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Graph backstepping procedure for designing stabilizing controllers for Moore-Greitzer three-dimen-
sional models describing rotating stall and surge in compressors with general characteristics is
presented.

Abstract

We discuss the design of controllers for compressors with general characteristics, including the right-skewed ones. The controllers
can be represented graphically by plotting their throttle surfaces. The graphical representation of controllers enhances understanding
ol controller action and allows to compare various controllers. We discuss the issue of the right skewness of a compressor
characteristic. We show how to design controllers using a graph backstepping procedure involving the construction of the throttle
surface. We show that for a quite general compressor characteristic, every potential axisymmetric equilibrium on the decreasing part
of the compressor characteristic, the peak of the characterisitic, and every rotating stall equilibrium close to the peak can be globally
or semi-globally stabilized by an appropriate choice of the throttle surface and the controller gains. We obtain lower bounds on the
gains of the controller in terms of the divided differences related to compressor characteristic. These bounds can be expressed using
some bounds on the first and second derivatives of the characteristic in the region of operation. In this way we establish a direct
relationship between the shape of the compressor characteristic and the required controller gains. We discuss controllers that stabilize
a range of the desired equilibria and guarantee a soft bifurcation of the equilibria as a set-point parameter varies. We give an example
of controller design for a right-skew compressor. We provide simple general guidelines for choosing the throttle surface. © 1999
Elsevier Science Ltd. All rights reserved.

Kevwords: Compressors; Rotating stall; Surge; Backstepping; Bifurcation control; Nonlinear control; Stabilizing feedback; Global
stabilization

1. Introduction is Galerkin projected onto its first circumferential
Fourier mode and the result is a system of 3 ODEs.
Surge and rotating stall are complex nonlinear phe-

nomena that limit the perfrmance of compressors. Moore A = aly(®, A),

and Greitzer (1986) developed a simple model (MG3) |

that mirrors the observed behaviour. In this model, the b = —(I,(D, A) — ), (1)
compressor 1s treated as an actuator disk which is L

coupled to the upstream and downstream flow fields. ) 1
This results in a system of 2 ODEs and a PDE. The PDE Y= B (D — KTﬁ),
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The three state variables ol this model are ®, the non-
dimensionalized annulus averaged mass flow coeficient
through the compressor, W, the nondimensionalized an-
nulus averaged pressure rise coeficient across the com-
pressor. and A, the nondimensionalized amplitude of the
first Fourier mode of the mass flow through the compres-
sor. The [unction W (¢) is called the compressor charac-
teristic and 1s found empirically. Its value is the local
pressure rise when the local mass flow is ¢. For most
compressors it has an S shape as seen in Fig. 1. The
parameters g, [.. B are determined by the geometry of the
compressor and the throttle parameter Ky is the fraction
of the throttle opening. Since the throttle parameter can
be varied. it will be used as the control.

We assume that A, the magnitude of the first Fourier
coeflicient of the flow coefficicnt at the compressor face, is
always nonnegative.

We assume that the compressor characteristic W (D) 1s
a general S-shaped curve (like the one shown on Fig. 1).
In particular, we assume that:

I. The characteristic has onc peak (9, ¥,) and, to the
left of the peak, one well. The characteristic is strictly
decreasing 1o the right of the peak and to the left of the
well, it is strictly increasing between the well and the
peak.

2. The characteristic has exactly one inflection point
(D Vi) between the well and the peak. One has
YD) = 0 for ® < O and YD) < 0 for @ > By, e,
the characteristic is strictly concave to the right of the
inflection point. and its strictly convex to the left of the
inflection point.

Fig. | shows a characteristic that was obtained by
fitting a sixth-degree polynomial to a piecewise cubic
characteristic of C; compressor considered in (Mansoux
ct al.. 1994). Unless otherwise specified, all figures and
examples presented in this paper refer to this character-
istic. that we will call €3 characteristic.

The throttle parameter Ky is considered to be the
control variable. The control goal is to maintain a max-

imum possible pressure rise coefficient at the design
point. This requires choosing the throttle parameter such
that the closed-loop system has a unique equilibrium at
the peak or close to the peak. However, this goal cannot
be achicved with a constant throttle parameter, since for
the low values of the throttle parameter corresponding to
cquilibria on the compressor characteristic close to the
peak one usually creates some additional rotating stall
cquilibria through a (hard) saddle-node bifurcation. More-
over, for a low value of the throttle parameter, as the
axisymmetric cquilibrium approaches the peak, its do-
main of attraction shrinks and a small disturbance can
cause the state of the system to settle at a rotating stall
equilibrium with a smaller value of the pressure rise
coeflicient or to undergo the so-called surge cycle. If the
state of the system settles at a rotating stall equilibrium,
one must open the throttle (i.e., increase the value of the
throttle parameter) until the stall equilibria disappear
through a saddle-node bifurcation. However, the state of
the system does not return immediately to the desired
cquilibrium on the compressor characteristic close to the
peak. Instead, it settles on the compressor characteristic
at a point with much lower pressure rise coefficient than
desired. To force the state of the system to go back to the
design point with a higher value of the pressurc rise
coeflicient one has to close the throttle again at the cost
of creating the stall equilibria. As we can sce, returning to
a design point close to the peak after stability loss in-
volves going through a hysteresis loop. (See McCaughan
(1990) for a detailed bifurcation analysis of the MG3
model with a cubic compressor characteristic and a con-
stant throttle parameter.)

By allowing the throttle parameter to be a function of
the state rather than a constant, we can improve perfor-
mance of the compression system. First of all, by an
appropriate choice of the throttle function and controller
gains we can stabilize the axisymmetric equilibria to the
right of the peak, or the peak itself, and, at the same time,
eliminate the rotating stall cquilibria.

The compressor characteristic is often not known
cxactly and it depends on many factors that can change
in time. We would like to choose the throttle parameter
so that the closed-loop system has only one stable equi-
librium on the compressor characteristic close to the
peak. However, it may happen that the throttle surface
may be off from its desired position (for instance, because
of an incorrect estimation of the peak position or a dis-
turbance) and some rotating stall equilibria will appear.
In this case, we will be interested in designing the throttle
surface so that there is only one stable rotating stall
equilibrium close to the peak that is created via a (soft)
supercritical pitchfork bifurcation. By changing a set-point
parameter the equilibrium will continuously go back to
the design point, avoiding a hysteresis.

In Liaw and Abed (1996) a controller that locally
stabilized a desired equilibrium and eliminated hysteresis
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has been designed. It used information about the second
derivative of the characteristic at the peak. In Eveker
et al. 11995) a controller that simultaneously controlled
stall and surge and avoided hysteresis has been designed.
The controlier was experimentally validated for a low-
speed 3-stage compressor. Behnken et al. (1995) discusses
using the air injection for control of the rotating stall. An
application of oscillatory control to compressors has
been studied i Baillicul et al. (1995).

Most approaches for designing controllers for com-
pression syvstems assumed some particular form of the
compressor characteristic. For instance, following the
original suggestion of Moore and Greitzer (1986), Eveker
et al (1995) and Krstic (19995) (see also Krstic et al., 1995)
used a cubic parametrization. Assuming this parametriz-
ation. it has been shown in Krstic (1995), Krstic et al.
(1995) that global stabilization of a range of equilibria is
possible. However. as it was observed, the cubic par-
ametrization could not account for the existence of stall
equilibria for the values of the mass flow coeflicient to the
right of the peak of the characteristic, which was experi-
mentally observed for some compressors. As it was no-
ticed in Jankovic (1995). such compressors exhibit a deep
hysteresis and are difficult to control. Deep hysteresis has
been related in Sepulchre and Kokotovic (1996) to the
fact that the characteristic to the left of the peak drops off
faster than to the right. This property has been since
called the right-skewness of the characteristic.

To study the right-skewness and its impact on control-
ler design. & two-sine parametrization has been used in
Sepulchre and Kokotovie (1996). Recently, another par-
ametrization that allows to describe the right-skewness
has been proposed in Krstic and Wang (1996). Local
stabilization of a range of equlibria has been obtained in
Sepulchre and Kokotovie (1996) and Krstic and Wang
(1996). Minimum sensing requirements for feedback
control have been also studied in these papers. While
Scpuichre and Kokotovie (1996) used a specific par-
ametrization to obtain local stabilization of the desired
equilibria, Krstic and Wang (1996) allowed a general
characteristic and used information about derivatives of
the compressor characteristic near the peak for a local
analysis.

Using specific parametrizations of compressor charac-
teristics was certainly useful for a local study of the right
skewness and its impact on locul stabilization of a range
of cquilibria. However, using specific parametrizations
had several deficiences. The parametrizations had to be
simple cnough to allow for explicit evaluation of the
integrals in Egs. (1) and keep the number of terms occur-
ring on the right-hand sides of these equation resulting
from the integration low enough to make the analysis
tractable. None of the simple parametrizations used so
far was general enough to fit experimentally obtained
data for most existing compressors. A piecewise cubic
used in Mansoux et al. (1994) provided a good fit to data,

but it did not allow explicit evaluation of the integrals
in (1). On the other hand, using a general high-degree
polynomial parametrization would allow for both good
fit to experimental data and explicit evaluation of the
integrals in Egs. (1), but (because of a large number of
terms involved) would make the analysis tractable. Even
a simple cubic characteristic ‘¥ (®) when substituted into
Eqgs. (1) creates many terms on the right-hand sides of
these equation. As a result, in analysis and controller
design one has to deal with complicated interactions of
these terms. In contrast, in the original form, Egs. (1) have

few terms that, as we will show, can be relatively easily

analysed on a general level. It is our opinion that using
specific form of a compressor characteristic makes analysis
and controller design less general and more difficult and
actually obscures understanding of what features of the
characteristic are crucial for analysis and control design.

