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Dynamics and control of entrained solutions in multi-mode Moore—
Greitzer compressor models

J. SEAN HUMBERT#§ and ARTHUR J. KRENER]

In this paper we investigate the behaviour of higher order Galerkin expansions of
the Moore—-Greitzer model of general transients in aeroengine compression
systems. We assume steady state entrainment of the higher Fourier modes of the
rotating stall cell which helps establish a framework for a simplified numerical
analysis of the bifurcating solutions corresponding to rotating stall. For small
values of the Greitzer surge parameter (B) we discuss general trends in the character
of the pure stall solutions. The rotating stall characteristic is shown to exhibit deep
hysteresis with a cubic compressor characteristic, establishing the fact that deep
hysteresis to a certain extent is a multi-mode phenomena. Elimination of the hys-
teresis associated with the bifurcation into stall is accomplished in simulations with
a combined feedback on the displacement from the peak of the compressor char-
acteristic and the magnitude of the first mode amplitude of the stall cell. Behaviour
for larger values of the B parameter is also investigated and novel surge/stall
relaxation oscillations corresponding to classic surge are discovered.

1. Introduction

Rotating stall and surge are fluid dynamic instabilities which limit performance
of axial compression systems. Deep surge is a time dependent axisymmetric flow
characterized by oscillations in both pressure rise and mean flow. Pure rotating stall,
on the other hand, is a steady (in the rotating frame), non-axisymmetric flow whose
frequency is typically an order of magnitude higher than that of surge. The case
where these two instabilities coexist is termed classic surge. Recovery from these
conditions is characterized by hysteresis, where the throttle must be significantly
opened past the point of inception of the instability in order to recover steady
axisymmetric flow. The Moore-Greitzer equations are an attempt to model the
non-linear phenomena of rotating stall and surge in these systems using first prin-
ciples. The derivation of the complete set of equations can be found in Moore and
Greitzer (1986).

The desired operating points of this system are those that provide the largest
pressure rise across the compressor. However, increased susceptibility to surge and
stall precludes operation at these setpoints. Reduced order ODE models of stall and
surge phenomena provide a framework to assess the performance of various feed-
back controllers designed to minimize the harmful effects of rotating stall and surge.
In previous work, Moore and Greitzer (1986) developed a single spatial harmonic
expansion of the resulting equations. The bifurcations in this model were studied in
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depth by McCaughan (1989). In recent research activity (Krener 1996, Liaw and
Abed 1996, Banaszuk and Krener 1997, Krstic et al. 1998), feedbacks were shown to
eliminate the hysteresis associated with the bifurcation into stall of this low order
model. It was also shown in Henderson and Sparks (1996) that various feedbacks
which eliminate hysteresis in the single mode expansion fail to do so when an addi-
tional spatial harmonic is included in the model.

In this paper we investigate the dynamics of multi-mode Galerkin expansions of
the Moore-Greitzer equations. It is well known that unfolding the global bifurcation
behaviour of systems of dimension three or greater is a formidable task. Hence, our
goal in investigating these higher order expansions was not to document every
intricacy of the models but rather develop a multi-mode framework that could be
used to characterize the role of higher modes in both the uncontrolled dynamics and
in the control design. In §2 we introduce phase entrainment states which establish a
framework for simple numerical analysis of non-axisymmetric periodic solutions. In
§ 3 we present a detailed numerical analysis of the three mode model (MGR8) and note
the general trends observed when more Fourier modes are included in the dynamics.
In addition a feedback controller is presented which eliminates the hysteresis associ-
ated with the bifurcation into stall in the models we have simulated.

1.1. Complete Moore—Greitzer model

The complete model, whose derivation can be found in Moore and Greitzer
(1986), is as follows

dv 1
= (@) m
7 do T Honzy T
\Il(é) = \Ilt(q) + (¢7])0) - [Cd_é- - m(¢f)0 - 5 (2¢§n + %e)o (2)
dd 1 27 -,
L Ge =~V +3z | W@ (@) a8 ®)

The dependent variables of this system are the annulus averaged pressure rise co-
efficient ¥(¢), the annulus averaged axial flow coefficient ®(¢), and the upstream
disturbance potential ¢’(n,6,¢), whose axial and circumferential partials give the
local flow disturbance in the axial and circumferential directions. Independent
variables include the time in wheel radians &, the circumferential coordinate 6, and
the axial coordinate n. Equation (1) is an ODE in £ which results from a mass
balance of the plenum, (2) is a PDE in £ and 6 from the momentum balance of
the system evaluated at the compressor face (n = 0), and (3) is an ODE in £ which
results from averaging out the circumferential dependence in (2). Note the subscript
0 denotes evaluation at n = 0, and the subscripts &, 8, 9 denote partial differentiation.

