ; z, u) be the corresponding reciprocal transition
density (1.7) and letρ0f (x0, xf ) denote the density of the endpoints. By a result
of Jamison [9], there exist a reciprocal process with these densitiesq, ρ0f and it
is unique up to law. We construct a strong solution of the second order stochastic
boundary value problem (3.1-3.3) with this law by conditioning onx0.

Let ξ(t0) = x̄0 be a deterministic initial condition and define

h(x, t) = ln
∫

p(x, t ; x̄f , tf )ρf |0(x̄f |x̄0)dx̄f , (3.32)

b̄i = bi + h,i (3.33)

whereρf |0(x̄f |x̄0) is the conditional density of ¯xf given x0 = x̄0,

ρf |0(x̄f |x̄0) =
ρ0f (x̄0, x̄f )∫
ρ0f (x̄0, x̄f )dx̄f

. (3.34)

It is not hard to show thath satisfies the logarithmic backward equation sob
and b̄ are in the same reciprocal class

Let w̄(t) be a standard Wiener process under a probability measureP̄ on
the space of ¯w paths which is independent ofw(t), x0, xf . Consider the Markov
diffusion ξ̄(t) that satisfies the Ito equation

d+ξ̄i = b̄i (ξ̄, t)dt + d+w̄i , (3.35)

ξ̄(t0) = x̄0. (3.36)

The processξ̄(t) is a reciprocal diffusion in the class off , g with end point
distribution of x̄0, x̄f above. Hence the law of̄ξ(t) is the same as that of the
desired solution of the second order stochastic boundary value problem (3.1-3.3)
conditioned onx0 = x̄0. Moreover, by Theorem 3.2,̄ξ(t) satisfies the integral
equation

ξ̄i (t) =
tf − t
tf − t0

x̄i
0 +

t − t0
tf − t0

x̄i
f (3.37)

+
∫ tf

t0

Γ (t , s)
[
f i (ξ̄(s), s)ds + gi

j (ξ̄(s), s)dξ̄j (s)
]

+
∫ tf

t0

Γ (t , s)

[
d2w̄i (s)

ds2
+ b̄i

,j (ξ̄(s), s)
dw̄i (s)

ds
− 1

2
b̄j
,ij (ξ̄(s), s))

]
ds.

We wish to show is that this holds withb, w replacingb̄, w̄.
Define a transformation fromw paths to ¯w paths by

w̄i (t)− w̄i (t0) = wi (t)− wi (t0)−
∫ t

t0

h,i (ξ̄(s), s)ds. (3.38)

This allows us to define the measureP on w̄ paths. The measuresP, P̄ are mutu-
ally absolutely continuous with Radon Nikodym derivative given by Girsanov’s
Theorem ([17], Theorem 8.22),
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dP̄
dP

= exp(ζ tf
t0 ), (3.39)

whereζ t
t0 satisfies the Ito equation

d+ζ t
t0 = h,i (ξ̄(t), t)d+w̄i +

1
2

(h,i (ξ̄(t), t))2dt. (3.40)

We utilize (3.35) and the fact thath satisfies the logarithmic backward equation
to obtain

d+ζ t
t0 = h,i (ξ̄(t), t)d+ξ̄i + h,0(ξ̄(t), t)dt +

1
2

h,ii (ξ̄(t), t)dt

= d+h(ξ̄(t), t), (3.41)

so
ζ

tf
t0 = h(ξ̄(tf ), tf )− h(ξ̄(t0), t0). (3.42)

Therefore conditioned on the endpoints,ξ̄(t0), ξ̄(tf ), the conditional measures of
P and P̄ are identical. By definition, the statement thatξ̄(t), w̄(t) satisfy (3.37)
means that ¯z(t), ζ̄(t) defined by

z̄i (t) = ξ̄ i (t)− ζ̄ i (t)− w̄i (t) (3.43)

ζ̄ i (t) =
tf − t
tf − t0

(x̄i
0 − w̄i

0) +
t − t0
tf − t0

(x̄i
f − w̄i

f ) (3.44)

satisfy

z̄i (t) =
tf − t
tf − t0

∫ t

t0

b̄i (ξ̄(s), s)ds− t − t0
tf − t0

∫ tf

t
b̄i (ξ̄(s), s)ds

−
∫ tf

t0

Γ (t , s)b̄j
,i (ξ̄(s), s)

[
˙̄zj (s) + ˙̄ζ

j − b̄j (ξ̄(s), s)
]

ds. (3.45)

Notice that ¯z(t0) = z̄(tf ) = 0 therefore the distribution of the endpoints of solutions
to (3.37) is determined not by the distibution of ¯w(t) but only by the distribution
of x̄0, x̄f . Hence the measuresP andP̄ on the space of ¯w paths induce the same
law on the space of̄ξ paths via (3.37).

