
Control of Center Manifolds

Boumediene Hamzi
Department of Mathematics,

University of California,
One Shields Avenue, Davis,

CA 95616, USA
hamzi@math.ucdavis.edu

Wei Kang
Department of Mathematics,
Naval Postgraduate School,

1411 Cunningham Road,
Monterey, CA 93943, USA

wkang@nps.navy.mil

Arthur J. Krener
Department of Mathematics,

University of California,
One Shields Avenue, Davis,

CA 95616, USA
krener@math.ucdavis.edu

Abstract— In this paper, we use a feedback to change the
orientation and the shape of the center manifold of a system
with uncontrollable linearization. This change will directly
affect the reduced dynamics on the center manifold, and hence
will change the stability properties of the original system.

I. INTRODUCTION AND PROBLEM STATEMENT

Center manifold theory plays an important role in the study
of the stability of nonlinear systems when some eigenvalues
of the linearized system are on the imaginary axis and the
others are in the open left half plane. The center manifold
is an invariant manifold of the differential equation which
is tangent at the equilibrium point to the eigenspace of
the neutrally stable eigenvalues. In practice, one does not
compute the center manifold and its dynamics exactly, since
this requires the resolution of quasilinear partial differential
equation which is not easily solvable. In most cases of inter-
est, an approximation of degree two or three of the solution is
sufficient. Then, we determine the reduced dynamics on the
center manifold, study its stability and then conclude about
the stability of the original system [23], [26], [19], [8], [14].
The combination of this theory with the normal form ap-
proach of Poincaré [24] was used extensively to study
parameterized dynamical systems exhibiting bifurcations.
This approach is also useful in control theory. The combina-
tion of the normal form approach for control systems [18] and
center manifold theory enabled the analysis and stabilization
of systems with uncontrollable linearization [16], [17], [13],
[21], [11]. It can also be viewed as a reduction technique for
some classes of ordinary and partial differential equations
which show dominant subdynamics. The synthesis of a
feedback for these differential equations is then performed
for the reduced ordinary differential equation.
In this paper, we show that we can use a feedback to change
the orientation and the shape of the center manifold of a
system with uncontrollable linearization. This change will
directly affect the reduced dynamics on the center manifold,
and hence will change the stability properties of the original
system.
The paper is organized as follows : In section §1, we
determine the linear part of the center manifold and show
that a linear feedback is sufficient to change the orientation,
then, in section §2 we determine the quadratic part of the
center manifold, and show how a quadratic feedback can
change its shape. We show also that this permits to use

Lyapunov functions to study the stabilization problem of
systems with uncontrollable linearization.

Consider the following nonlinear system

ζ̇ = f(ζ, v) (1)

the variable ζ ∈ IRn is the state, v ∈ IR is the input
variable. The vectorfield f(ζ) is assumed to be Ck for some
sufficiently large k.
Assume f(0, 0) = 0, and suppose that the linearization of
the system at the origin is (A,B),

A =
∂f

∂ ζ
(0, 0), B =

∂f

∂ v
(0, 0),

with

rank([B AB A2B · · · An−1B]) = n − r. (2)

Let us denote by ΣU the system (1) under the above
assumptions.
The system ΣU is not linearly controllable at the origin, and
a change of some control properties may occur around this
equilibrium point, this is called a control bifurcation if it is
linearly controllable at other equilibria. [21].
From linear control theory, we know that there exist a linear
change of coordinates and a linear feedback transforming the
system ΣU to

˙̄z = A1z̄ + f
[d≥2]
1 (z̄, x̄, ū),

˙̄x = A2x̄ + B2ū + f
[d≥2]
2 (z̄, x̄, ū),

(3)

with z̄ ∈ IRr, x̄ ∈ IRn−r, ū ∈ IR, A1 ∈ IRr×r is in the Jordan
form, A2 ∈ IR(n−r)×(n−r), B2 ∈ IR(n−r)×1,

A2 =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















, B2 =















0
0
...
0
1















,

and f
[d≥2]
k (z̄, x̄, ū), for k = 1, 2, designates a vector field

which is a homogeneous polynomial of degree d ≥ 2.