The compressor characteristic ¥ (@) is the response of the compressor for steady
axisymmetric flow. For our analysis we will use the general cubic from Moore and

Greitzer (1986): ,
3/ 1/®
] “

The throttle characteristic ®7(¥) represents the pressure loss across the throttle,
assumed parabolic in &:

(@) = Uy +
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Op = (Kp +u)V¥ (5)

The variable u represents a feedback control on the operating point of the system.
Parameters of the model define compressor geometry and operation characteristics.
In our analysis we will focus on two parameters, Ky and B. The throttle coefficient
K7 adjusts the position of the throttle, hence the operating point of the system. B is
the Greitzer stability parameter which determines whether a given compressor is
more likely to enter surge or rotating stall. Additional parameters are defined in
Moore and Greitzer (1986). We will refer to the collection of parameters as

p=I1Kr Yohwml pB (6)

1.2. Previous work

In Moore and Greitzer (1986) a single harmonic Galerkin expansion of the
complete model was introduced. The reduced system of ODEs in non-dimensional
time £ are

dv 1

— = (®- D, 7
d§ 4B216( T) ( )
dA A [dVy, A*dPY,

— ==+ (8)
d¢ m+p\dd 8 d@?

do 1 A2 3w,

Py gL 9
&L (‘I’ vy d<I>2> ®)

The dependent variables of this model are the annulus averaged pressure rise coeffi-
cient W(&), the annulus averaged axial flow coefficient ®(£), and the amplitude of the
first spatial harmonic of rotating stall 4(£). 4 = 0 defines an invariant plane with
steady (axisymmetric) solutions

o=, (10)
U=0, (11)

For these fixed points the pressure rise across the compressor equals the pressure loss
across the throttle, hence the operating point of the system is defined by the inter-
section of (4) and (5), shown in figure 1. The stability of these solutions depends on
both the throttle coefficient K; and the Greitzer surge parameter B. For larger values
of the throttle coefficient K these axisymmetric solutions are stable, denoted with a
solid line on figure 2. For our analysis in later sections we will be interested in small
to medium ranges of the B parameter. For these cases the system loses linear stability
with respect to axisymmetric perturbations via a supercritical Hopf bifurcation well
after the system is throttled through the peak of the compressor characteristic. The
bifurcated limit cycle is a relaxation oscillation in the ¥ and & states whose siow
manifolds are the arms of the compressor characteristic ¥, as shown in figure 2
(bottom, left).

The deep surge relaxation oscillation is the dominant behaviour for the larger B
parameters. For small B parameters, however, the non-axisymmetric (4 non-zero)
case becomes dominant. As in the axisymmetric case for large throttle settings the
system has a stable axisymmetric equilibrium defined by the intersection of the
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compressor and throttle characteristics. As the system is throttled through the
peak of the compressor characteristic it loses linear stability with respect to non-
axisymmetric perturbations via a subcritical pitchfork bifurcation. The new
branch of equilibria is defined by

d =3, (12)
AN

-(-%) (13)
Wy

w=w, R (14)

where the prime denotes differentiation with respect to ®. In figure 2 we plot these
equilibria on the ($,¥) and (4, K;) planes. Stability is shown by linetype, solid
(dashed) denoting stable (unstable) fixed points. Trajectories in this case approach
steady non-axisymmetric solutions (rotating stall) as shown in figure 2 (bottom,
right).

1.3. Galerkin projections of the complete model

In this section we discuss the application of the Galerkin method to reduce the
infinite dimensional system (1-3) to a finite dimensional system of ODEs. Solutions
to (2) are time dependent curves in the infinite dimensional space of functions of
angle with periodic boundary conditions, 1[0, 27]. Our basic assumption is that the
solutions of interest evolve in some finite dimensional subspace spanned by a
truncated Fourier series approximation to the upstream disturbance potential:

F60,1) = Y 1 exp (kn) (Ac(€)cos (K0 — ©,(9)) (19)

Subtracting the circumferentially averaged dynamics (3) from (2) one has

0= W(@,6,0) — m(d0), 5 (264, + )y (16)

where
¥ = %L (@ + (3),) d (17)
=00+ (9)) — V(@) (18)

