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Feedback Linearization

A.J. Krener

ABSTRACT R. W. Brockett is the father of feedback linearization, an important
technique for the control of nonlinear systems. He is primarily responsible for
recognizing this and fostering its developement. Feedback linearization has also
strongly influenced the subsequent development of nonlinear systems theory. It has
motivated many later trends in the field as we shall discuss below.

3.1 Introduction

By thie early 1970s, the design of controllers for linear systems in state space form
had reached a mature leve!l of developement. The linear quadratic Gaussian (LQR)
paradigm was well-known and was being applied in a variety of areas. But there
was little in the way of systematic design techniques for broad classes of linear
systcms.

By that time, the importance of the Lie bracke! to the analysis of nonlinear
systems had been realized by several researchers including R. Hermann, R. W.
Brockett, H. Sussmann, V. Jurdjevic, and myself. I remember a conversation I had
with Roger during 1974-75 while T was working with him as a postdoc student
at Harvard, We werc discussing the structure of the brackets associated with a
nonlinear system that was affine in the control, a class that includes linear systems.
I pointed out that certain Lie brackets vanished if the system is linear. Roger
asked the important question, does this characterize the class of lincar systems in
a coordinate-free way? The answer was ycs, a8 decribed in [45].

But there is another way of transforming a linezr system (o make it nonlinear.
namely, nonlincar state feedback. At the IFAC Congress in Helsinki in 1978, Roger
posed the mathematically more difficult and the more applicable question, when
is a nonlinear system just a linear system to whicn nonlinear-state feedback and
nonlinear change-of-state coordinates nas been apy wed. He also answered a special
case of this question, when the control is scalar and the new control is a constant
multiple of the old [11].

Soon afterwards, Korobov [44], Jakuczyk-Resrondek {37]. Sommer, [65] and
Hunt et al. [31, 32, 66] solved the general problem and an industry was born.

Many of the later development in nonlinear systems theory grew outof the feed-
back linearization point of view. Concepts and techniques such as input-output
ero dynamics, approximate feedowck lincarization, normal forms
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and invariants, nonlincar observers with lincar error dynamics, nonlinear regula-
tion, nonlincar model matching, backstepping, dynamic inversion, and flatness all
have their roots in feedback linearization.

We would like to call the reader’s attention to an excellent recent survey [23]
by Guardabassi and Savaresi which is complimentary to this survey.

3.2 Linearization of a Smooth Vector Field

Lels start by addressing an apparently simpler question that was first considered
by Poincaré. Given a smooth n-dimensional vector ficld around a critical point,
say x = 0,

x = f(x)
0= f(0).
find a smooth local change of coordinates
z=¢x)
0=¢(0)

which transforms it into a linear vector field.
= Az.

I say “apparently simpler” because, as we shall see in the next section, the cor-
responding question for a system that is affine in the control is actually easier to
answer.

Without loss of gencrality we can restrict our attention to changes of coordinates
which carry x = 0 to z = 0 and whosc Jacobian at this point is the identity, i.c.,

z=x+ ()(xz)
then

_u
Cox ©.

Poincaré’s formal solution to this problem was to expand the vector field and the
desired change of coordinates in a power scries.

A

v = Ax+ Pl - owh
¢ =x - ¢l

where f121. @121 are n-dimensional vector fields. whose entries are homogencous
polynomials of degree 2 in x. A straightforward calculation vields

S A [P0 - [/\x‘ d)“'wxw} b oS

where the Lic bracket of the two vector lields 1s given by
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o el = Bare - Y oe
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68 A.J. Krener

¢l (x) must satisfy the so-called homological equation iy
[4x, ¢P0)] = rPo.

This is a linear equation from the space of quadratic vector fields to the space of
quadratic vector fields. The quadratic n-dimensional vector fields form a vector
n+1
).

space of dimension n("y
Suppose A is semisimple, i.e., there exist bases of left and right eigenvectors of

Hence

A,
AV = At 1 <k<n, M
wiA = Ajw; 1 <i<n 2)
Define n(””zLl ) quadratic vector fields
¢k (x) = v wix wix l<k<n 1<igjsn
These form a basis for the space of quadratic vector fields and are the eigenvectors

of [Ax, -],
| ax, 80| = (s 2y = ) 9500

The eigenvalues are A; + Ajo— Ak If none of these expressions are Zero, the
operator [Ax, -] acting on the space of quadratic vector fields is invertible. If some
A+ Aj — kg =0then this is called a resonance, and the homological equation is

not solvable for some f21(x).