Moreover, from [21] we know the quadratic normal form of
the system ΣU .



Theorem 1.1: For the system (3), there exists a quadratic
change of coordinates and feedback

[

z

x

]

=

[

z̄

x̄

]

+ φ[2](z̄, x̄) (4)

ū = u + α[2](z̄, x̄, u), (5)

which transforms the system into the quadratic normal form

[

ż

ẋ

]

=

[

A1 0
0 A2

] [

z

x

]

+

[

0
B2

]

u (6)

+

[

f̃
[2;0]
1 + f̃

[1;1]
1 + f̃

[0;2]
1

0 + 0 + f̃
[0;2]
2

]

(z, x, u)

+O(z, x, u)3

where f̃
[d1;d2]
i = f̃

[d1;d2]
i (z;x, u) denotes a polynomial

vector field homogeneous of degree d1 in z and homogeneous
of degree d2 in x, u. The vector field f̃

[2;0]
1 is in the quadratic

normal form of Poincaré [27],

f̃
[2;0]
1 =

r
∑

i=1

∑

1≤j≤k≤r

λj+λk=λi

β
jk
i e

1,i zj zk (7)

where e
r,i is the ith unit vector in z space when r = 1 and

in the x space when r = 2. zi is the ith component of z.
The other vector fields are as follows.

f̃
[1;1]
1 =

r
∑

i=1

r
∑

j=1

γ
j1
i e

1,i zj x1 (8)

f̃
[0;2]
1 =

r
∑

i=1

n−r+1
∑

j=1

δ
jj
i e

1,i x2
j (9)

f̃
[0;2]
2 =

n−r−1
∑

i=1

n−r+1
∑

j=i+2

ε
jj
i e

2,i x2
j (10)

where for notational convenience we have defined xn−r+1 =

u. The vector field, f̃
[0;2]
2 , is in quadratic controller form [18].

Let σjk = 2 if j = k and σjk = 1 otherwise. The quadratic
invariants are as follows,

β
jk
i = 1

σjk

∂2f
[2]
1,i

∂zj ∂zk
(0, 0, 0)

for 1 ≤ i ≤ r, 1 ≤ j ≤ k ≤ r and λi = λj + λk,

γ
j1
i =

∑n−r+1
k=1 (λi − λj)

k−1 ∂2f
[2]
1,i

∂zj ∂xk
(0, 0, 0)

for 1 ≤ i, j ≤ r,

δ
jj
i = 1

2

[

adk+1
F (G), adk

F (G)
]

(zi)(0, 0, 0)
where k = n − r + 1 − j for 1 ≤ i ≤ n − r − 1,

i + 2 ≤ j ≤ n − r + 1.

ε
jj
i = 1

2

[

adk+1
F (G), adk

F (G)
]

(xi)(0, 0, 0)
where k = n − r + 1 − j

for 1 ≤ i ≤ n − r − 1, i + 2 ≤ j ≤ n − r + 1,

with

adX(Y ) = [X,Y ] =
∂ Y

∂ ξ
X −

∂ X

∂ ξ
Y,

for a given two vector fields X(ξ) and Y (ξ) defined in IRn,
and

F =
r

∑

j=1

f1,j(z, x, u)
∂

∂zj

+
n−r
∑

j=1

f2,j(z, x, u)
∂

∂xj

(11)

G =
∂

∂u
(12)

Now, let us consider the feedback given by

u = K1z + K2x + zT Qfbz + O(z, x)3, (13)

with K1 =
[

k1,1 · · · k1,r

]

and K2 =
[

k2,1 · · · k2,n−r

]

.
Moreover, let us assume that K2 is such that the eigenvalues
of A2 + B2K2 are in the open left half plane, i.e.
Property P : The matrix Ā2 = A2 + B2K2 is Hurwitz.