As a result of exploiting particular parametrizations
the existing results on controller design for compressors
are either global for specific classes of characteristics, or
local for general characteristics. The present paper tries
to fill the gap by providing global results for general
characteristics.

Our approach differs from existing approaches for
designing controllers for compression systems. It does
not use any particular parametrization of the compressor
characteristic. Instead, it directly uses information about
the slopes and curvatures of the characteristic, ie., in-
formation about the shape of the characteristic. The
knowledge of the exact values of the slopes and curva-
tures of the characteristic is not required, knowing some
upper and lower bounds suffices. In that sense the de-
signed controller is robust with respect to changes in the
shape of the characteristic, as long as certain inequalities
involving the controller gains and some quantities de-
pending on the slopes and curvatures of the characteristic
are satisfied. The controller is obtained in a graphical way
by specifying the position of the corresponding throttle
surface.

We will show that for a quite general compressor
characteristic, if one neglects the actuator saturation and
bandwidth limitations, every potential axisymmetric equi-
librium on the decreasing part of the compressor character-
istic, the peak of the characterisitic, and every rotating stall
equilibrium close to the peak can be globally or semi-
globally stabilized by an appropriate choice of the throttle
surface and value of controller gains.

Of course, global or semi-global stabilization of a
compression system is not a practical goal. The Moore-
Greitzer model is certainly not valid globally and some
initial conditions far from the design point will never
occur in practice. We prove global or semi-global stabi-
lization merely to achieve two practical goals:

1. We can guarantee an arbitrarily large domain of
attraction of the desired equilibrium.
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2. We construct a family of invariant sets for the flow of
the closed-loop system (the level sets of Lyapunov
lunction that we construct in the paper).

The analytical description of the controller design that
we present in this paper uses some divided differences
related to the compressor characteristic and requires
some notation that makes the main results difficult to
read. However, all results presented in the paper have
a simple yraphical interpretation. To make the results
casicr to understand we provided many figures. We en-
courage the reader to think geometrically and try to
sketeh the missing graphs whenever possible.

The paper 1s organized as follows. In Section 2 we
introduce the notion of a throttle surface. We show how
various controllers can be analysed in a uniform way. We
also study possible equilibria of the closed-loop system.
In Section 3 we recall some basic facts about divided
differences. In Section 4 we present a simple explanation
of the cffect of the right skewness of the compressor
characteristic on the location of the stall equilibria. Sec-
tion 5 contains a graph backstepping procedure for con-
struction of a controller. The main results of the paper
arc contained 1n this section. Section 6 discusses control-
lers that depend on a set-point parameter. Conditions for
stabilization of a range of equilibria and enforcing a soft
bifurcation are given in this section. In Section 7 we give
an example of a controller design using the graph back-
stepping procedure. We provide simple general guide-
lines for choosing the throttle surface in Section 8.

2. Controller design by choosing the throttle function
The controllers considered in the recent papers

(Krstic, 1995: Krstic et al., 1995; Krstic and Wang, 1996;
Sepulchre and Kokotovic, 1996), are of the form

Ky = (¥ + (D, A)/ /W, 3)
Ky = (do® + h(d, )/ /W (4)
or

Ky o= (¥ + do® + h(®D, A)/ /¥, (5)

where (D, A) is a function and cy,dp are nonzero
constants. The implementation of the controller defined
by (4) is different from that defined by (3) because of
the different sensing requirements. However, since
d = (1)1 (D, 4) — V), from the point of view of the
dynamics of the closed-loop system, one can treat a con-
troller defined by (4) or (5) (if cy — dy/l, # 0) as a special
casc of the controller defined by (3). In the sequel we will
work with a controller of form (3) keeping in mind that
the analysis of controllers of form (4) or (5) will be similar.
This allows us to treat various controllers in a uniform
way.

For our purpose it is convenient to represent the
system equations (1) in the equivalent form

A = al,(®, A),

b =7 (1@ 4) W), ©)
— Cy -
Ty (¥ — (D, 4)),
where
P(D, ) := (D — (D, A))/cy . (7)

We call the function W(®, A) the throttle function and its
graph the throttle surfuce. Now, construction of a con-
troller within the specified class is equivalent to choosing
the throttle function P(®, 4) and the value of gain cy. (In
general, ¢y does not have to be a constant. If ¢y is
a function of ® and A, we will use notation cy(®, 4).) The
corresponding function A(®, A) can be calculated from (7)
and then the throttle area K can be obtained from (3).

Observe that the equilibria of the system occur at the
intersections of the surfaces on which A = 0, = 0, and
¥ = 0. We denote these surfaces by S4 Se, and Sy,
respectively. Note that the time derivatives of the vari-
ables A, ®, and ¥ change sign when the trajectories of the
system (6) cross the surfaces S 4, Sg, and Sy. This justifies
calling S 4, S¢, and Sy the turning surfaces for the corre-
sponding variables. Since the turning surface for W is
determined by the throttle opening, we will also refer to
Sy as the thrortle surfuce. Note that we have

Sa={(A, D,¥): I,(D, 4) =0},

So = {(A4, D, P): ¥ = [,(D, 4)}, (8)
Se = {(4, @, ¥): ¥ = P(@, 4)}.

We will also distinguish the curves

Cio0:=54nS0,

Co,y :i= SoN Sw, 9)
Ciw :=5408y,

and we will call them the turning curves for, respectively,
A and ®, ® and ¥, and 4 and W. Note that, in general,
some of the turning curves may be empty. Turning surfa-
ces S, and S, the curve of potential equilibria ¢4 ¢, and
its projections onto A-® and ®-¥ planes for C; com-
pressor are shown on Fig. 2.

Note that the throttle actuation alone cannot change
the turning surfaces for S, and S, or their intersection
C 4 0. However, we assume that we can freely choose the
throttle surface. (In this paper we neglect the restrictions
that the saturation of the control throttle imposes on the
position of the throttle surfaces.) The equilibria of the
system (6) are the elements of the set E := C4 ¢ Sy.
For a typical compressor characteristic, the curve
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Cy. o has two branches: (potential) axisymmetric equilibria
C%' o (corresponding to 4 = 0) and (potential) rotating
stall cquilibria C7 4, (corresponding to 4 > 0).

Our goal is to place the throttle surface Sy (and choosc
the appropriate value of gain ¢y) so that there is only one
stable equilibrium for the closed-loop system that corres-
pond to a high valuc of the pressure rise coefficient. We
will show that for a quite gencral compressor character-
1stic cvery potential axisymmetric equilibrium on the de-
creasing part of the compressor characteristic, the peak of
the characterisitic, and every rotating stall equilibrium
close to the peak can be globally or semi-globally stabilized
by anmappropriate choice of the throttle surface und value of
i Cy.

This result can be used to construct stabilizing
controllers in two ways:

. One can first choose the form of the controller and
then prove that the corresponding throttle surface and
the gain ¢y satisfy the conditions of the main theorem.
iIn Scction 7 we provide an example of such a design.)

2. One can first choose the throttle surface and the gain
¢y that satisfy the conditions of the main theorem and
then obtain the corresponding controller.

3. Some properties of the divided differences

Since our goal is to study bifurcations of the equilib-
rium at the peak and design controllers that guarantee
some (possibly large) domain of attraction, we are going
to use normal forms that allow studying ODEs on large
domains. For this, we use divided differences.

Let f(x) be a function defined on an open set contain-
ing x, and supposc that [ is differentiable at x,. We
define the divided difference of [ with respect to x relative
to x¢ as

‘ ' S(x) — f(xo) for X # xo.
()X.X., f (X) = X — Xp (10)
f(xo) for x = x,.
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Observe that the divided difference d, . f(x) has a
graphical interpretation as the slope of the secant line
connecting points (x, f(x)) and (x,, f(xy)) on the graph
of f.

Let k > 2. One can define the kth divided difference of
[ relative to x, by the recursive formula

Oh SN =6 o ).

Note that 9, , f{x)1s a continuous function of x, when-
ever f'is continuous and differentiable at x,.

Lemma 1. Assume that [ is piecewise differentiable on
[xo.x]. Then

~ |

O, JIX) == | [1xg =+ s(x — Xo)) ds. (1n

JO

Note that one can represent f(x) as
S = Fxo) + Oy ¢, FIX)(X — Xo). (12)

The operation of taking the divided differences is
comutative.

Lemma 2. Assume that f is continuous on its domain and
rwice differentiable at x, and x,. Then.

(5,\‘“\\()‘\..\; ,(\" - ()‘.\'..Vl()‘x‘x,,f(x)- (13)

Let f(x, v) be a function of two variables defined on an
open subset of R2. Assume that f'has a partial derivative
cfréx at (xq, y) for all real y such that (x, y) is in the
domain of f. We define the divided difference of f with
respect to v relative to x, as

flx vy — f(xo, ») for x # x
— 4 0

Oy, J LX) o X — Xq (14)
—(Xg, V) for x = x,.
ox

05 | e

04

03
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Similarly, assume that f has a partial derivative Jf/0y at
(x, yo) for all real x such that (x, y,) is in the domain of f.
We define the divided difference of f with respect to
vy relative to y, as '

f(x’ ,V) _f(x’ yO) for y 75 Yo

Oy y [ (X, y) 1= of y—Jo (15)
(?_y (x, ¥o) for y = yo,

Lemma 3. Suppose that f(x, y) has piecewise continuous
partial derivatives. Then

. Lof(,
e [, ) =J Hees ds
6] > E=xqt+8(x—x,)
(16)
L, Laf(x, &
Oy, fx, ) = f - (ﬁf ) ds.
0 E=yo sy —vo)

For more properties of divided differences we refer to
de Boor (1978).