We definez(t), ζ(t) by

zi (t) = ξ̄ i (t)− ζ i (t)− wi (t), (3.46)

ζ i (t) =
tf − t
tf − t0

(x̄i
0 − wi

0) +
t − t0
tf − t0

(x̄i
f − wi

f ). (3.47)

then by (3.38)

zi (t) = z̄i (t) +
(
ζ̄ i (t)− ζ i (t)

)
+
(
w̄i (t)− wi (t)

)
(3.48)

= z̄i (t) +
t − t0
tf − t0

(
wi

f − w̄i
f − wi

0 + w̄i
0

)− ∫ t

t0

h,i (ξ̄(s), s)ds

= z̄i (t)− tf − t
tf − t0

∫ t

t0

h,i (ξ̄(s), s)ds +
t − t0
tf − t0

∫ tf

t
h,i (ξ̄(s), s)ds.
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From (3.45) we see that

zi (t) =
tf − t
tf − t0

∫ t

t0

bi (ξ̄(s), s)ds− t − t0
tf − t0

∫ tf

t
bi (ξ̄(s), s)ds

−
∫ tf

t0

Γ (t , s)bj
,i (ξ̄(s), s)

[
˙̄zj (s) + ˙̄ζ

j − b̄j (ξ̄(s), s)
]

ds

−
∫ tf

t0

Γ (t , s)h,ij (ξ̄(s), s)
[

˙̄zj (s) + ˙̄ζ
j − b̄j (ξ̄(s), s)

]
ds. (3.49)

Now from (3.33,3.38,3.43,3.44)

˙̄zj (s) + ˙̄ζ
j − b̄j (ξ̄(s), s) = żj (s) + ζ̇ j − bj (ξ̄(s), s) (3.50)

and from (3.35)(
˙̄zj (s) + ˙̄ζ

j − b̄j (ξ̄(s), s)
)

ds = d+ξ̄j (s)− b̄j (ξ̄(s), s)ds− d+w̄j (s) = 0. (3.51)

Therefore

zi (t) =
tf − t
tf − t0

∫ t

t0

bi (ξ̄(s), s)ds− t − t0
tf − t0

∫ tf

t
bi (ξ̄(s), s)ds

−
∫ tf

t0

Γ (t , s)bj
,i (ξ̄(s), s)

[
żj (s) + ζ̇ j − bj (ξ̄(s), s)

]
ds (3.52)

so we have shown that̄ξ(t) satisfies

ξ̄ i (t) =
tf − t
tf − t0

x̄i
0 +

t − t0
tf − t0

x̄i
f (3.53)

+
∫ tf

t0

Γ (t , s)
[
f i (ξ̄(s), s)ds + gi

j (ξ̄(s), s)dξ̄j (s)
]

+
∫ tf

t0

Γ (t , s)

[
d2wi (s)

ds2
+ bi

,j (ξ̄(s), s)
dwi (s)

ds
− 1

2
bj
,ij (ξ̄(s), s))

]
ds

as desired. QED

Notice that we have not proven the uniqueness of strong solutions to (3.1-
3.3). It is possible to show the existence and uniqueness of solutions for any
deterministic boundary valuesx0, xf and determistic continuous functionw(t)
providedtf − t0 is sufficiently small. But just how small is sufficient depends on
x0, xf andw(t) as we now show.

By our definition of a smooth vector field (C3 with bounded partials), there
exists a constantL > 0 such that

|b(x, t)| ≤ L(1 + |x|) (3.54)

|b(x, t)− b(y, t)| ≤ L|x − y| (3.55)∥∥∥∥∂b∗

∂x
(x, t)

∥∥∥∥ ≤ L (3.56)∥∥∥∥∂b∗

∂x
(x, t)− ∂b∗

∂x
(y, t)

∥∥∥∥ ≤ L|x − y| (3.57)
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where ‖ . ‖ denotes the induced matrix norm and∗ denotes transpose. Since
ζ(t) +w(t) is bounded fort ∈ [t0, tf ], c(x, t) (3.19) also satisfies (3.54-3.57) for
some newL depending onx0, xf andw(t).

Define an operator onC1 functionsz(t)

T[z] i (t) =
tf − t
tf − t0

∫ t

t0

ci (z(s), s)ds− t − t0
tf − t0

∫ tf

t
ci (z(s), s)ds (3.58)

−
∫ tf

t0

Γ (t , s)cj
,i (z(s), s)

[
żj (s) + ζ̇ j − cj (z(s), s)

]
ds.

Notice thatT[z](t) is C1. The next theorem proves the existence and uniqueness
of deterministic solutions of (3.18) for sufficiently smalltf − t0 by showing the
convergence of the Picard iterates

zi
(0)(t) = 0, (3.59)

zi
(k+1)(t) = T[zi

(k)](t). (3.60)

.

Theorem 3.5 Suppose c(x, t) is smooth vector field satisfying (3.54-3.57) Con-
sider the integral equation (3.18). There existsτ > 0 such that if0< tf − t0 ≤ τ
then the solution of (3.18) exists and is unique.

Proof. This is a modification of a standard proof of existence and uniqueness of
solutions for two point boundary value problems. See Hartman [8], Chapter XII,
Theorems 0.1 and 4.1. The proof is based on the fact that, for sufficiently small
tf − t0, the operatorT is a contraction on the space ofC1 functions equipped
with the norm

‖z‖ = max

{
sup

t0≤s≤tf

|z(s)|, (tf − t0) sup
t0≤s≤tf

|ż(s)|.
}

(3.61)

Choose constantsM1,M2 such that

M1 ≥ sup
t0≤t≤tf

{1 + |ζ(t) +w(t)|} , (3.62)

M2 ≥ |ζ̇|, (3.63)

so

|z(1)(t)| ≤ tf − t
tf − t0

∫ t

t0

LM1ds +
t − t0
tf − t0

∫ tf

t
LM1ds

+
∫ tf

t0

|Γ (t , s)|L(M2 + LM1)ds

≤ 2
(tf − t)(t − t0)

tf − t0
LM1 +

1
2

(tf − t)(t − t0)L(M2 + LM1)

≤ (tf − t)(t − t0)
tf − t0

M3 ≤ (tf − t0)M3, (3.64)
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where

M3 = 2LM1 +
1
2

(tf − t0)L(M2 + LM1).