Let us denote by F the feedback (13) with the property P .
The closed loop system (6)-(13) possesses r eigenvalues on
the imaginary axis, and n − r eigenvalues in the open left
half plane. Thus, a center manifold exists. It is represented
locally around the origin as

W c = {(z, x) ∈ IRr × IRn−r|x = Π(z), |z| < δ,Π(0) = 0}.
(14)

The next sections deal with the computation of the linear and
quadratic parts of Π in (14) for the system (6)-(13) and their
link with the parameters of the feedback F .

II. LINEAR CENTER MANIFOLD

Consider the system (3) and the linear part of the feedback
F

u = K1z + K2x + O(z, x)2. (15)

Suppose that the linear part of the center manifold is

Π[1](z) = Π[1]z (16)

with Π[1] ∈ IR(n−r)×r. Since, on the center manifold we
have x = Π(z), then

ẋ =
dΠ(z)

d t
=

∂ Π(z)

∂ z
ż.

Thus, from (3)

∂ Π(z)

∂ z
ż = A2Π(z)+B2(

r
∑

i=1

k1,izi+

n−r
∑

i=1

k2,iΠi(z))+O(z, x)2.

(17)
Replacing Π(z) by its linear part (16) we deduce that

Π
[1]
i+1(z) =

∂Π
[1]
i (z)

∂ z
A1z, i ≤ n − r

n−r
∑

i=1

k2,iΠ
[1]
i (z) + K1z =

∂Π
[1]
n−r(z)

∂ z
A1z



where Π
[1]
i (z) represents the ith row of Π[1](z). So

Π
[1]
i+1 = Π

[1]
i A1, i ≤ n − r,

n−r
∑

i=1

k2,i Π
[1]
i + K1 = Π

[1]
n−r A1,

Hence,

Π
[1]
i+1 = Π

[1]
1 Ai

1, i ≤ n − r,
n−r
∑

i=1

k2,i Π
[1]
1 Ai−1

1 + K1 = Π
[1]
1 An−r

1 .
(18)

Let P (λ) be the characteristic polynomial of Ā2, then

P (λ) = λn−r −
n−r
∑

i=1

k2,iλ
i−1, (19)

Hence, the equation (18) can be rewritten as
{

Π
[1]
1 = K1P (A1)

−1,

Π
[1]
i+1 = Π

[1]
1 Ai−1

1 , i ≤ n − r,
(20)

P (A1) is invertible since the eigenvalues of A1, on the
imaginary axis, don’t coincide with the solutions of P (λ) =
0, lying in the open left half-plane, since Ā2 is Hurwitz.
Theorem 2.1: Given the feedback F , the center manifold is
given by

x = Π[1]z + O(z2)

with the components of Π[1] uniquely determined by (20).
Now, let us show that the orientation of the center manifold
can be changed by changing K1 in (15).
If we view the center manifold represented by x = Π(z)
as a submanifold in the space of (z, x) ∈ IRn, we can say
that the orientation of the center manifold at the origin is a
basis of the orthogonal complement subspace of the tangent
space of the center manifold. Indeed, the orientation of the
center manifold at the origin is a set of vectors which are
orthogonal to the manifold, they are linearly independent and
they generate a complement subspace of the manifold.
Theorem 2.2: Given any (n − r) × r matrix of the form

[M(n−r)×r N(n−r)×(n−r)]

Then, its row vectors define the center manifold orientation
at the origin for (3)-(15) if and only if N−1 exists and Π[1] =
−N−1 M satisfies (20).

Proof: Suppose that [M(n−r)×r N(n−r)×(n−r)] de-
fines the orientation of the center manifold. Then, it is
orthogonal to the tangent space of the center manifold. It
is known that the tangent space of the center manifold is
given by its linear part,

x − Π[1]z = 0,

where Π[1] satisfies (20). In the (z, x)-space, a set
of orthogonal vectors of the tangent space is the row
vectors of [−Π[1] I]. Therefore, both [−Π[1] I] and

[M(n−r)×r N(n−r)×(n−r)] generate the same space, which
is orthogonal to the tangent space of the center manifold.
Therefore, the row vectors of [−Π[1] I] are linear combi-
nations of the row vectors in [M(n−r)×r N(n−r)×(n−r)],
i.e.