4. Right skewness

It is convenient to introduce the divided difference of
I;(®, A) with respect to A, relative to 4 = 0:

JoD, A) =04 01,(D, A). (17)
Since I,(®, 0) = 0, we have

L) (@, A) = I1,(D,0) + 0,4 01,(D, A)A = J5(D, A)A. (18)
Note that the potential equilibria of system (6) occur
when either A =0 (axisymmetric equilibria) or

Jo(®@, A) = 0 for 4 > 0 (rotating stall equilibria) (Fig. 3).
It is known that for some compressors the branch of

0.7

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

A
The level sets of J,(@, A)

Fig. 3. The level sets of I,(®, A) and J,(®, A4).
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C (.o corresponding to the rotating stall equilibria exists
for some values of the mass flow coefficient larger than
the value at the peak of the compressor characteristic.
Such compressors arc said to possess a right-skewed
characteristic. 1t has been noticed that the right skewness
1s caused by the fact that the compressor characteristic
decreases faster to the left of the peak than to the right.
The recent papers (Sepulchre and Kokotovic, 1996;
Krstic and Wang, 1996) explain the right-skewness using
some particular forms of the compressor characteristic,
where one parameter, the so-called shape signifier is re-
sponsible for the right skewness. It is possible to choose
the paramecters in the class of curves considered in the
cited references to fit any given characteristic at a point
together with first two derivatives and thus analyse the
right skewness of the given characteristic locally. How-
cver. such an approach does not address the fact that the
right skewness is actually a non-local phenomenon, as it
depends on the shape of the compressor characteristic on
a large interval. In this section we attempt to analyse the
right skewness directly using the shape of the compressor
characteristic.

For simplicity. assume that the characteristic has only
one inflection point (®;,;, Winr1) between the well and the
peak.

It is possible to explain the right skewness directly
using the definition of I,(®d, 4). For this, let us rewrite
[,(D, A) as

rr 2

(‘WD + A sin ) — V(D — A sin 0)) sin 0 d6.

Jo

[P A) =

ool

(19)

Note that the value of I,(®, 4A) is an integral of the
differences of the values of the function W. at the
points symmetrically located on both sides of the value
of ®. weighted by the sine function. The stall equilib-
ria correspond to I,(®, 4)=0 for A>0. Having
I(®. 4) = 0 1s possible if the differences W (@ + A4 sin ) —
WD — 4sin0))average to zero as # varies from 0 to /2.
If the compressor characteristic drops off faster to the left
than to right of the peak, the values of ® at which the
differences average to zero for small values of 4 will be
slightly to the right of the peak. For larger values of A4,
and for ) near /2, ® — A sin 6 will be at the region to the
left of the inflection point ®;,, and the values of ¥, at
that region will not be decreasing as fast (as a function
of 4) as for small values of A, while the values of
WP + 4sin0)on the decreasing slope to the right of the
peak will be decreasing even faster. To obtain a zero
average difference, the value of @ will have to shift to the
left of the peak. As A increases even further, ® — Asin§
will reach the region of the backflow negative slope of the
characteristic, so that the value of ® corresponding to the
stall equilibrium will move even further to the left. Even-
tually. for a sufficiently large A, the average differences

WD + Asin) — ¥ (D — Asin ) will be negative for all
values of ® and hence the stall equilibria will no longer be
possible. In particular, this simple analysis also shows
that there cannot be any stall equilibria for ® > Oy + A4,
as then the differences W (® + Asin ) — ¥ (@ — A sin6)
are all negative. This fact can be used in the control
design (see Proposition 6).

An alternative explanation of the right skewness in-
volves examining J,(®, 4). Assume that W, is piecewise
differentiable. Then, from (2) and Lemma 3 we obtain the
following expression for J,(®, A):

1 1 p2n
@ 4) = J j W@ + sAsin 0)sin® 0d6 ds. (20)

0J0

The stall equilibria correspond to J,(®, A) = 0. This is
possible only if the average slope of the compressor
characteristic between ® — A and ® + A (weighted by
sin® 0) is zero. For ® = ®, and for small values of 4, as
long as the positive slopes of the characteristic between
® — A and ® overcome the negative slopes between
® and @ + A, the average slope will be positive. To
obtain the zero average slope for the same values of 4, we
must have ® > ®,. However, for values of A such that
® — A4 < Dy, to maintain the average zero slope be-
tween @ and ® + A4, we must have ® < ®,. For a suffi-
ciently large A, ® + sA4 sin 0 varying between ® — A and
® + A will pick more negative slopes of the characteristic
on the backflow slope and to the right of the peak than
the positive slopes between the well and the peak of the
characteristic and the stall equilibria will no longer be
possible with large values of A for any value of ®.

This analysis shows that the right skewness is actually
a nonlocal phenomenon, as it depends on the slopes of the
compressor characteristic over a large range of values of
the mass flow coefficient ®. Examining the slopes only
near the peak is not sufficient to determinine the right or
left skewness of the characteristic. To see that, consider
a hypothetical compressor whose characteristic initially
drops slower to the left than to the right of the peak, but
then exhibits a sharp drop to the left (see Fig. 4). The
branch of rotating stall equilibria will initially depart to
the left from the peak as for a left-skew characteristic, but
then will turn back right and enter the region of mass
flow coefficients larger than the value at the peak. This
characteristic should certainly be classified as a right-
skew one, even though near the peak it is locally left
skew.

We define the right-skewness coefficient B, ; of the
characteristic as the smallest slope of the straight line on
the A-® plane passing through the point (0, ®,) with the
property that the projection of the stall equilibria loop
onto A-® plane lies below that line, i.c.,

Bro1 = inf{a: 1@ + aA, A) >0, VA > 0}. (1)
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Fig. 5. The right-skewness coefficients for two compressor characteristics.

(The subscript 1 indicates that the right-skewness co-
efficient is defined with respect to the first Fourier mode
A of the rotating stall cell.)

One can prove that for all compressor characteristics

V(@) with continuous second derivative at the peak one
has

0 < Py < 1.

We will say that the compressor characteristic is right
skew iff S, > 0 and left skew iff B, , = 0 (Fig. 5).
5. Stabilization of a desired equilibrium

The goal of compressor design is to obtain maximum
possible pressure rise at the design point. This requires

choosing the throttle surface such that the closed-loop
system has a unique equilibrium at the peak or close to
the peak. The compressor characteristic is often not
known exactly. Moreover, the characteristic depends on
many factors that can change in time. First of all, the
characteristic may be different at different wheel speeds.
The compressor blades wear off in time, and this may
affect the characteristic as well. Moerover, many possible
disturbances that may occur in the system, like distor-
tion, noise, as well as the effect of a non-axisymmetric
actuation (by air injection), can be roughly represented in
the Moore-Greitzer model as changes of the compressor
characteristic. Therefore, it is safe to assume that the
compressor characteristic and, in particular, the position
of the peak are not known exactly and can vary in
time. On the other hand, a throttle disturbance can be
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represenied as a shift of the throttle surface. Therefore,
the controller design must be robust with respect to
possible change of the characteristic and the throttle
surface.

Since we want to have only one stable equilibrium of
the closed-loop system, we would like to choose the
throttle surface so that there is only one intersection
of the throttle surface with axisymmetric branch of
C 1o close to the peak of the compressor characteristic.
However, it may happen that the throttle surface may
shift from its desired position (for instance, because of an
incorrect estimation of the peak position or the throttle
disturbance) and some nonaxisymmetric equilibria will
appear. In this case, we will be interested in designing the
throttle surface so that there is only one stable rotating
stall equilibrium (with a small magnitude of the stall cell).
To encompass all possible situations, we define our goal
as a stabilization of an equilibrium (4, ®,, ¥,) close to
the peak of the characteristic. We say that the throttle
surface (function) is admissible if we have one of the
following three cases:

Case (A). The equilibrium set of the closed-loop
system (6), C, NSy, contains a single axisymmetric
equilibrium (4, ®,,¥;) on the decreasing part of the

compressor characteristic to the right of the peak (ie.,
A, =0 and ©, > @).

Case (P): The equilibrium set of the closed-loop sys-
tem (6), C 4.0 N Sy, consists of the peak of the compressor
characteristic, i.e., (A, @y, ¥;) = (0, D, P).

Case (S). The equilibrium set of the closed-loop
system (6), C4 ¢ N Sy, consists of two points: (4, ®,, ¥,)
with A, > 0 (rotating stall equilibrium) and (4,, ®,, ‘¥>)
with A, = 0 and @, < ®, (axisymmetric equilibrium).

Note that in the case (S) we have I,(®, 4) > 0 for all
points in a neighborhood of (0, ®,, ¥,) with 4 > 0. Thus,
any perturbation of (0, ®,,¥,) to a nearby point with
A >0 will cause the stall cell to grow. Therefore, the
point (0, @,, ¥,) cannot be made stable. However, with
an appropriate choice of the throttle function and gain
cy we can make the stall equilibrium (4,, ®,, ¥,) stable.

Fig. 6 shows examples of admissible and inadmissible
positions of the throttle surface.