Following the procedure outlined in Krener (1996), we plug the truncated Fourier
series for the upstream disturbance potential ¢’ into (16) to form a residual, and then
integrate against cos (kf) or sin (k). The resulting system has an independent
variable of non-dimensional time ¢ measured in rotor radians and dependent
variables A,(¢) and ©,(§), the amplitudes and phases of each spatial Fourier
mode included in the truncation, respectively. The ODEs (k = 1,...,n) are
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. 1 k 2T -,
A= P UO (@ + (b)) cos (kf — @k)de] (19)
. k ko1 Sy
0, = P [_%—i—w—Ak Jo U (P + (¢,),) sin (k6 — @k)dH} (20)

2. General multi-mode remarks

These systems of dimension 2# 4 2 are composed of two ODEs (1), (3) describing
the time evolution of the annulus averaged flow coefficient & and the annulus
averaged pressure rise coefficient ¥, and 2n ODEs (k= 1,...,n) for the time
evolution of the amplitudes A4; and phases ©, of the n spatial Fourier modes of
the stali cell:

1 3

\i/ = m ((I) - (DT)
. 2 -
b=t v+ L [Twer Gy
@)
1k

k

:;m—&—ku

U;ﬁ U (D + ())0) cos (k — ©;) de}

_ k pk 1
Tmtku| 2 @A,

O

21
J U(@ + ($]),) sin (k6 — ©) de}
0

The systems can be viewed as n+ 1 coupled oscillators x = f(x, p) with state and
parameter vectors

X = [®(§)7 \Il(f)7 Al(g)v @](5), o ,An<§)v (—)n(g)}, ) (22)
p=|[Kr Yohwml pu B (23)

We will begin our analysis by assuming a small B parameter and concentrating on
the bifurcation behaviour defined by (21). As for the steady axisymmetric behaviour,
it is similar to that of the single harmonic expansion. For large values of the throttle
coefficient there is a stable axisymmetric equilibrium defined by the intersections of
the compressor characteristic (4) and the throttle characteristic (5), as shown in
figure 1. As the system is throttled down through the peak the axisymmetric
equilibrium loses linear stability via a multiple Hopf bifurcation, as a pair of complex
eigenvalues for each spatial mode of rotating stall simultaneously cross the imagin-
ary axis with non-zero speed. Multiple periodic solutions bifurcate from this point,
however there is only one branch that becomes stable for the range of throttle
settings. Extensive simulations of (21) have shown that these stable periodic
solutions decay to travelling waves where the phases of each mode increase linearly
with time. This corresponds to the stall cell rotating around the annulus of the
compressor with a fixed shape at steady state.

The remainder of this section will be dedicated to establishing a framework for
analysis of bifurcated non-axisymmetric periodic solutions corresponding to rotating
stall. First SO(2) equivariance of multi-mode Moore—Greitzer models (21) will be
established. With this property we will show that any phase combination appearing
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in the dynamics must be harmonically balanced. This allows us to introduce phase
difference states which reduces the problem of characterizing the non-axisymmetric
equilibria to that of numerical continuation.

2.1. SO(2) equivariance of multi-mode models

In this section we will consider vector fields % = f(x) where f: R**? — R, Let
I be a symmetry group acting on R***2. The vector field f(x) is equivariant under the
group T if for every v € T the following equation holds:

2 () 1() =/ ) (24)

Now consider I' to be the continuous group of rotations SO(2) on R*T2. The
representation of I on f: R*"> — R**? is a simple rotation of the circumferential
coordinate 8 by a constant 6,

fr— 6+ 6 (25)
The action of this group on polar coordinates is given by
(O, 0, 4,...,4,,01,...,0,)—(®, ¥, 4,,...,4,,0; — by,...,0, —nby) (26)
We define new coordinates
(®,9,4,...,4,,91,C1,.- -, (i) (27)
where
G =01 — ([(+1)0
then the action of the group is given by
(.U A1,..., 4,01,y o, Go) — (D, 0, 4,,...,4,,0; — 00,1, .., Cr) (28)

and the Jacobian of this transformation is everywhere the identity. Hence the
equivariance condition (24) implies that the dynamics only depends on

(palI’aAlv'"aAn7<l7"'a<n—l
and not ©,.

Definition 1: A general phase combination >_;_, @O, appearing in the dynamics
(21) is said to be harmonically balanced if >~} _; axk = 0.

We have shown the following:

Lemma 1: Any phase combination appearing in the dynamics of multi-mode models
(21) will be harmonically balanced.