Also

|ż(1)(t)| ≤ |c(0, t)| +
1

tf − t0

∫ tf

t0

|c(0, s)|ds

+
∫ tf

t0

∣∣∣∣∂Γ (t , s)
∂t

∣∣∣∣L(M2 + LM1)ds

≤ 2LM1 +
1
2

(tf − t0)L(M2 + LM1) = M3. (3.65)

Hence
‖z(1)‖ ≤ (tf − t0)M3. (3.66)

Supposey(t), z(t) are C1 functions whose norm (3.61) is less than some
constantN > 0. Then fort0 ≤ t ≤ tf ,

|ẏ(t) + ζ̇ − c(y(t), t)| ≤ N
tf − t0

+ M2 + L(M1 + N ), (3.67)

and similarly forz(t). Then

|T[y](t)− T[z](t)| ≤ tf − t
tf − t0

∫ t

t0

|c(y(s), s)− c(z(s), s)| ds (3.68)

+
t − t0
tf − t0

∫ tf

t
|c(y(s), s)− c(z(s), s)| ds

+
∫ tf

t0

|Γ (t , s)| ×
∣∣∣∣∂c∗

∂x
(y(s), s)

∣∣∣∣× |ẏ(s)− ż(s)− (c(y(s), s)− c(z(s), s))| ds

+
∫ tf

t0

|Γ (t , s)| ×
∣∣∣∣∂c∗

∂x
(y(s), s)− ∂c∗

∂x
(z(s), s)

∣∣∣∣× ∣∣ż(s) + ζ̇ − c(z(s), s)
∣∣ ds.

So

|T[y](t)− T[z](t)| ≤ 2(tf − t)(t − t0)
tf − t0

L ‖y − z‖ (3.69)

+
∫ tf

t0

|Γ (t , s)|L(
1

tf − t0
+ L) ‖y − z‖ ds

+
∫ tf

t0

|Γ (t , s)|L ‖y − z‖
(

N
tf − t0

+ M2 + L(M1 + N )

)
ds

≤ (tf − t0)N2 ‖y − z‖
where

N2 =
L
8

(
5 + N + (tf − t0)(L + M2 + LM1 + LN )

)
. (3.70)
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Similarly∣∣Ṫ[y](t)− Ṫ[z](t)
∣∣ ≤ |c(y(t), t)− (c(z(t), t)| (3.71)

+
1

tf − t0

∫ tf

t0

|c(y(s), s)− c(z(s), s)| ds

+
∫ tf

t0

∣∣∣∣∂Γ∂t
(t , s)

∣∣∣∣ × ∣∣∣∣∂c∗

∂x
(y(s), s)

∣∣∣∣ ∣∣∣∣∂c∗

∂x
(y(s), s)

∣∣∣∣
× |ẏ(s)− ż(s)− (c(y(s), s)− c(z(s), s))| ds

+
∫ tf

t0

∣∣∣∣∂Γ∂t
(t , s)

∣∣∣∣ × ∣∣∣∣∂c∗

∂x
(y(s), s)− ∂c∗

∂x
(z(s), s)

∣∣∣∣
× ∣∣ż(s) + ζ̇ − c(z(s), s)

∣∣ ds

≤ 2L ‖y − z‖
+
∫ tf

t0

∣∣∣∣∂Γ∂t
(t , s)

∣∣∣∣(L + L2) ‖y − z‖ ds

+
∫ tf

t0

∣∣∣∣∂Γ∂t
(t , s)

∣∣∣∣L ‖y − z‖
(

N
tf − t0

+ M2 + L(M1 + N )

)
ds

≤ N3 ‖y − z‖ (3.72)

where

N3 = 2L +
LN
4

+
tf − t0

2
(L(1 + M2) + L2(M1 + N )). (3.73)

Let N4 = max{N2,N3} then

‖T[y] − T[z]‖ ≤ (tf − t0)N4 ‖y − z‖ . (3.74)

We apply Theorem 0.1 on page 404 of [8] and conclude that, fortf − t0
sufficiently small, the Picard iterates (3.59,3.60) converge to a unique solution
in the space ofC1 functions on [t0, tf ] equipped with the norm (3.61). QED