[−Π[1] I] = N−1[M(n−r)×r N(n−r)×(n−r)].

So, Π[1] = −N−1 M and it satisfies (20).
On the other hand, suppose −N−1 M satisfies (20). By
Theorem 2.1, the linear space

N−1 M z + x = 0

represents the linear part of the center manifold. It is the tan-
gent space of the center manifold. Therefore, [N−1 M | I],
the row vectors in the coefficient matrix of this equation,
forms a basis of the orthogonal space. It is easy to check
that the row vectors of [M N ] and [N−1 M I] generate the
same vector space. Therefore, [M N ] defines the orientation
of the center manifold.

Now, consider the following change of coordinates

x̃i = xi − Π
[1]
1 Ai−1

1 z, i = 1, · · · , n − r (21)

then,

˙̃xi = x̃i+1, i = 1, · · · , n − r

˙̃xn−r =

n−r
∑

i=1

k2,ix̃i

Hence the coefficient K1 have been removed from the x−part
of the dynamics (3)-(15) by a change of coordinates. With
K1 = 0, we deduce from (20) that Π[1] = 0. So, the linear
terms of the center manifold have been removed.
Proposition 2.1: Given any feedback (15) satisfying Prop-
erty P , and the change of coordinates (21), then the center
manifold is given by

x̃ = O(z2)
In the following, and for reasons of simplicity, we use (z, x)
instead of (z, x̃).

III. QUADRATIC CENTER MANIFOLD

In this section we determine the quadratic part of the center
manifold and show it can be affected by Qfb of the feedback
F . We present also a procedure to have conditions on the
entries of Qfb such that we have asymptotic stability of the
origin of the closed loop system (6)-(13).
Theorem 3.1: Consider the normal form (6). Under the non-
linear feedback F , the quadratic part of the center manifold
satisfies

Π
[2]
i (z) = zT Qiz, (22)

with Qi directly linked to Qfb (through equation (23) below).



Proof: Consider a system in the normal form (6). Since
the linear part of the center manifold has been removed
through the change of coordinates (21), the center manifold
has the following form

xi = Πi(z) = zT Qiz + O(z3),

where Qi, i = 1, · · · , n−r, are real r×r symmetric matrices.
From the center manifold equation (17) we deduce that

zT (QiA1 + AT
1 Qi)z =











zT Qi+1z, for 1 ≤ i ≤ n − r − 1,
n−r
∑

i=1

k2,iz
T Qiz + zT Qfbz,

This equation is equivalent to

Qi+1 = SA1
(Qi),

Qfb = SA1
(Qn−r) −

∑n−r
i=1 k2,iQi = P (SA1

)(Q1)
(23)

with SA1
the operator defined SA1

(Qi) = AT
1 Qi+QiA1. The

spectrum of this operator is in {λi+λj : for i, j = 1, · · · , r}
with λ` for ` = 1, · · · , r are the eigenvalues of A1. So the
eigenvalues of this operator are on the imaginary axis. Since
Ā2 is Hurwitz, then the solutions of P (λ) = 0 are in the open
left half plane and so don’t coincide with the eigenvalues of
SA1

; hence, the operator P (SA1
), whose the eigenvalues are

in {P (λi + λj) : for i, j = 1, · · · , r}, is invertible and there
is a direct correspondence between Q1 and Qfb.

Using the expressions of the center manifold (22) and the
normal form (6), we deduce the normal form of the dynamics
of ΣU on the center manifold :

ż = A1z+f̃
[2;0]
1 (z)+

r
∑

i=1

r
∑

j=1

γ
j1
i zj zT Q1ze

1,i+f̃
[3;0]
1 (z)+O(z4),

(24)
with

f̃
[3;0]
1 =

r
∑

i=1

∑

1≤j≤k≤r≤`

λj+λk+λ`=λi

β
jk`
i e

1,i zj zk z`, (25)

and

β
jkl
i =

1

σjkl

∂3f
[3]
1,i

∂zj ∂zk ∂zl

(0, 0, 0), for 1 ≤ i, j, k ≤ r,

(26)
and λi = λj + λk + λl, with σjkl = 6 if j = k = l and
σjkl = σjkσjlσkl otherwise.