2.2. Phase entrainment states

As we mentioned previously, simulations show that stable non-axisymmetric
solutions decay to travelling waves of fixed shape. We will refer to this phenomena
as entrainment, or phase locking of the modes. In this situation, for a given mode, its
amplitude is constant and the difference between its phase and the product of its
harmonic number and the phase of the first mode would be constant:
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A; = constant
(29)
G = Oy — (kK + 1)O; = constant

We find that during entrainment, ©; is the only variable of the series which is a
function of time. This is equivalent to the solutions (stall cells) rotating around the
annulus with fixed shape.

In the above coordinates (27) we have seen that the dynamics does not depend on
O,. If we ignore O, we obtain a system with the following form:

z=glz.p) (30)
2= [R(8), (&), A1(€),--- Au(E), G(E)s G (O (31)
p=[Kr Yohwml B (32)

The fixed points of the system (30) are solutions of g(z, p) = 0. The polar coordinate
representation of the dynamics is singular in the axisymmetric case
(A, =0,k =1,...,n), hence we will focus on the character of the non-axisymmetric
solutions for the range of throttle coefficients Ky. We will refer to these solutions as
the entrained equilibria of the system:

g(z, Kr) =0 (33)

Intersections of the throttle characteristic (5) with these static equilibria (33) corre-
spond to rotating stall limit cycles where the flow coefficient ®, the pressure rise
coeflicient ¥, the amplitudes of each spatial mode of the stall cell 4;, and the phase
entrainment states (; are all constant. Recall this corresponds to a stall cell (travelling
wave) rotating around the annulus with fixed shape.

3. Entrained non-axisymmetric solutions

Typical parameters [¥g h wm . p) = {0.23 0.32 0.18 2.0 4.0 1.0] were chosen and
the above systems (30) were analysed numerically in DSTool (see Back ez al. 1992).
In this section we present the results for the three mode model (n = 3) and also note
the typical trends in the entrained dynamics as the order of the truncation of the
disturbance potential 1s increased. Figure 3 (top, left) shows what we will refer to as
the primary rotating stall equilibria traced out as the throttle coefficient Kt is varied.
The compressor characteristic (4) is shown for reference. Intersections of the throttle
characteristic (5) with the entrained stall equilibria correspond to travelling waves
where the flow coefficient ®, the pressure rise coefficient ¥, the amplitudes of the first
through third modes of rotating stall and their phase difference states are constant.
Recall from §1 this corresponds to the stall cell rotating around the annulus with
fixed shape. Also shown in this figure are the bifurcation diagrams for the other five
states including the amplitudes A4,,4, and 43, and phase entrainments
() =0, —20, and {; = O3 — 30, as the throttle coeflicient Ky is varied. Stability
of these entrained solutions is denoted by either a solid line (stable) or a dashed line
(unstable). Figure 4 is a plot of a stable solution (K7 = 0.45) versus angular position
¢ and nondimensional time €.

In addition to showing that the lower modes of rotating stall are predominant
along this equilibria, from these diagrams we see evidence of a deep hysteresis associ-
ated with the primary bifurcation into stall. By deep hysteresis we simply mean that
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Figure 3. Primary stall equilibria—MGS.

stall equilibria exist for flow coefficients larger than that of the peak of the axisym-
metric compressor characteristic. Previously in Banaszuk and Krener (1997) it was
shown that in the single mode truncation (MG3) deep hysteresis depends on the
skewness of the compressor characteristic. A characteristic is said to be left (right)
skewed if it drops off faster to the right (left) of the peak. A right skewed character-
istic is required for stall equilibria to exist to the right of the peak. With a continuous
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Figure 4. Stable rotating stall cycle—MG8.

cubic characteristic right skewness is not possible, hence higher degree characteristics
were required for the one mode model to exhibit deep hysteresis. In this analysis we
have assumed a cubic characteristic, hence these bifurcation diagrams show that
deep hysteresis is to some extent a multi-mode phenomena.

In Wang er al. (1997) an attempt was made to include the deep hysteresis prop-
erty in a low order (MG3) type model. Wang et al. introduced a non-polynomial
modification to a cubic compressor characteristic, and the resulting stall character-
istics exhibited deep hysteresis. However, there is no physical motivation for this
approach to modelling deep hysteresis compressors. Our approach in this paper
provides a physical explanation for the phenomena of deep hysteresis, i.e. higher
modal stall cell content.