4 Girsanov and Onsager-Machlup theorems

In this section we show how the reciprocal characteristics (2.23,2.24) arise nat-
urally in the context of the Girsanov and Onsager-Machlup Theorems. Suppose
we have two Ito equations

d+ξi = bi (ξ, t)dt + d+wi (4.1)

d+ξi = b̄i (ξ, t)dt + d+w̄i (4.2)

where b, b̄ are smooth vector fields andw, w̄ are standard Brownian motions
under probability measuresP, P̄. For a fixed initial conditionξ(t0) = x0 and time
interval [t0, tf ], each of these equations induces a probability measure on the
space of pathsξ(t), t ∈ [t0, tf ] which we denote byPtf

x0,t0, P̄
tf
x0,t0. The Cameron-

Martin-Girsanov Theorem ([17], Theorem 8.22 and Corollary 8.23) gives the
Radom-Nikodym derivative of one of these measures with respect to the other.
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dP̄tf
x0,t0

dPtf
x0,t0

= exp ζ tf
t0 (4.3)

whereζ satisfies the Ito equation

d+ζ t
t0 = ci d+wi − 1

2
ci ci dt

= ci d+ξi − 1
2

(b̄i b̄i − bi bi )dt (4.4)

ζ t0
t0 = 0 (4.5)

andci = b̄i − bi . In Stratonovich form this becomes

dζ t
t0 = ci dξ i − 1

2
(b̄i b̄i − bi bi + ci

,i )dt. (4.6)

In light of this we define theGirsanov one-formof b̄ relative tob to be

θ = ci dxi − 1
2

(b̄i b̄i − bi bi + ci
,i )dt (4.7)

Let Pxf ,tf
x0,t0 , P̄

xf ,tf
x0,t0 be the induced measures on the space of paths beginning at

ξ(t0) = x0 and ending atξ(tf ) = xf . Clearly b and b̄ are in the same reciprocal
class iff Pxf ,tf

x0,t0 = P̄xf ,tf
x0,t0 for all x0, t0; xf , tf . But this is true iff the integral of the

Girsanov form along any path beginning atξ(t0) = x0 and ending atξ(tf ) = xf

depends only on the endpoints and not on the path. In other words,b and b̄ are
in the same reciprocal class iffθ is a closed one-form. The exterior derivative of
θ is

dθ = ci
,j dxj ∧ dxi

+(ci
,0 + b̄j b̄j

,i − bj bj
,i +

1
2

cj
,ji )dt ∧ dxi . (4.8)

Hence we see again thatb and b̄ are in the same reciprocal class iff

f = f̄ (4.9)

g = ḡ (4.10)

where f , g are the reciprocal characteristics ofb (2.23,2.24) and̄f , ḡ are the
corresponding reciprocal characteristics ofb̄.

Now let φ(t) andψ(t), t ∈ [t0, tf ] be any smooth paths beginning atx0 and
ending atxf . We define a two dimensional surface bounded by these curves

φ(t , τ ) = (1− τ )ψ(t) + τφ(t) (4.11)

whereτ ∈ [0, 1]. Let ζ tf
t0 be the solution of (4.6,4.5), i.e.
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ζ
tf
t0 =

∫ tf

t0

ci (φ(t), t))dφi (t)

−1
2

(b̄i (φ(t), t)b̄i (φ(t), t)− bi (φ(t), t)bi (φ(t), t)

+ci
,i (φ(t), t))dt (4.12)

and letηtf
t0 be the corresponding integral alongψ(t)

η
tf
t0 =

∫ tf

t0

ci (ψ(t), t))dψi (t)

−1
2

(b̄i (ψ(t), t)b̄i (ψ(t), t)− bi (ψ(t), t)bi (ψ(t), t)

+ci
,i (ψ(t), t))dt. (4.13)

Then

ζ
tf
t0 − η

tf
t0 =

∫ 1

0

∂

∂τ

∫ tf

t0

ci (φ(t , τ ), t)dφi (t , τ )dτ (4.14)

−1
2

(b̄i (φ(t , τ ), t)b̄i (φ(t , τ ), t)− bi (φ(t , τ ), t)bi (φ(t , τ ), t)

+ci
,i (φ(t , τ ), t))dtdτ

=
∫ 1

0

∫ tf

t0

ci
,j (φ(t , τ ), t)(φj (t)− ψj (t))dφi (t , τ )dτ

+ci (φ(t , τ ), t)d(φi (t)− ψi (t))dτ

−(b̄i (φ(t , τ ), t)b̄i
,j (φ(t , τ ), t)− bi (φ(t , τ ), t)bi

,j (φ(t , τ ), t)

+
1
2

ci
,ij (φ(t , τ ), t))(φj (t)− ψj (t))dtdτ.

We integrate the second term by parts with respect tot to obtain

ζ
tf
t0 − η

tf
t0 =

∫ 1

0

∫ tf

t0

[
cj
,i (φ(t , τ ), t)− ci

,j (φ(t , τ ), t)
] [
φi (t)− ψi (t)

]
dφi (t , τ )dτ

−
[
b̄j (φ(t , τ ), t)b̄j

,i (φ(t , τ ), t)− bj (φ(t , τ ), t)bj
,i (φ(t , τ ), t)

+
1
2

cj
,ij (φ(t , τ ), t)

] [
φi (t)− ψi (t)

]
dtdτ

= −
∫ 1

0

∫ tf

t0

[
(f̄ i (φ(t , τ ), t)− f i (φ(t , τ ), t))dt

+(ḡi
j (φ(t , τ ), t)− gi

j (φ(t , τ ), t))dφj (t)
] [
φi (t)− ψi (t)

]
dτ. (4.15)

Now ζ
tf
t0 is the logarithm of the ratio of the likelihood ofφ(t) under the measure

P̄ over the likelihood ofφ(t) under the measureP. Similarly ηtf
t0 is the logarithm

of the ratio of the likelihood ofψ(t) under the measurēP over the likelihood of
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φ(t) under the measureP. Therefore the difference is the logarithm of the ratio
of the relative likelihood ofφ(t) to ψ(t) under the measurēP over the relative
likelihood of φ(t) to ψ(t) under the measureP. Notice that the right side has
the dimensions of work, force times distance. Ifb = 0 then f = 0, g = 0 so
the change in logarithmic relative likelihood is the work done in perturbing the
trajectory fromψ(t) to φ(t). Other formulas of Girsanov type can be found in
[4] and [13].