In the sequell (44, ®,, \¥;) will denote the equlibrium
that we want to stabilize corresponding to one of the
cases described above. Note that 4; = 0 in the cases (A)
and (P), and A, > 0 in the case (S). It is possible to
consider the cases (A), (P), and (S) one at the time and
design a controller separately for each of them. However,
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we are going to study the cases (A), (P), and (S) simulta-
neously, even though we realize that this may cause some
confusion. The reason for studying all the cases simulta-
neously is that our ultimate goal is investigation of con-
trollers that depend on a set-point parameter. As the
set-point parameter varies, so does the throttle surface,
and thus the equilibria of the closed-loop system. Since
we are going to stabilize an equilibrium near the (possibly
unknown) peak of the characteristic, each of the cases (A),
(P). and (S) can occur for some values of the set-point
parameter. We want to design a controller with gains
independent of the set-point parameter that stabilizes the
corresponding equilibrium in each case. For this, it is
convenient to have a Lyapunov function that changes
continuously with the stabilized equilibria, so that one
can obtain bounds for the gains of the controller uniform
in the set-point parameter.

We will assume that the projection of the curve
Cy .y on1to A-® plane can be parametrized by a piecewise
differentiable function ®(A). This is equivalent to the
assumption that the throttle function ¥(®, A) is such that
the equation I,(®, 4) = P(®, A) has a unique, piecewise
differentiable solution (T)(A), 1.e., we have

I,(D(4), A) = P(D(A), A).

The error coordinates are defined as follows:

= oA - A4,

o= O - B(4) (22)
ep =W Wi, A).

Proposition 4. The variables e 4, ¢, and ey are global
coordinates in R

Proof. It is straightforward. [

We are going to express the dynamics of (6) in the error
coordinates using some divided differences. Let

ayy(A) 1= 04 1AD(A), A),

ayo( 0. A) 1= g, o] AP, A), (23)
a5 D, A) =S¢ )] 1 (D, A).

We have

1D, 4) = 1,(D(A). ) + S @ 2(D, A)eg

==y 1(‘4)(‘):1 + (112((1), A)em (24)
and

1D, A) = [(D(A), A) + 3. ol (D, Aleq
= [(D(A). A) + (D, A)eg. (25)

Note that in the cases (A) and (P) we have A4, = 0 and
hence a1 (A4) = J5(D(A4), A). Let b(D, A) := dg. a0 P(D, A).

Note that we have
P(D, A) = I,(D(A), A) + So. @ P, A)(D — D(A))
= [,(B(A), A) + b(D, A)ey. (26)

Observe that, given the function I,(®, 4), the functions
&)(A) and b(®, A) are uniquely determined by the throttle
function ‘T’(CD, A). However, the converse is also true:
given the function I,(®, A), the functions d(4) and
b(®, A) uniquely determine the throttle function P(D, 4)
by Eq. (26). In a backstepping controller design that we
are going to present later, the functions ®(A) and b(D, A)
appear explicitly as the main design objects. Therefore, if
the function I,(®, A) were known exactly, one could
actually choose the functions ®(A) and b(®, A) first and
then define the throttle function P(®, 4) by Eq. (26).

Note that the intersections of the graph of ®(4) with
the projection of the curve of potential equilibria
C 4.0 onto A-® plane represent the projections of the
equilibria of the closed-loop system onto A-® plane. In
fact, the graph of ®(A4) determines the equilibria of the
closed-loop system. Thus, admissibility of the throttle
function P(®, A) can be studied in terms of the graph of
®(A). Positions of the graph of ®(4) corresponding to
admisssible and inadmissible positions of the throttle
surface are shown on Fig. 7.

Note that we have

(D, Ay — ¥ = 1,(D, A) — P(D, A) — ey
= (d22(D, A) — b(D, A))eg — ey. 27)

The dynamics of the closed-loop system in the error
coordinates takes form

éy=0ay1(A)ey + 0a,5(D, A)eg,

1 1
ép = l_ (a22(P, A) — b(D, A)ey — [— Cy

<

— a®'(A) (a1 (A)es + ay (D, A)ey), (28)

. — oy OP(®D, A)
BT T 4

a(ay1(Aey + ap(D, A)ey)

dP(@, A)

1 1
- T <Z (az2(®, A) — b(D, A))eq — E C\P>-

Note that the error dynamics can be made stable if we
can make the main damping terms in the corresponding
equations;

aay(A)e, (1/1{azz(®, A)—b(®, A) — oD (A)a; (O, A))ea,
and ‘
( — cg/Al. B2 + 1/1.0F(®, A)/0D)ey

sufficiently negative to overcome potentially destabiliz-
ing action of the crossterms like ga,2(®, A)eq, ete. It is
convenient to think of construction of the throttle surface
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Fig. 7. Admissible and inadmissible positions of the graph of ®(A).

and the gain ¢y as a three-step backstepping process.
Because this procedure has a simple graphical interpreta-
non we shall call it graph backstepping.

Step 1 Choose ®(A) so that the main damping coeffi-
cient in the ¢ dynamics, a;(A) := (5A~A112((~I’)(A), A), 18
negative. (Graphically, this corresponds to choosing the
nterscction of the throttle surface and the turning surface
Sa) In the cases (A) or (P) this can be done simply by
making sure that the graph of ®(A4) stays in the region
where 1,(M. 4) is negative, i.c., outside the stall equilibria
loop (sce Figs. 8 and 9). In the case (S), I,(®(A4). 4) should
be of the opposite sign to ¢, = A — A,. This means
that the graph of @A) should stay in the region where
I 1)y >0 (ic. inside the stall equilibria loop) for

I < A, cross the stall equilibria loop at A = 4, and
stay in the region where 1,(®, 4) < 0 (i.e., outside the stall
cquilibria loop) for 4 > A, (see Fig. 10).

Step 2.0 Choose h(d. A) so that the main damping
coeflicient 1n the ¢q, dynamics, (1/1.)(a;5(D, A) — b(D, A))
— a® (A, -(D. A). is sufficiently negative to overcome
potentially destabilizing action of the crossterms in the
first two equations. This corresponds to choosing the
divided differences of the sections of the throttle surface
with the plances 4 = const, for cach fixed 4. Graphically,
this can be interpreted as choosing the slopes of the
appropriate secant lines of the curves obtained as inter-
sections of the throttle surface with the planes 4 = const.

Step 3. Choose ¢y so that the main damping coeffi-
cient in the ¢q, dynamics.,

S OB E SR, ) 0D 1L,

15 sufficiently negative to overcome potentially destabiliz-
g action of the crossterms in all three equations.

For several reasons, Step | requires the most detailed
explanation. First of all. it is not clear what control one
has over position of the graph of ®(A). Looking at the

graph of the turning surface Sy, it seems obvious that one
can place the throttle surface Sy so that the graph of ®(A)
(which is the projection of the intersection Cq y of the
surfaces Sg and Sy onto the A-® plane) can be placed in
the desired position in each of the cases (A), (P), and (S).
(see Fig. 2). If one assumes perfect knowledge of the
characterisitic W (®) (and thus of the function I,(®, A)),
one can simply choose ®(A4) to be the desired function
and then. after performing Step 2 and constructing
b(®, A), choose the throttle function to be P(®, 4) :=
11(5)(,4), A) + b(®D, A)ey. If one assumes that a measure-
ment of @ is available, then, as we will see in Section 7,
one can indeed freely choose ®(A), as the knowledge of
® substitutes to some extent for the perfect knowledge of
the characteristic W (®) (and thus of the function
I, (®, A)). If the perfect knowledge of the characteristic
and the measurement of ® are not available, the function
@(A) can still be chosen so that its graph has the desired
properties, but the analysis in this case is a little bit more
complicated. In this section we are going to assume that
the function ®(A4) has been chosen so that its graph has
the desired properties, i.e., it is admissible.

An important issue in Step 1 that distinguishes the
cases (A), (P), and (S) is the character of dependence of the
main damping term in the e, dynamics, I,(®(4), 4), on
e4. The case (A) is the simplest one, as one can guarantee
that I,(®(A4), A) = a, (A)e,s = a(A)A, with a,(A) =
J,(D(A), A) negative and bounded away from zero for all
A >0, as long as the graph of ®(A) stays away from the
stall equilibria loop, ie., it stays in the region where
JAD(A), A) is strictly negative (see Fig. 8). Thus, in the
case (A) one can guarantee at least linear damping in the
e, dynamics.

In the case (P), if the graph of ®(A4) stays away from
the stall equilibria loop for A4 >0, we still have
ar1(A) = J5(®(A4), A) < 0 for all 4 > 0. However, a,(A)



1354 A. Banaszuk, A.J. Krener|Automatica 35 (1999) 1343-1368

0.7

0.6

_____

0.4

0.3

0.05 0.1 0.15 02 0.25 03

A
The graph of ®(A) and level sets of L, A)

A

0 0.05 0.1 0.15 0.2 0.25 0.3
0 — :

\\

"
\\\;
e T e
2 —
\\
~..

-6

The graph of ¢, (4)

0 0.05 0.1 0.15 02 0.25 0.3

-1.5
-2
\
The graph of L(@®(A), A)
A
0 0.05 0.1 0.15 0.2 0.25 0.3

0

-10 T —

The graph of b;,(A)

Fig. 8. llustration of Step 1: desired shape of ®(4), a,(A4), and b, (A) for the case (A) (axisymmetric equlibrium).

i1s no longer bounded away from zero, as we have
a11(0) = J5((0), 0) = J,(®,, 0) = 0. Therefore, we can-
not guarantee linear damping in the e, dynamics. Since
a14(0) = 0, we can factor out A4 from a,(A), 1.e., represent
ay(A)asay(A) =b,(A)A, with b ;(A) < Oforall 4 > 0.
As we shall see, one has b,(0) = YAD)P(0), so that
by1(A) can be made negative and bounded away from
0 for all 4 > 0, as long as W{(®,) < 0 and the graph of
®(A) departs linearly with a positive slope from the point
{0, @) and stays in the region where J,(®, 4) < 0. In the
case (P) we can only guarantee at most gquadratic damp-
ing in the e, dynamics (see Fig. 9).