Upon comparison of the models we have simulated, including truncations of up
to five Fourier modes, we see establishment of two trends in this primary rotating
stall equilibria as we increase the order of the expansion. The extent of the deep
hysteresis increases, as well as the number of relative minimums and maximums in
the (®, V) plane in the models we have investigated. These trends can be seen in
figure S which shows plots of the primary stall characteristic for two, three, four and
five mode models.

3.1. Relaxation oscillations

The Greitzer surge parameter B was also varied in DSTool, and both
axisymmetric and non-axisymmetric relaxation oscillations were found. The typical
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axisymmetric surge limit cycle exists for large (~ 1.0) B parameters, as shown in
figure 6. Here ®;, = ® — ®,, ¥, = ¥ — ¥, and (®,, ¥,) is the peak of the compressor
characteristic. However, in the higher order Galerkin projections of the Moore—
Greitzer model investigated in this paper, multiple inner relaxation oscillations
were found to form around the relative minimums and maximums of the entrained
rotating stall equilibria. Figure 6 shows trajectories that converge to these limit
cvcles for K3 = 0.18 and Ky = 0.32. The primary stall equilibria is shown for refer-
ence. In figure 7 we plot the flow coefficient ®, the pressure rise coefficient ¥, and the
amplitudes of the first, second and third modes of rotating stall (4,, 4, and 4;) as
functions of non-dimensional time ¢ for the left trajectory that converges to the inner
relaxation oscillation. From these time traces we see that this relaxation oscillation is
actually classic surge, as stable oscillation occurs simultaneously in the surge and
rotating stall states. We emphasize this inner relaxation oscillation is a novel
phenomenon not found in the single mode expansion, and this phenomena exists
for a much larger range of parameters than the classic surge type behaviour in
McCaughan (1989).
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3.2. Elimination of hysteresis with feedback in multi-mode models

It was shown previously in Krener (1995) that the feedbacks
u=Ke(® —d,) (34)
u=Kg(¥ -7, (35)

each eliminate the hysteresis associated with the primary bifurcation into stall for the
single harmonic expansion of the Moore-Greitzer model with a cubic compressor
characteristic. Here K3 and Ky denote gains and the subscript e denotes the desired
operating point, i.e. the peak of the compressor characteristic. It was also shown in
Banaszuk and Krener (1997) that with higher order right skew compressor charac-
teristics feedback on the stall cell amplitude was required to eliminate hysteresis in
the one mode expansion. The behaviour of these feedbacks (34, 35) in a two mode
expansion was investigated in Henderson and Sparks (1996). Stabilization of the
peak of the compressor characteristic was achieved, but the global property of
hysteresis could not be eliminated.

Extensive simulations of the various control laws from previous papers
mentioned were performed in the multi-mode framework developed in this paper.
At this time we report that in the models we have simulated (up to five modes)
feedback on a combination of the displacement from the peak of the compressor
characteristic (34, 35) and the absolute value of the amplitude of the first mode
eliminates the deep hysteresis associated with the primary bifurcation into stall;

U= Kg(®—,) + Kg(V - V,) + K, [4] (36)

Figure 8 shows the results of implementing this feedback in the three mode
expansion with gains of Ky = -2, Ky =2 and K, =9. The top left figure is a
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plot of the stabilized rotating stall characteristic with the compressor characteristic
(4) shown for reference. Also included are the bifurcation diagrams for the
modal amplitudes (4,,4, and A;) and phase entrainment states ((;,{;) as the
throttle parameter K is varied. We emphasize this was the simplest feedback that
completely eliminated hysteresis. Feedback on higher modes was not required, but it
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Figure 8. Controlled bifurcation diagrams—MG8.

did tend to decrease the equilibrium value of the stall amplitudes as the gains werc
increased.

4. Summary

We have discussed the dynamics of higher order Fourier expansions of the
Moore -Greitzer model of transients in aeroengine compression systems. With the
assumption of steady state entrainment a framework was established which
simplified the numerical analysis of non-axisymmetric periodic solutions correspond-
ing to rotating stall. The rotating stall characteristic was shown to exhibit deep
hysteresis with a cubic compressor characteristic, establishing the fact that deep
hysteresis to a certain extent is a multi-mode phenomena. General trends as the
order of the models increased included an increase in the severity of the deep hyster-
esis and an increase in the number of relative minimums and maximums. New
dynamic interactions (relaxation oscillations) of surge and stall representing classic
surge were discovered in the higher order models. This framework also facilitated an
evaluation of various bleed valve type feedbacks, and elimination of hysteresis as-
sociated with the bifurcation into stall was demonstrated in numerical simulations.
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