Supposeξ(t) is a Markov diffusion satisfying the Ito equation (4.1) with
deterministic initial conditionξ(t0) = x0 and letψ(t) be any smooth trajectory
starting at the same pointψ(t0) = x0. The Onsager-Machlup formula [19] gives
an asymptotic estimate for the probability thatξ(t) lies in a tube of radiusε
aroundψ(t),

ln P
(|ξ(t)− ψ(t)| < ε, t ∈ [t0, tf ]

)− ln P
(|w(t)| < ε, t ∈ [t0, tf ]

)
∼ −1

2

∫ tf

t0

|ψ̇ − b(ψ(t), t)|2 + bi
i (ψ(t), t)dt. (4.16)

The right side is calledthe Onsager-Matchlup functional. The Euler-Lagrange
equations for the trajectories which stationarize this functional are

ψ̈i = f i (ψ, t) + gi
j (ψ, t)ψ̇j (4.17)

wheref , g are the familiar reciprocal characteristics, (2.23,2.24).

5 Conservation laws

The density of a Markov diffusion satisfies the Fokker-Planck equation, a second
order parabolic PDE. As was shown in [10], the regular parts of the conditional
moments of the velocity of a reciprocal diffusion satisfy a sequence of conser-
vation laws similar to those of continuum mechanics. More precisely, by the
term conditioned on the position, we mean conditioned ond0ξ(t , dt) = x as in
Theorem 2.2. By velocity we meand1ξ(t , dt) divided by dt and by the regular
part of the moments of the velocity, we mean the part that isO(1) in dt.

The zero order moment of the velocity conditioned on the position is the
probability density ¯ρ(x, t , dt). This is the density ofd0ξ(t , dt) = x and it is not
hard to show that

ρ̄(x, t , dt) = ρ(x, t)(1 + O(dt)) (5.1)

so the regular part is justρ(x, t).
The regular part of the first moment of the velocity conditioned on the position

is the centered velocityv(x, t) as defined in (2.29). The regular part of the
second moment of the velocity conditioned on the position is the momentum
flux coefficientP(x, t) as defined in (2.30).

The first conservation law is called the continuity equation and is well-known
in stochastic mechanics [16],
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∂

∂t
ρ(x, t) = − ∂

∂xi

(
ρ(x, t)vi (x, t)

)
. (5.2)

It expresses the fact that probability mass is neither created nor destroyed under
the mean flow. In other words the time rate of change of the probability of a
volume element is only due to the flux of probability through the boundary of
the element. The probability flux isρ(x, t)v(x, t) which can also be interpreted
as the momentum density.

The second conservation law was first derived in [10], see also [13]. It is
similar to Euler’s equation of continuum mechanics,

∂

∂t

(
ρ(x, t)vi (x, t)

)
= ρ
(
f i (x, t) + gi

j (x, t)vj (x, t)
)− ∂

∂xj

(
ρ(x, t)Pij (x, t)

)
.

(5.3)
It expresses the fact that the time rate of change of momentum in a volume
element is due to the mean forces acting inside the volume element plus the
flux of momentum through the boundary of the volume element. The mean
forces include a forcef (x, t) that depends only on position and oneg(x, t)v(x, t)
that depends on position and linearly on mean velocity. The momentum flux is
ρ(x, t)P(x, t). The kinetic energy density is one half of the trace of the momentum
flux.

We shall give a weak derivation of these two conservation laws for reciprocal
diffusions using the theorems of Sect. 2 and the assumption that the densityρ(x, t)
goes to zero faster than|x|−k for any k as |x| goes to∞. We conjecture that
they are the first two of an infinite sequence of conservation laws satisfied by
the regular part of the higher moments. Without going into detail, ifPi1...ir (x, t)
denotes the regular part of ther th moment ofd1ξ(t) conditioned ond0ξ(t) then
the conjecture is

∂

∂t

(
ρPi1...ir (x, t)

)
= ρ

(
f ij Pi1...î j ...ir + gij

k Pi1...î j ...ir k
)

− ∂

∂xk

(
ρPi1...ir k

)
(5.4)

where the hat as in̂ij denotes a deleted index. The summation is over the repeated
indicesj , k. In [10] the third conservation law (k = 2) was verified for Gaussian
reciprocal diffusions for which it takes the form

∂

∂t

(
ρPij

)
= ρ

(
f i vj + vi f j + gi

kPkj + Pikgj
k

)
− ∂

∂xk

(
ρ
(
vi vj vk + πij vk + πjkvi + πkivj

))
, (5.5)

where
πij (x, t) = Pij (x, t)− vi (x, t)vj (x, t). (5.6)