Similarly to the case (A), in the case (S) the main
damping term in e, dynamics, a,,(A)e4, behaves linearly
in e, near A = A,, provided that a,{(4) < 0. The latter
condition 1s guaranteed if VJ (@, 4;) # 0 and the graph
of ®(A) intersects the curve Jo(®, A) = 0 (the stall equilib-

ria loop) transversely at (A4, ®,). However, the existence
of an unstable axisymmetric equilibrium (the saddle
point) (0, ®,, ¥,) makes the situation essentially different
from the case of single stable axisymmetric equlibrium.
First of all, strictly speaking, global or semi-global stabil-
ization is impossible. However, for all practical purposes
it is sufficient to design the controller that globally or
semi-globally stabilizes the open set of points with A > 0,
and this is what we are going to do. The second (more
important) problem that we encounter in the case (S) is
that the damping coefficient a, ,(A4) is small for 4 small, as

15(®5, 0) — I5(®4, 4,)
0— A4,

a11(0) = =0.

It is possible to represent a;,(A) as a,,(A) = b;1(A4)A4,
with by,(4) negative and bounded away from zero for all
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Fig. 9. Hlustration of Step 1: desired shape of ®(A), a,,(4), and b,1(A), for the Case (P) (the peak).

4 > 0. provided that the graph of ®(A4) stays in the region
where 1,(®. 4) > 0O(i.e., inside the stall equilibria loop) for
A4 < Ay, crosses the stall equilibria loop at A = A, trans-
versely, and stays in the region where I,(®, A) <0 (ie.,
outside the stall equilibria loop) for 4 > 4, (see Fig. 10).
In any case, damping of the e, dynamics becomes weak
as A approaches zero. We are going to deal with this
problem by a special choice of Lyapunov function (sim-
ilar to that of Krsti¢ (1995) and Krsti¢ et al. (1995) for
a cubic characteristic) that becomes unbounded as 4 ap-
proaches 0. This Lyapunov function changes continuous-
ly for points with 4 > 0 as the the throttle surface moves.
The continuity of the Lyapunov function, and, more
importantly, of its time derivative allows us to treat all
the cases simultaneously. Moreover, in the next section,
we are going to use this Lypaunov function to construct

controllers that stabilize the desired equilibria for all
values of the set-point parameter, but with gains indepen-
dent of the set-point parameter.

Note that the effect of the right skewness on control
design manifests itself clearly in Step 1. The more right
skewed the compressor, the steeper is the slope graph of
the stall equilibria loop (plotted as a function @ = f(A)
near the peak of the compressor characteristic). From the
discussion above it follows that the slope of the graph of
®(A) has to be steeper than the slope of the stall equilibria
loop. Following the graph backstepping procedure one
can see in the end that the steep slope of ®(A) translates
to a high stall feedback gain (i.e., the gain in from of
a variable representing stall). Therefore, the more right
skewed the compressor, the higher the stall feedback gain
has to be.
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In comparison to Step 1, Steps 2 and 3 are relatively
straightforward, as the main damping coefficients b(®, A)
and ¢y appear linearly in the correponding error dynam-
ics. We will obtain sufficient conditions that b(®, 4) and
¢y must satisfy in the proof of the main result of this
section, Theorem 5. However, is possible to gain some
insight on the minimum control requirements and to give
some indications about the shape of the throttle surface
and the value of gain ¢y by looking at the main damping
terms in the e and ey dynamics.

Observe that to have a negative main damping
coefficient in the e dynamics, one should have
b(®. A) > dr2(D, A) — [.oD'(A)a; (D, A). As we shall see
later, one has a;,(®, 0) = 0 and a,,(P, 0) = ¢, o0y ¥ (D).
Thus, assuming continuity of the divided differences
t55(®, Ayand a,,(®, A)in A, at least for small values of A4,
the term «,,{®, A) dominates the term lca&)’(A)alz((b, A)
so that we can neglect the latter term in a preliminary

analysis. We see that a minimum requirement that
b(®, A) should satisfy is b(®, 4) > a,,(D, A). This condi-
tion has a simple geometric interpretation: the throttle
surface should lie below the turning surface S¢ to the
left of their intersection (i.e., for ® < d(A)) and should
lie above the turning surface Sq to the right of their
intersection.

One can visualize the the divided differences a,,(®, A)
on the graph of the turning surface Sg as the slopes of the
secant lines connecting the points (A, @, I,(A4, ®)) and
(A, @(A), I(A, (T)(A))) on the surface Sg. Observe that the
values of I,(A4, ®) are simply averages of the values of the
compressor characteristic W (®) between ® — A4 and
® + A. Thus, for a typical compressor characteristic, for
a fixed A the graph of I,(4, ®) will lie below the compres-
sor characteristic ¥ (®) to the right of the inflection point
®,.r (where W (®) is concave), above the compressor
characteristic W .(®) to the left of the inflection point
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@, (where W () is convex) and will remain at approx-
imately the same level as the compressor characteristic
near the inflection point @, (where W (®) is close to
lincar function) (see Fig. 11),.

Obscrve that the divided differences a,,(®, A) remain
positive. and thus constitute unfriendly nonlinearities de-
stabilizing the ¢ dynamics. only on bounded intervals of
vilues of . Moreover, the lengths of these intervals
decrease as 4 increases and the intervals vanish for suffi-
ciently big 4. Thus, for a small 4 and for @ to the right of
the peak or far away to the left on the back-flow slope of
I1(A, @), as well as for large 4 and for any values of @, the
divided differences a,,(®, A4) are negative, and thus con-
stitute friendly nonlinearities stabilizing the eq dynamics.
The largest positive values of a,,(®, A) are obtained for
4 = 0. Thus. one should have b(®, 0) > dg, o) V(D) for
all  in the region of interest. Clearly, the largest positive
derivative of the compressor characteristic (achieved at
the inflection point} is an upper bound on the values of
aaa(P. A). Thus, (D, A) > supe Y. (D) is a sufficient
condition for h(d. A) > a,,(D, A). However, there is no
reason (o enforce the condition b(®, A) > supg V. (D)
globally. It is enough to do that over the bounded region
where a-,(D, 4) > 0. b(D, A) could be chosen to be zero,
or even negative over the region where a,,(®, A) < 0.

using a more detailed Lyapunov analysis, a,,(®, 4)is not
the only term that h(®, 4) has to dominate. In any case,
the negative valucs of a,,(®, A) over some regions will
help h(d. A} to dominate the other terms and thus to
stabilize the ¢4, dynamics.

In a similar way one can provide some insight on the
minimum requirements for the gain ¢y. One obvious
condition 13

5 (Hq}(q). /1)
G 4’ S
cd
Note that
CP(D, A) , .
T @A+ (@A) D — B(A)).

If b(®, 4) does not change too rapidly, we can neglect the
second term and arrive at the condition cy > 4B*b(®, A)
as a minimum requirement for cy. This condition
implies that we have to use some positive gain cy,
whenever b(®, A) > 0, which happens (roughly) when
a{®,4) >0, and we can use c¢=0 whenever
b(®@, A) < 0. (Again, one should be cautious, as
4B*h(®, A) is not the only term that cy has to
counteract.) In any case, we see that high values of the
B parameter require strong actuation that can lead to
actuator saturation and thus make the throttle actuation
ineffective.

To see the character of dependence of the terms aq,(A)
and a, (@, A) on A4 for A small, we are going to represent
ag1(A) and a;,(®, A) as a;(A) = a;1(0) + b((A) A and
ay2(®D, A) = a;5(P, 0) + by,(P, A)A using the divided dif-
ferences. Let

bi1(A) 1= 04,0a,1(A), b2, A) := 6.4,0a12(D, A). (29)

[t follows from Lemma 2 that
bir(4) = 84,0044, 12(B(A). A) = 644,001 A(B(A), A)
= 34,4, 2(D(A), A). (30)
In a similar manner one shows that
b12(A) = do.aa)J 2D, A).
Note that for all ® we have
a126D, 0) = dg, 50y 12(D,0)=0.

In the sequel the following representation of I,(®, 4) will
be useful.

1D, A) = [,(D(A), 4) + 5¢,&>(A)Iz(q’y Aeg
= ayi(A)es + a1 (D, Aeo
=a11(0)eq + bi{A)Aey + b,(D, A)Aep.  (31)

Note that one has a,(0) = Y./ (®;) < 0 in the case (A)
and a;,(0) = 0 in the cases (P) and (S).

Now, we are ready to prove the main result of the
paper. It shows that every point on the decreasing part of
the compressor characteristic, the peak of the character-
isitic, and every rotating stall equilibrium in the region
where the function b, (A) is negative and bounded away
from zero can be guaranteed to have an arbitrarily large
domain of attraction by an appropriate choice of the
throttle surface and value of gain cy. As before,
(A, @, ¥ will denote the equlibrium that we want
to stabilize corresponding to one of the cases (A), (P),
and (S).

To prove stability of the error dynamics (28) we will
need to establish that b;;(A) is negative and bounded
away from zero in the region of interest. In the proof of
the next result we are going to assume that ®(A4) is such
that by,(A) has the desired property. We are going to
provide a sufficient condition for b;;(A) to be negative
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and bounded away from zero after the proof of the main
theorem.