Remark. In the x−coordinates system, the normal form of
the dynamics of ΣU on the center manifold is given in the
appendix. /

Let Φ(Q1, z) =
∑r

i=1

∑r
j=1 γ

j1
i zj zT Q1ze

1,i and

R[2,3](z) = f̃
[2;0]
1 (z) + f̃

[3;0]
1 (z).

The direct correspondence between the orientation and the
quadratic shape of the center manifold given by (20) and
(23) permit us to propose a procedure to find a feedback
when a specific closed-loop dynamics of the form (24) is
desirable.
Given a “reference model” of the form

ż = A1z+

r
∑

i=1

{

zT Θ0,iz+
[

zT Θ1,iz · · · zT Θr,iz
]

z

}

e
1,i+O(z4),

(27)
which is a dynamics corresponding to a pre-specified orien-
tation and shape of the center manifold, our goal is to find a
feedback F such that the reduced dynamics of ΣU−F on the
center manifold match with the dynamics (27). The matrices
Θ0,i, Θ1,i, · · · ,Θr,i are particular matrices in IRr×r, for
i = 1, · · · , r, whose entries are determined by the dynamics
(24) or (33).
Suppose that V (z) = 1

2zT z is a Lyapunov function for the
dynamics (24). Then

V̇ = zT (AT
1 + A1)z + {R[2,3](z) + Φ(Q1, z)}T z

+ zT {R[2,3](z) + Φ(Q1, z)} + O(z5).
(28)

For V̇ to be negative definite, it is sufficient that −V̇ is a Sum
of Squares (SOS). Several techniques exist to express −V̇

as a SOS (see for example [6], [7] and [22] for a review of
different techniques - see also [25] for a software). The basic
idea of this method is to express −V̇ as a quadratic form in
some new variables w. Therefore, −V̇ can be represented as

−V̇ = wTVw, (29)

where V is a constant matrix. If V is positive definite, then
V̇ is negative definite. In our case V depends on Q1 and
hence Qfb through (23). Conditions on positive definiteness
of V give conditions on the entries of this matrix, and hence
conditions on the entries of Qfb.
In the following, we illustrate the procedure through two
examples.

A. Transcritical Control Bifurcation

In this case r = 1 and A1 = 0. The dynamics on the center
manifold (24) is given by

ż = β11
1 z2 + (γ11

1 Q1 + β111
1 )z3 + O(z4),

and from (28), we have

V̇ =
[

z2 z
]

V1

[

z2

z

]

+ O(z5),

with V1 =

[

γ11
1 Q1 + β111

1
β11
1

2
β11
1

2 0

]

. In this case, w in (29)

is given by w =

[

z2

z

]

.



For V̇ to be negative definite, the minors of −V should be
positive. So we should have

γ11
1 Q1 + β111

1 < 0, (30)

and

−

(

β11
1

2

)2

> 0. (31)

Since the second inequality is not satisfied, the choice of
K1 = 0 is not sufficient. Hence, we should find another
value of K1 permitting the minors of −V to be positive.
From (33), the dynamics on the center manifold is given by

ż = (β11
1 + γ11

1 Π
[1]
1 + δ11

1 (Π
[1]
1 )2)z2

+ {(γ11
1 + 2δ11

1 Π
[1]
1 )Q1 + β111

1 + γ111
1 Π

[1]
1 (32)

+ δ111
1 (Π

[1]
1 )2 + ε1111 (Π

[1]
1 )3}z3 + O(z4).

If we choose Π
[1]
1 such that β11

1 + γ11
1 Π

[1]
1 + δ11

1 (Π
[1]
1 )2 = 0,

and provided (γ11
1 )2 − 4β11

1 δ11
1 > 0 it will be sufficient to

choose Q1 such that

(γ11
1 +2δ11

1 Π
[1]
1 )Q1+β111

1 +γ111
1 Π

[1]
1 +δ111

1 (Π
[1]
1 )2+ε1111 (Π

[1]
1 )3 < 0.