For nonGaussian processes there is an extra term in the flux of (5.5).
This conservation law expresses the balance of kinetic energy and work for

every scalar process of the formζ(t) = λi ξ
i (t). In particular, if we take half of

the trace of (5.5), the terms involvingg cancel by skewsymmetry and we obtain
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∂

∂t

(
1
2
ρPii

)
= ρf i vi − ∂

∂xk

(
ρ

(
1
2
vi vi vk +

1
2
πii vk + πikvi

))
(5.7)

We see that the left side is the time rate of change of the density of kinetic
energy. This equals the right side which is the rate at which work is done against
the forces acting on particles within a volume element plus the flux of kinetic
energy carried by particles entering or leaving the volume element. The flux has
contributions from both the mean and random parts of the motion. The mean and
random kinetic energy carried by the mean motion are the first and second terms
of the flux. The third term of the flux is the mixed mean-random kinetic energy
carried by the random motion. This term resembles a viscosity, but it is not.
These equations are associated to a random process. In each realization of the
process there is only a single particle so there is no viscosity or friction between
particles. This term is due to the flux of energy from the random motion of
particles between regions of different mean velocities. As a result of this random
exchange of particles, regions of slow mean velocity are energized by nearby
regions of fast mean velocity and regions of fast mean velocity are deenergized
by nearby regions of slow mean velocity. This takes the appearance of viscosity.

These conservation laws hold for reciprocal diffusions whose sample paths are
nowhere differentiable almost surely. In particular, it makes no sense to talk of a
joint density of position and velocity. Instead we consider the joint density of the
recipocal diffusion at two nearby timesξ(t +dt), ξ(t−dt) which we recoordinatize
asd0ξ(t , dt), d1ξ(t , dt). The density ofd0ξ(t , dt), d1ξ(t , dt) can be factored into
the density ¯ρ(x, t , dt) of d0ξ(t , dt) times the conditional density ofd1ξ(t , dt)
given d0ξ(t , dt). As dt goes to 0, the latter density becomes singular but the
regular parts of its conditional moments seem to obey the standard conservation
laws.

We now weakly derive the first conservation law (5.2). As test functions, we
useC∞ functionsφ(x, t) with compact support in (t0, tf ). A test functions and
its first and second partials should grow no faster than a polynomial asx goes
to ∞, i.e. for some integerk

|φ(x, t)|
|x|k → 0 as |x| → ∞, (5.8)

|φ,i (x, t)|
|x|k → 0 as |x| → ∞, (5.9)

|φ,ij (x, t)|
|x|k → 0 as |x| → ∞. (5.10)

Partition the interval [t0, tf ] into subintevals [tr , tr +1] where tr = t0 + rdt , tf =
t0+(N +1)dt. For any test functionφ, defineφ(t) = φ(ξ(t), t). Because the support
of φ is in (t0, tf ), for dt sufficiently small

0 =
N∑

r =1

d1φ(tr ) (5.11)
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and hence

0 = E

(
N∑

r =1

d1φ(tr )

)

0 = E

(
N∑

r =1

E
(
d1φ(tr )|d0ξ(tr )

))
. (5.12)

But

d1φ(t) =
1
2

(φ(t + dt)− φ(t − dt))

=
1
2

(
φ(t + dt)− φ(d0ξ(t), t) + φ(d0ξ(t), t)− φ(t − dt)

)
. (5.13)

We expand in a Taylor series aroundd0ξ(t), t and obtain

dφ = φ,i d
1ξi + φ,0dt + O(d1ξ, dt)3 (5.14)

so by Theorem (2.2)

E
(
d1φ|d0ξ

)
= φ,i v

i dt + φ,0dt + O(dt)2. (5.15)

We plug this into (5.12) and letdt go to zero to obtain

0 =
∫ ∫ tf

t0

ρ(x, t)
(
φ,i (x, t)vi (x, t) + φ,0(x, t)

)
dtdx (5.16)

which we recognize as the weak form of (5.2).
To derive the second conservation law we start with the fact that fordt

sufficiently small

0 =
1
dt

N∑
r =1

d2φ(tr ), (5.17)

and hence

0 = E

(
1
dt

N∑
r =1

d2φ(tr )

)
,

0 = E

(
1
dt

N∑
r =1

E
(
d2φ(tr )|d0ξ(tr )

))
. (5.18)

But

d2φ(t) = (φ(t + dt)− 2φ(t) + φ(t − dt))

= φ(t + dt)− φ(d0ξ(t), t) + φ(t − dt)− φ(d0ξ(t), t)

−2(φ(ξ(t), t)− φ(d0ξ(t), t)). (5.19)

Again we expand in a Taylor series aroundd0ξ(t), t and obtain
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d2φ = φ,i d
2ξ + φ,ij

(
d1ξi d1ξj − 1

4
d2ξi d2ξj

)
+2φ,i 0d1ξi dt + φ,00dt2

+
1

24
φ,ijk d2ξi d2ξj d2ξk

+
1

12
φ,ijkl

(
d1ξi d1ξj d1ξkd1ξl − 1

16
d2ξi d2ξj d2ξkd2ξl

)
+O(d2ξ)5 + O(d1ξ)5 + dtO(d1ξ)3 + dt2O(d1ξ). (5.20)