Theorem 5. Assume that

1. An admissible throttle function ¥(®, A) is defined for all
(@, A) with 4 > Q.

2. The corresponding function ®(A) is such that there
exists a negative constant v, such that, for all
A > 0,byy(A) < 31,

3. The corresponding function b(®, A) is such that for all
(D, 4y with A > 0 one has

h(D, A) > dr5(D, A) — l.o®'(A)a, (D, A)
1 ( ay (D, A)

41\

dyy(A)

2
— lo®(A)a, «A)) : (32)
Define Vi(0) = 0 and, for ¢, > — Ay,

[N \: A O(—A1
Viley) = -- - dél =— - da ). (33
e j() (A + 4 C( JA, aq1(%) OC) (33)

Let

41, B?
i (34)

| I
VA DW=~ Viley) + ~ed +
I 2

Then there exists a gain function ¢(A, @) such that along
the solutions of the closed-loop system (6) one has
V(4. D, W) <0 for all points (A, ®, ¥) where V (A, ®, V)
is defined (except for (A, ®,W)= (A, ®,,¥,), where
V(A, ®_W) = 0). In particular, the sets V (A, ®, W) =y are
invariant with respect to the flow of the system (6) for all
v > 0.

Proof. We¢ have

. D, A 1 1
(A, D, W) = (7 ex — M e‘4e¢> + l.eq <l— (a52(D, A) — b(D, A)> ep — I ey

N ay1(A) c

— o(D(A)ay (A)e s + ar (D, A)eq)) + 41032&?( oy

Caz 1= Ay D, A) — b(®, A) — [ .o®'(A)a; (D, A),

P(D, A
qs;:.-2463254§44)a1¢AL (36)
J0A
1 oP(D, A
Cayi=— > —21632%%@, A)

(D, A
28 PO @, 1) b, ),
OP(D, A)

Ciyz i =—=— th(q), A) + 4BZT

Thus, V(A, ®, W) is a quadratic form in e, eq, and ey that
can be made negative definite at any point (®, A) by
choosing b(®, A) and cy(®, A) sufficiently large. Suffi-
cient conditions for V(A4, @, ¥) to be negative definite at
(D, A) are

A] =0C11 <0,
. NN 2

A2 = C11€22 — C12 > 0, (37)
. . L2 L2

Ay i= 3305 + 2015013023 — €22073 — €11€33 < 0.

The condition A; < 0 is obviously satisfied. To enforce
the condition A, > 0 one should choose b(®, A) such that
(32) is satisfied. To see that this is possible, note that

a (@, A) bi(®, A)A

ay1(A) ~ag(0) + byy(A)A

By assumption, b,(A4) is negative and bounded away
from zero for all A >0. Moreover, a;,(0) <0, as
ay1(0) = Wi (D) in the case (A) and a;(0) = 0 in the cases

eAﬁ%QM
4,.B2" oA

olay(A)ey + a(P, A)%))

P, A) (1 I
= A @, 4) = (@, Aeq— e
oD l. l.
= (1105 + 20120480 + 2013409 + 2203 + 2023000y + C336%, (33)
where (P) and (S). Therefore, we have
= ]
o ar( @ A)| _[bia(® A _[bia(®. A)‘
o dy2(D, A) I oA (4 ap(A) |~ ’ bi(A) | | Ho
Cr2 T 77“7171(/4)‘ — l.o®(A)a,(A)
Hence, the right-hand side of inequality (32) is well-
N h@. A4 Lo®/(A)a, ,(A) defined at each point (@, A). Finally, once b(®, 4) satisfies
20 a0+ b(4)A F PR inequality (32), to assure that A; < 0, at each point (®, A),
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the gain ¢yl®, 4) should satisly the inequality

i ) - ap TEA
cyld, s As

b i ) N W2 , 2
“C12013023 = CaaC 3 — (€33

(38)
The right-hand side of the incquality is defined for every
(M. A). as Ay > 0 provided that incquality (32) holds for
every (P. A). Note that eg(®, A) can be chosen bounded
on cvery compact set.

The above theorem states that one of the conditions
for stabilizaton of the chosen equilibrium is that the
function hy (A} is negative and bounded away from zero
in the region of interest. Since we have shown that that
by A)y =90, 1‘(12((5{/4). A), we see that to achieve b (A)
negative and bounded away from zero for all 4 > 0, it is
sufficient to make sure that the function J (D, A) de-
creases along the graph of ®(A4) and that the graph of
M(A4) interseets the level sets of J5(D, A} transversely.
Since we are interested in stabilization of axisymmetric

YO > O0) YUD) < no. Then, for all A >0,

n
h“(A)<7°.

Moreover, the graph of ®(A) has at most one intersection
with the curve J,(®, A) = 0 (i.e., stall equilibria loop).

Proof. Observe that the conditions (1) and (2) imply that
the graph of (T)(A) stays above the line ® = @, + A4,
so that Vse[0,1] ®(A4) + sAsinf > ®,,. Therefore,
Vse [0, 1] PAD(A) + sAsin ) < Ho- Note that it follows
from (20) that

1 pr2n
iJz@(A), A) ! f J W(D(A) + sAsin 6)
dA TJoJo

(@'(A) + sA4 sin H)sin? 0d0 ds.

Observe thal~for all 4 > 0 one has ‘I’Qf(@(A) + sAsin ) <
o < 0 and ®'(A4) + s4sin @ > 0. Hence,

1 p2n
[ PUD(A) 4 sAsin 0)(D'(A) + sAsin 0)sin 0 dO ds
{

1 pro
[ WUD(A) + sAsin O)(D'(A) + sA4 sin 0)sin? 0d0ds
(

(39)

i - l 1 pn - - ' )
{1 JAD(A) A) = - J f WAD(A) + sAsin O)(D'(A) + sA4 sin DYsin?0dO ds
./ T JoJo

|
+ —
T JOJR
1
< —
T loJo
1 1 rr - ., '10
< — no®'(A)sin” 0d0ds < —.
TJoJo 2

cquilibria to the right of the peak or stall equilibria close
to the peak. to simplify the proof of the next result, we are
going to restrict our interest to the case when the graph
of d(4) originates to the right of the inflection point of
the characteristic. Then, a sufficient condition to have
hy€4) negative and bounded away from zero for all
1 = 0 happens to be ®'(4) > 1. Note that this condition
is sufficient for arbitrary compresssor characteristic, as
long as s second derivative is negative and bounded
away from zero 1o the right of the inflection point.

Proposition 6. Let D(A) be any continuous and piecewise
differentiable function of A that satisfies the following
condition:

1. (Ifm)z 1.
2. ®0) > Dy

(Here, ®p denotes the inflection point of the charac-
teristic.y Assume that for all @ >CT)(O) the compressor
characteristic W (D) has a piecewise continuous second
derirative and there exists a negative constant 1q such that

Thus, in view of Lemma 1 and Eq. (30), one has, for all
A 20,b,(A) < no/2. To show that the graph of ®(A4) has
at most one intersection with the curve J,(®, 4) = 0, note
that it follows from the fact (established above) that
d/dA J(D(A), A) <0 for all 4 > 0.

The assumptions about ®(4) made in Proposition 6
that guarantee b,,(A4) to be negative and bounded away
from zero for all A > 0 could be relaxed. In fact, one can
show that, under assumption that the gradient of
J2(D, A) is nonzero on the stall equilibria loop, a suffi-
cient condition for b;(A4) to be negative and bounded
away from zero for all A > 0 in the case (S) is that the
graph of ®(A4) stays in the region where J,(®, 4) > 0 (i.e.,
inside the stall equilibria loop) for A < 4,, transversely
crosses the stall equilibria loop at A = A, and stays in
the region where J,(®, 4) < 0 (i.e,, outside the stall equi-
libria loop) for A > A (see Fig. 10). In the cases (A) and
(P) it is enough to require J(D(A4), A) < J5(P(0), 0) and
@'(0) > 0. However, the proof of Proposition 6 that we
presented has the advantage that it does not use the
assumption that the gradient of J,(®, 4) is nonzero on
the stall equilibria loop. In fact, it follows from the proof
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of Proposition 6 that the gradient of J,(®, A) indeed 1s
nonzero in the region ® > &, + A. In particular, it
follows that there is at most one stall equilibrium for
every value of A in the region ® > @, + A. Besides,
there is at most one intersection of the stall equilibria
loop with the graphs of ®(A) with ®'(A) > 1. This shows
that for «ll right-skew compressors, in the region
® >, + A the positive slopes of the stall equilibria
loop represented as a graph of ® as a function of 4 never
exceeds one.

To have a more precise measure of how large should
be the derivative of ®(A), it is convenient to introduce the
following quantity. Let «, ; denote the highest positive
slope of the upper portion of the stall equilibria loop
represented as a graph of @ as a function of 4. One can
check that

AJ5(D, A) T H(D, A)
cd 0A

>0 for all (®, A)

Fpo g inf~l &

Q

(D, A
such that J,(®D, 4) =0 & —‘( )

oD

> 0}.
(40)

One can show that always ., > 0. The proof of
Proposition 6 shows that for all compressors satisfying
the standard assumptions one has . ; < 1. In the
formulation of Proposition 6 and in what follows, one
can replace the condition @'(4)>1 with a weaker
condition ®'(4) > %, .

A simpie corollary from Theorem 5 and Proposition 6
is as follows:

Theorem 7. Every potential axisymmetric equilibrium on
the decreasing part of the compressor characteristic, the
peak of the characterisitic, and every rotating stall equilib-
rium (A, O V) with the property that @, > Oy + Ay
can be globally stabilized by an appropriate choice of the
throttle surfuce and the controller gains.

Proof. It is enough to choose the throttle function

W(d, 4) and the gain function ¢(A, ®) such that

YA =1
. ®0) > O,y
. Forall (®, A) with 4 > 0 condition (32) is satisfied.