B. Hopf Control Bifurcation

In this case r = 2 and A1 =

[

0 ω

−ω 0

]

. The dynamics on

the center manifold (24) is given by

ż = A1z +
∑2

i=1

∑2
j=1 γ

j1
i z1jz

T Q1zei
1

+

[

β̂0z11 + β̂1z12

−β̂1z11 + β̂0z12

]

(z2
11 + z2

12) + O(z4),

with β̂0 = 1
8 (β112

1 + β122
2 ), and β̂1 = 1

8j(−β112
1 + β122

2 ).
β112

1 is the complex conjugate of β122
2 .

Consider the Lyapunov function V = 1
2 (z2

11 + z2
12), then

V̇ =
[

z2
11 z11z12 z2

12

]

V2





z2
11

z11z12

z2
12



 ,

with V2 =





θ0
θ1

2 0
θ1

2 θ2
θ3

2

0 θ3

2 θ4



. The variable w in (29) is given

by w =





z2
11

z11z12

z2
12



.

The entries of V2 are given by

θ0 = β̂0 + γ11
1 q1,11, θ1 = (γ21

1 + γ11
2 )q1;11 + γ11

1 q1;12,

θ2 = 2β̂0 + γ21
2 q1;11 + (γ11

2 + γ21
1 )q1;12 + γ11

1 q1;22,

θ3 = (γ21
1 + γ11

2 )q1;22 + γ21
2 q1;12,

θ4 = β̂0 + γ21
2 q1,22.

For V̇ to be negative definite, the minors of −V2 should be
positive. So we should have

θ0 < 0,

θ0θ2 −

(

θ1

2

)2

> 0,

det(V2) < 0.

This gives us q1;11, q1;12 and q1;22, and so we can deduce
Qfb from (23).

IV. APPENDIX

In the x−coordinates system, the normal form of the dynam-
ics of ΣU on the center manifold is given by

ż = A1z + f̃
[2;0]
1 (z) +

r
∑

i=1

[ r
∑

j=1

γ
j1
i zjΠ

[1]
1 z

+

n−r
∑

j=1

δ
jj
i (Π

[1]
1 A

j−1
1 z)2

]

e
1,i

+

r
∑

i=1

({

r
∑

j=1

γ
j1
i zj + 2δ11

i Π
[1]
1 z

}

zT Q1z

+ 2
∑n−r

j=2 δ
jj
i Π

[1]
1 A

j−1
1 z zT Qjz

)

e
1,i

+ f̃
[3;0]
1 (z) +

r
∑

i=1

r
∑

j=1

r
∑

k=j

γ
jk1
i zj zk Π

[1]
1 z e

1,i

+
r

∑

i=1

r
∑

j=1

n−r
∑

k=1

δ
jkk
i zj (Π

[1]
1 Ak−1

1 z)2 e
1,i

+

r
∑

i=1

n−r
∑

j=1

n−r
∑

k=j

ε
jkk
i Π

[1]
1 A

j−1
1 z (Π

[1]
1 Ak−1

1 z)2 e
1,i + O(z4),

(33)
with

γ
jk1
i =

n−r
∑

l=0

(λi − λj − λk)
l ∂3f1,i

∂zj ∂zk ∂xl+1
(0, 0, 0),

for 1 ≤ i ≤ r, 1 ≤ j ≤ k ≤ r,

δ
jkk
i =

1

2

[

∂

∂zj

,
[

adn−r+2−k
F (G), adn−r+1−k

F (G)
]

]

(zi)(0, 0, 0)

for 1 ≤ i, j ≤ r and 1 ≤ k ≤ n − r, and

ε
jkk
i =

(−1)n−r+1−j

σjkk

[

adn−r+1−j

F (G),[adn−r+2−k
F (G),adn−r+1−k

F (G)]
]

(zi)(0,0,0),

for 1 ≤ i ≤ r and 1 ≤ j ≤ k ≤ n − r.
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