By Theorem (2.2)

E
(
d2φ|d0ξ

)
= φ,i

(
f i + gi

j v
j
)

dt2 + φ,ij Pij dt2

+2φ,i 0v
i dt2 + φ,00dt2

+O(dt)3. (5.21)

We plug this into (5.18) and letdt go to zero to obtain

0 =
∫ ∫ tf

t0

ρ
(
φ,i (f

i + gi
j v

j ) + φ,ij Pij + 2φ,i 0v
i + φ,00

)
dtdx. (5.22)

By the weak form of the first conservation law (5.16)

0 =
∫ ∫ tf

t0

ρ
(
φ,i 0v

i + φ,00
)

dtdx (5.23)

hence (5.22) becomes after integration by parts

0 =
∫ ∫ tf

t0

φ,i

(
ρ(f i + gi

j v
j )− ∂

∂xj
(ρPij )− ∂

∂t
(ρvi )

)
dtdx (5.24)

which we recognize as the weak form of (5.3).

6 Markov diffusions

Supposeξ(t) is a Markov diffusion satisfying the Ito equation (1.10). Its density
ρ(x, t) satisfies the familiar Fokker-Planck PDE,

∂

∂t
ρ(x, t) +

∂

∂xi
(ρ(x, t)bi (x, t))− 1

2
∂2

∂xi ∂xi
ρ(x, t) = 0. (6.1)

From (2.7) and (2.9) the centered velocity of a Markov process is

vi (x, t) = bi (x, t)− 1
2
∂

∂xi
ln ρ(x, t) (6.2)

and substituting this into the Fokker-Planck equation yields the continuity equa-
tion (5.2). From this and the definition ofg (2.24) it follows that

gi
j = vi

,j − vj
,i (6.3)
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Recall thatπ, the regular part of the conditional variance of the velocity
(2.30), is given by

πij (x, t) = Pij (x, t)− vi (x, t)vj (x, t). (6.4)

The second conservation law in Lagrangian form is

∂

∂t
vi (x, t) + vj (x, t)

∂

∂xj
vi (x, t) = f i (x, t) + gi

j (x, t)vj (x, t)

− 1
ρ(x, t)

∂

∂xj

(
ρ(x, t)πij (x, t)

)
. (6.5)

This equation can be solved for the last term using the Fokker-Planck equation
(6.1) and the expressions forf (2.23),g (2.24) andv (6.2) to obtain

∂

∂xj

(
ρ

(
πij − 1

4
∂2

∂xi ∂xj
ln ρ

))
= 0. (6.6)

In [13] it is shown that a stronger condition holds, namely,

πij =
1
4

∂2

∂xi ∂xj
ln ρ. (6.7)

Since they are satisfied by all Markov diffusions, equations (6.3) and (6.7)
are called theMarkov closure rulesfor the sequence of conservation laws.

7 Quantum diffusions

Schr̈odinger’s original motivation for studying the reciprocal property was an
attempt to give a description of quantum mechanics in stochastic terms. As
developed by F́enyes [6], Nelson [16] and many others, this program has come
to be calledstochastic mechanics. The basic idea is to associate with a wave
function satisfying Schr̈odinger’s equation, a related diffusion process, usually a
Markov diffusion. The density of the diffusion should equal the square modulus
of the wave function and certain other relations should hold. We refer the reader
to [16] for a more complete description of stochastic mechanics.

In this section we shall argue that if there is a stochastic description of
quantum mechanics and if this description employs reciprocal diffusions then it
does not involve the subclass of Markov diffusions. Rather it must be in terms
of a disjoint subclass which we have termedquantum diffusions, [13]

Mechanics is intrinsically second order so a definition of stochastic acceler-
ation is needed. There are several possible definitions of stochastic acceleration.
We have discussed three of them, the stochastic accelerationa of Nelsen (2.17),
the stochastic acceleration of Zambrini-Cruziero (2.41) and our stochastic accel-
eration in terms off , g as given in Theorem 2.1. For smooth processes all reduce
to the classical acceleration but for diffusions they differ as was pointed out by
Thieullen [20]. The latter two are quite similar. The Zambrini-Cruziero stochas-
tic acceleration equalsf (x, t) + g(x, t)v(x, t) and is a function of position alone
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x = ξ(t). Ours equalsf (x, t) + g(x, t)dx/dt and is function of centered position
x = (ξ(t +dt)+ξ(t−dt)/2 and centered velocitydx/dt = (ξ(t +dt)−ξ(t−dt)/(2dt).
In one space dimension they are identical asg = 0.