4. For all (0. A) with A4 > 0 condition (38) is satisfied.

‘s 1o —

I W, is piecewise differentiable, then using Lemmas 1
and 3 one can cxpress aq(A), ay2(A), and a,,(A) in terms
of W, in the following way:

1 ~lop2r

Ay =--

TJoJo

WUD(A, + s(A— A))

(4, + (A = A))sinO)(P(4, + s(A — A,))
+ sin 8)sin 6dO ds, 41)

s, ) = 1 j J "WUd(A) + 5@ — B(A)

TJoJo
+ Asin6)sin 0d8 ds,
1 1 r2n - -
(D, A) = p f J W (D(A)+ s(D—D(A)) + Asin 6) dO ds.
0J0

If W, is piecewise twice differentiable, using Lemmas 1
and 3 one can express b, (A4) and b ,(A) in terms of ¥, as
follows:

1 1 p1 p2n -
bi1(A) = 'j J‘ f YDA, + w4 — Ay))
T JoJodo
+5(A; +w(A— A,)sin O)D(A, + w(4 — A,))
+ sA sin0)sin? 6 d0 ds dw, (42)
1 p1 p2x
b12(®, A) _! j J J PUD(A) + s(D — D(A4))
T JoJoJo

+ sAsin 0)sin* 0d0ds dw.

These formulas can be used to express the lower bounds
(32) and (38) in terms of bounds on the first and second
derivatives of the compressor characteristic. Namely, one
can easily show the following bounds.

Proposition 8. Let .+~ be any given compact set on the
A-® plane. Then

sup , |ay 1 (A)] < sup, [PUD)(1 + D(A)|

sup lag(®, A) < sup |PUD),

sup 1 |by (@, A) < sup , [PUD), “3)
sup |aza(®, A)| < sup , [PUD).

Moreover, if the function ®(A) is such that d'(A) > 1 and
D(0) > Oy then

o 1 e "
inf1by1(A)] = 3 inf [VI(D)]
@ > d(0) 44)
p |22 A)\ sup [ 7() ‘
T ag(A) infy 5 g0)| V(D)

One can use the bounds (43) and (44) to obtain explicit
lower bounds on the functions b(®, 4) in (32) and
cp(®, A) in (38) on compact regions. However, bounds
(43) and (44) are very crude, as they estimate the integrals
in (41) and (42) in terms of the products of upper or lower
bounds of absolute values of all factors of integrands.
Nevertheless, bounds (43) and (44) provide some rough
indications on how first and second derivatives of the
compressor characteristic influence the shape of the
throttle function and the gains of the controller.

Observe that in using bounds (43) and (44) in a control-
ler design we neglect the signs of the nonlinear terms and
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assume a worst-case situation when all the terms have
a destabilizing eflfect. In fact, some of these nonlinear
terms arc friendly over some regions and allow to use
smaller controller gains (see comments on Step 2 earlier
in this section).

Note that it may be impossible to satisfy bounds (32)
and (38) with constant functions b(®, A) and cy(D, A).
Therelore, if one wants 1o use constant controller gains,
global stabilization of the desired equlibrium may be
impossible. However, semi-global stabilization is still
possible. as on every compact set, the right-hand sides of
inequalities (32) and (38) are bounded. We have the
following result.

Theorem 9. Lot .t be any given compact set on the A-®
plane ser. Suppose that the throttle function W(®, A) and

the gain jfunction ¢(A, ®) are such that on .4

Ioddddid) = 1.

2 D01 > D, .

3. Condition (32) is satisfied.
4. Condition (38} is satisfied.

Then the throttle surface is admissible on A" and the level
sets of function V(A, ®, W) (defined by (34)) contained
inside 1" are invariant with respect to the flow of the
svstem (6}

To complete the proof of semi-global stabilization, one
can prove that as the size of .1 " grows, so does the size of
the largest level set of V (A, ®, W) inside .4". Moreover,
one can prove that for every given compact set .# con-
taining (4,. d, ¥,) there is a corresponding compact set

f* containing ./« such that the largest level set of
I'(4, ®, W) inside . 1" also contains .#.

6. Controller guaranteeing soft bifurcation and
stabilization

We consider a family of controllers of the form
L I+ oV + (@ -T, 4)

Ky —
NA S

, (45)

where " 1s a set-point and a bifurcation parameter. We
assume that T' belongs to a given interval [, T,]. As
I" varies. so does the throttle surface

G — 1+ h(d—T, A4)

Cy

PUD, A e

. (406)

the corresponding function ®'(A4), and hence the equilib-
ria of the closed-loop system. We would like to design the
family of the controllers K is such way that, for each
I [I. T]. the throttle surface WT(®, A4) is such that we
have one of the cases (A) (one stable axisymmetric equi-
librium). (P} (cquilibrium at the peak), or (S) (one stable

stall equilibrium and one unstable axisymmetric equilib-
rium). In other words, we enforce a soft bifurcation of an
axisymmetric equilibrium of the case (A) into a pair of the
equilibria of the case (S). This should be contrasted with
a hard bifurcation exhibited by the model with Cj char-
acteristic and constant throttle parameters.

In particular, we are going to show that if T, > ®;.¢
then a controller of the form

KE =T — do® — cof® — ) + c,4/ /¥,

where dg, ce, and c, are contants independent of T,
satisfies for all I' e [I',, I',] the conditions of Theorem 9,
and thus semi-globally stabilizes each equilibrium corre-
sponding to I'e[I', T,]. As the set-point parameter
T" varies, the equlibrium (A4}, ®f, P]) stabilized by the
controller changes from an axisymmetric equilibrium to
the right of the peak to a small rotating stall cell.

A simple corollary from Theorem 7 is the following
result.

Theorem 10. Suppose that for each T' e[, T,] the
throttle function W1 (®, A) and the gain function c(A, ®) are
such that

. d/dA dTA4) = 1.

- (i)r(o) > @y

. For all (®, A) with A = 0 the condition (32) is satis-
fied uniformly in T'.

4. For all (B, A) with A = 0 the condition (38) is satis-

fied uniformly in T.

N —

Then, for each T € [T, I',] the throttle surface is admis-
sible and the corresponding equilibrium (A}, ®%, WY) is
globally stable. (For A, > 0, global refers to the open set of
points with A > Q.)

In the formulation of Theorem 10 one can replace the
condition d/dA®T(4)>1 with a weaker condition
d/d4 ®(A) > o, ;. Note that from a point of view of
controller design, a, ; is a more important measure of
right skewness of the compressor characteristic than
Bs.1» as the condition d/dA (T)F(A) > o, 1 guarantees
a soft bifurcation of the equilibria for values of I such
that ®7(0) > Djpy.

A version of the last theorem useful for a semi-global
stabilization is as follows.

Theorem 11. Let A" be any given compact set on the A-®
plane set. Suppose that for each I' e [T',, T',] the throttle

function PN (®, A) and the gain function ¢(A, ®) are such

that

d/dA@T(4) > 1.

&)1‘(0) > Oy

Condition (32) is satisfied.
Condition (38) is satisfied.

bl o e
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Then the throrile surface is admissible on .4 and the level
sets of function VI(A, ®, W) (defined by (34)) contained
inside 1" are invariant with respect to the flow of system (6).

7. An example of controller design

Consider controller of the form
T = gD el —T) + A
Ky= il .

N 2

(47)

where dg. ¢p. and ¢, are some positive contants (or,
more generally, some piecewise constant functions) and
Fell.I]. with I', > @,,;,. We are going to show that
this controller for some choice of gains satisfies the condi-
tions of Theorem 11, and thus semi-globally stabilizes the
desired range of equilibria and guarantees soft bifurca-
tion at the peak.
Since & = (1/1)(1 (D, 4) — V), one has

3 ' (Ilp ] ’ [c
o[ D) (W D, A) = (1 4 )@ —
( ,k>4,c32< (. A) = 51+ )@ = T)

.
+ L(’4;4). (48)
(1(])

Let

N I I,
WHD. A) == 1D, A) + - (1 + o) (D — T) — == ¢ 4A,
dq) d([)
(49)

Cy = dgl

With this notation we can rewrite the ¥ dynamics in the
standard form

. Oy
.
41, B~

©

(¥ — PLD, 4)). (50)

It is easy to sec that the corresponding function ®'(A) is

g

DAy =T +-—" 4 (51)
I+ (o

and hence

drd A D) = ¢ (1 + cq). (52)

We sce that the graphs of ®(A4) are straight lines origi-
nating at ®'(0) = I and having slope ¢4/(1 + ¢g). Since
' = I'; > ®y,;. the second condition of Theorem 11 is
satisfied. To satisfy the first condition of Theorem 11, it is
enough to choose ¢, and ¢q so that ¢ (1 + ¢g) > 1.

Eq. (49) can be rewritten as

o I .
WD, A) = 1D, 4) + T‘(l + ) — D' (A))

[4 )]

I
= [, A) + 1— (1 + cp)eq. (53)

dg

Thus

- - . [,

YD, A)=1,(D"(A), A)+ 0.0 ] 1(D, A)ecb"‘d_(l +colee
@

. I,
= Il(q)r(A), A) + dgz(q), A)eq) +d‘(1 “|“ C(p)e(p.
@

(54)

The corresponding function b*(®, A) can be expressed as
: I

P (®, A) := a5, (D, A) + d—° (1 + co). (55)
®

Condition (32) is casily seen to be equivalent with

I+ ¢g) Cy
— —l.o——— O, A
dq) > [Lo—l +('®a12( > )
1 aqo(D, A) Ca z
- - —— Ay} . (56
4< e an )) (56)
Let
- IL(] +(.fD)
Cqp =
d\y
57
I L pp— -
v = — —
dA 1+ cq

Below we present a procedure for choosing the gains of
the controller for a stabilization over a desired region of
operation . 4.