To see the difference between Nelson’s stochastic acceleration and the other
two, consider an Ornstein-Uhlenbeck velocity process defined as the stationary
solution of the scalar Ito equation

d+ξ = −ξdt + d+w (7.1)

where the stationary densityρ(x) is Gaussian, zero mean and variance 1/2. The
forward drift is b(x, t) = −x, the backward drift as computed from (2.7) is
b̄(x, t) = x. Nelson’s stochastic acceleration isa(x, t) = −x while f (x, t) = x and
g(x, t) = 0. From Nelson’s point of view the particle appears to be moving in
attracting force field while from other points of view it is moving in a repelling
field. If the equation where not stochastic but instead were deterministic

d
dt
ξ = −ξ (7.2)

then another differentiation yields the second order differential equation

d2

dt2
ξ = ξ (7.3)

which is motion in a repelling field.
Moreover Nelson’s acceleration is not a reciprocal invariant as it depends on

the density through (2.7). For a nonstationary solution of the Ornstein-Uhlenbeck
equation (7.1), Nelson’s stochastic acceleration changes with time becauseρ =
ρ(x, t). In space dimensions higher than one, the Zambrini-Cruziero stochastic
acceleration is not a reciprocal invariant because it containsv. On the other
hand f , g are reciprocal invariants, independent of the density. It is for these
reasons that we believe that the appropriate definition of stochastic acceleration
is f (x, t) + g(x, t)dx/dt wherex = (ξ(t + dt) + ξ(t − dt)/2 anddx/dt = (ξ(t +
dt)− ξ(t − dt)/(2dt).

In flat space with~ = 1, the Schr̈odinger equation takes the form

ı
∂ψ

∂t
=

[
1
2

(
ı
∂

∂xj
+ Aj

)(
ı
∂

∂xj
+ Aj

)
+ φ

]
ψ (7.4)

whereφ,Ai are a scalar and covector potentials andı is the square root of−1.
If we assume that

ψ = exp(R + ıS) (7.5)

and take imaginary and real parts of Schrödinger equation (7.4) we obtain

∂R
∂t

= −1
2

∂2S
∂xj ∂xj

− ∂R
∂xj

∂S
∂xj

+
1
2
∂Aj

∂xj
+ Aj

∂R
∂xj

(7.6)
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and

∂S
∂t

=
1
2

(
∂2R
∂xj ∂xj

+
∂R
∂xj

∂R
∂xj

− ∂S
∂xj

∂S
∂xj

− Aj Aj

)
− Aj

∂S
∂xj

− φ. (7.7)

To this solutionψ(x, t) of the wave equation, we would like to associate a
reciprocal diffusionξ(t) so we make the following assumptions that are standard
in stochastic mechanics [16], namely, that the densityρ and centered velocityv
of ξ(t) satisfy

ρ = |ψ|2 = exp 2R, (7.8)

vi =
∂S
∂xi

− Ai . (7.9)

It is well-known [16] that under these assumptions the continuity equation (5.2)
is equivalent to the imaginary part of Schrödinger’s equation (7.6). If we also
assume that the stochastic acceleration (in our sense) of the reciprocal diffusion
should be the same as that experienced by a classical particle moving in the field
induced by the same potentialsφ,Ai , i.e.,

f i = − ∂φ

∂xi
− ∂Ai

∂t
(7.10)

gi
j =

∂Aj

∂xi
− ∂Ai

∂xj
(7.11)

then it follows by comparing the Euler equation (5.3) with the real part of
Schr̈odinger’s equation thatπ(x, t) of ξ(t) must satisfy

∂

∂xj

(
ρ

(
πij +

1
4

∂2

∂xj ∂xj
ln ρ

))
= 0. (7.12)

Notice the difference between this and the similar equation for Markov processes
(6.7). From this we conclude that if the reciprocal diffusionξ(t) corresponding
to the wave functionψ(x, t) satisfies the above assumptions (7.8-7.11), thenξ(t)
is not Markov.

In [13], we defined the class ofquantum diffusionsto be the reciprocal process
satisfying thequantum closure relations

gi
j = vi

,j − vj
,i , (7.13)

πij = −1
4

∂2

∂xj ∂xj
ln ρ. (7.14)

The second of these is a strengthened form of (7.12). They are equivalent for
Gaussian reciprocal processes because for such processesπ does not depend on
x, π(x, t) = π(t), see [12]. As is shown in [14], (7.14) implies the Heisenberg
Uncertainty Principle.

Nelson [16] assumes that the stochastic processξ(t) corresponding to the
wave functionψ(x, t) satisfies (7.8,7.9) and that his stochastic acceleration is the
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same as that experienced by a classical particle moving in the field induced by
the same potentialsφ,Ai , i.e.

ai = − ∂φ

∂xi
− ∂Ai

∂t
+

(
∂Aj

∂xi
− ∂Ai

∂xj

)
vj (7.15)

instead of (7.10,7.11). If this process is reciprocal then the second conservation
law (5.3) implies that (6.6) holds hence the process could be Markov.

Therefore depending on which expressions one takes for the stochastic ac-
celeration, one obtains different reciprocal processes corresponding to a wave
function. We refer the interested reader to [14] for a fuller discussion of this
point.

8 Conclusions

The theory of Markov diffusions includes the mean differential discription in
terms of the diffusion postulates (2.1, 2.2,2.3), the Ito integration of first order
stochastic differential equations and the connection with parabolic partial dif-
ferential equations, the Fokker-Planck and Kolmogorov forward and backward
equations. In this paper we have laid out parallel components of the theory of
reciprocal diffusions in flat space, the second order mean differential discription,
Theorem 2.1, the second order integral discription, Theorems 3.2, 3.4 and the
connection with conservation laws, Sect. 5. Much work remains to be done, in
particular, in extending the theory to curved space where the geometry will play
a significant role.
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