1. Choose .1 be a compact set on the A-® plane that
contains the region of the desired operation .#. The
region . 4" will be used to obtain bounds on the controller
gains. For all T in [T}, T[], the largest level sets of func-
tion V1(A, ®, W) contained inside .1~ are guaranteed to
be in the basin of attraction of the corresponding equlib-
rium (A7, @, W) and to be an invariant set of the flow. It
is difficult to say a priori how big should be .4". One
should proceed with initial choice of .4” and if the largest
level sets of VT(A, @, W) fail to contain the desired region
of operation .#, onc should repeat the procedure with
a larger .17 Alternatively, one can try to increase the
corresponding controller gains.

2. Choose z to be a positive number greater than o, ;.
x> 1 is always sufficient for stabilization of the e, dy-
namics and enforcing a soft bifurcation for all character-
istics. Higher values of « result in lower values of A} for
any fixed value of the set-point parameter I', and thus in
a lower pressure drop.

3. Choose &g such that

_ 1 ay,(D, A)
co > 1 — l.oaa (D, A)+-| —————
ay(A)

>

4 - lco'fmxl(A))

(58)

on .I". This choice guarantees that A, > 1 on .4". One
can use bounds (43) and (44) to obtain a conservative
lower bound for ¢g.
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4. Choose ¢y such that

(LD, A) s R
[T 4B- "*’77*"“(}[) +2('12('13('23“‘('22('137(711(723

cd
(59)
ts satisfied on . (" for
R
‘ 1/ a (D, A)
Cyp o= 5 (" 7;”(/4)7 - /CaacaH(A)>,
22 0= Cqom Looaa (@, A), (60)
LD, A

Cyz = — 2[0(73‘((7 124/ )— 9([‘@)6111(/4)’

(&

4
0.5 /;;”
p 1
L 4
. \_ sty
0.2 N
NN
0.1 ST ”
L WA " o003
02 9.3 R // 015
04 s T s

0.6 703

Equilibria of the closed-loop system

0.2 0.3 0.4 0.5 0.6 0.7
[

Projections of C, ,and C,, , onto - plane

Equilibria of the system with controller K, =

1 o1(®D, A) _
Cry 1= — 5 — 2lLB2<167A — (XC(p)alz(q), A)
_ (O (D, A _
+ 2BZCQ<% + Cq;).

One can use the bounds (43) and (44) to obtain a conser-
vative lower bound for cy, together with the following
bounds that are easy to establish:

1, (@, A) /
| A < sup @)
(61
ol (@, A) ,
sup | s | < sup. [Wi®)].
0.7

0.6

0.5
[
0.4
0.3
02 b
0 0.05 0.1 0.15 0.2 0.25 03
A

Projections of C, o, and C_ ,, onto A-@ plane
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T ~d,®~cp(®-T)+c,A

N

Fig. 12. Equilibria for the controller with a linear stall feedback.
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Fig. 13. Equilibria for the controller with a quadratic stall feedback.

5. The gains of the controller

_ I ’*d(p(j) 7(’¢,((D - r) + CAA

K,
/¥

N
are
Cq = O(E(I)C\y. (62)

d(p = IC('\p. Cop - — éTq)('q/ — 1,

Fig. 12 shows the trajectories of the C5 compressor with
parameters/, = 4.75. ¢ = 0.41, B = 0.1 under control law

Kﬁr—%®—m®—ﬂ+uA
| \/,/\‘1—7 .

The trajectories start at points (4, ®,, W), for A equal
0.03.0.06. 0.1 for I =04. Values of parameters were
a=1.¢Cp=1.0cp =5 do=2375 ¢co =4, cq =5

For comparison, Fig. 13 shows the trajectories of the
C'; compressor under control law

I —de® — co(® —T) + kA2
VY
The trajectories start at points (A4, @, o), for 4 equal
0.03, 0.06, 0.1 for T = 0.4. Values of parameters were
de = 23.75, cp = 4, k, = 50. Note that for this controller
we have ®'(4) = (I + k(1 4 co)) A%

For the same value I' = 0.4, the quadratic dependence
of ®T(A4) on A (despite the high gain k, = 50) causes the
stall equilibrium to occur for larger values of A than in
the case of the previously considered controller linear in

A. This also makes the value of the pressure rise coefli-
cient at the equilibrium to be lower for the controller

Ky
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Fig. 14. Comparison of equilibria for the controller with a linear and quadratic stall feedback.

quadratic in 4 than for the controller linear in A (see
Fig. 14). (A similar observation based on local analysis
was made in Krener, 1995.)

8. General guidelines for choosing the throttle surface

The physics of compression systems is very compli-
cated and not completely understood. While the three-
dimensional Moore-Greitzer model of compressor seems
to capture essential qualitative features of compressor
dvnamics. it is not acurate enough to allow any con-
clusions on a very detailed level. Therefore, we believe
that the procedure for controller design (or validation of
exisiting controller candidates) according to graph back-
stepping procedure presented in the previous sections
should be treated as a source of some general guidelines
for controller design rather than an actual algorithm for
designing the controller.

The results of the previous sections suggest the follow-
ing simple general guidelines for choosing the throttle
surface and the gain function:

1. Near the peak the projection of the intersection of
the throtile surface Sy (given by equation W = P(®, A))
and the turning surface Sq (given by equation
Y = I,(d. A)) graphed as a function ® = d(A4) should
have a positive slope larger than the largest positive slope
of the stall equilibria loop (graphed as a function
O = {(4) close to the peak). (See Figs. 7 and 14.) The
morc right skew the compressor the larger should be the
slope of (A). Slope of ®(A4) equal one or greater suffices.
Larger difference of slopes of ®(A) and f(A4) results in
a lower pressure drop when system enters rotating stall.

However, the saturation and bandwith limitations of the
actuator restrict from above attainable slopes of D(A).

2. The throttle surface Sy should lie below the turning
suface Sg to the left of their intersection and above the
turning surface S to the right of their intersection. The
distance between the throtle surface and the turning
surface Sy should be an increasing function of ®. Larger
differences of slopes of the throttle surface Sy and turning
surface S make the system more robust with respect to
changes of the compressor characteristic and distur-
bances. However, a transient pressure drop in surge is
more severe if the throttle surface Sy drops too fast to the
left of the intersection of S¢ and Sg. Moreover, the
saturation and bandwith limitations of the actuator re-
strict achievable steepness of the throttle surface (Fig. 15).

3. The gain function ce(®, A) should be big enough.
Roughly, cy(®, A) > 4B?h(®, A), where B is the Greitzer
parameter, b(®, A) is the slope of a secant line connecting
points P(®@, A) and P(H(A4), A) on the throttle surface Sy.

If the differences of slopes mentioned in Steps 1
and 2 and the gain function cy(®, A) are big enough then
one has global stability.

Fig. 16 shows turning surfaces for four controllers
stabilizing the peak of the characteristic.

As we can see, all these controllers obey the general
guidelines stated above. They have similar throttle sur-
faces and thus they yield closed-loop systems with similar
dynamic properties. While these controllers have been
designed in a different way, they all can be treated as
graph backstepping controllers using the method pre-
sented in Section 5.

To simplify the analysis we neglected the saturation
bounds of the actuator. However, these bounds are
relatively easy to incorporate. Suppose that the throttle
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opening K is bounded from below by K¢, and from
above by Ky,. Then one can easily check that the realiz-
able throttle surface has to satisfy the inequalities
Ky 0% < P, 4) < Kp,02

The eflect of a limited bandwith is more tricky to deal
with. but some insight can still be gained via a graphical
analysis of the flow.

9. Conclusion

We have shown that instead of using particular
parameltrizations of the characteristic, one can work on
a general level using slopes and curvatures of the charac-
teristic, L., information about the shape of the character-
istic.

For compressors with quite general characteristic we
considered controllers of the form Ky = (¥ + h(®, A))/
« Wand Ky = (de® + h(D. A))/(/¥. More generally, the
results of this paper apply to any controller that allows to
put the last equation ol (1) in the equivalent form

— ('-y((l). ]) (llr‘ (p((b 4))
4. B T

We have proposed a graph backstepping procedure for
controller design involving construction of a throttle
surface (. 4) and the gain function cg(0, A).

Graph backstepping can be used to design controllers
or to verify controller candidates for MG3. It provides
simple general guidelines for contruction of controllers.

We have shown that for a general compressor charac-
teristic every potential axisymmetric cquilibrium on the
decreasing part of the compressor characteristic, the peak
of the characterisitic. and every rotating stall equilibrium
close to the peak can be globally or semi-globally stabi-
lized by an appropriate choice of the throttle surface and
the gain function.

We obtained lower bounds on the gains of the control-
ler in terms of divided differcnces related to compressor
characteristic. These bounds can be expressed using
bounds on the first and second derivative of the charac-
teristic in the region of operation.

We presented simple general guidelines for choosing
the throttle surface.

Note that a graphical representation of controllers,
their graphical comparison, simple analysis of the flow to
prove stability. and studying performance limitations is
possible because MG3 is a three-dimensional model.

While graphical/topological analysis is more difficult
for higher dimensional models, the intuition one gains
from working with MG3 is still valuable. In fact, the
inturtion ganed form the backstepping control design of
the present paper has happen valuable for solving the pr
oblem of a global stabilization of the full Moore-Greitzer

infinite-dimensional model in (Banaszuk et al., 1998). The
controller proposed in Banaszuk et al. (1998) has a form
similar to the one proposed in the present paper, with the
magnitude of the first harmonic of the stall cell replaced
with the norm of stall cell in the Sobolev space H'.
Alternatively, the minimum of the stall cell could be used
for feedback (see Banaszuk et al., 1997). The choice of
controller gains in examples provided in Banaszuk et al.
(1998) and Banaszuk et al. (1997) has been guided by
general design guidelines provided in Section 8.
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