If A is not semisimple the analysis is slight!
and right generalized cigenvectors but the basic resu
equation is solvable for every 21 (x) iff there is no resonance, Ao+ Aj M FE 0.
hat lincarizes the vector ficldup to degree

y more complicated involving left
It is the same. The homological

Suppose a change of coordinales existt
r. In the new coordinates, the veetor field is of the form

i Ar = Do,
We seek a change of coordinates of the form
=y =l
to cancel the degree 7 Lerms, 1.¢., We seck a solution of the #! degree homological
equations,
[/\x.@“l(x)] = 3(.\').

As before, the eigenvectors and cigenvalues of [Ax. -] operating on degree

vector ficlds are given by
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If there is no resonance then the degree r homological equations are solvable for
every fU1(x).

When it exists the convergence of the formal power series solution is delicate.
We refer the reader to Amol’d [1] for the details.

The simultaneous lincarization of a family of vector fields
X=fl), Q=11
around a common critical point
0= f'0)

has been treated by Hermann [26] and Guillemin-Stemberg {25].
The bifurcations of parametrized vector fields

x = f(x,u)
occur at resonances
Ay + -+ 2 () — A (i) = 0.

For example, a Hopf bifurcation occurs at a resonance of degree 3. Consider the

dynamics
Xy o=V X N F oy
L]l ][]
2 v M 1 - X2

»Yhere {4 is a parameter. For any value of 1, x = 0 is a critical point and the
cigenvalues of the Jacobian around this critical point are

A=Ay, Ay = — i
There are two degree 3 resonances at i = 0,

Ay - Al A PR Ay = 2/1«

Al Ap A Ay — Ay = 2.

T (. - . .
he cubic term in the above dynamics i< anc of the resonant terms,

X

Plin + Proy = (17 4 ) { ! J :

Thc other resonant term is

! 2 22 -
Gl Pl = T-lz){ ~|
d

RS

[
i,

™ I EMTEE




70 A.J. Krener

3.3 Linearization of a Smooth Control System by
Change-of-State Coordinates

sation with Roger Brockett is the

The result [45] that grew out of my conver
1 control u entering affinely

following. Given a system with m-dimensiona
x = f(x)+glou,

when does there exist a smooth local change of coordinates

z=¢(x),
0=9¢(0),
transforming it to
z = Az + Bu
where
a
A= é{—(m,
B = g(0).

Assuming that A, B is a controllable pair, i.e.,

rank[B AB ... A"“B] —n,

this is an easicr question than that of Poincaré. A necessary and sufficient condition

is that
[adt (128" ad (1187} =0
fork=0,....,n—1,1=0,....n where gi denotes the ith column of g and
ad®(f)g' = g'.

ad* (f)g' = [f, adk’l«f)gi]-

aightforward. Under a change-of-state coordi-

The proof of this theorem is sir
ie brackets are transformed by the Jacobian of

nates, the vector fields and their L
the coordinate change. Trivially for lincar systems

ad (Ax)B = (-D)'A'B,
[ad‘(Ax)B". ad"‘(Ax)Bf] ~ 0.

The Lie brackets of the vector fields f, gl . ¢" cvaluated at some x arc the
coordinate-free Taylor serics cocfficients of the control system around . Letme
make this more precise [46]. Given a control svstem and an initial point

f= O+ Y ou,

j=1

x(0) = .
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the Lie jet LT (f, x) to degree r at x" is the multi-indexed family of vectors of

the form
[fj', |:, [fjp“ f/A]H (x())

where 0 < ji <m, 1 <k <r.
Given another smooth initialized system

=gl + Zgj(z)tt,.
j=1
2(0) = 2°.

Suppose that LJ" (f, x”) spans x space then there cxists a smooth mapping z =
¢ (x) which preserves trajectories to degree r for every bounded control u(z)

Px(t)) = z(t) + 0"

iff there exists a linear map T which carries L7 (f, x%) to £LJ" (g,7"), respecting
the indexing to degree r,

T[ff", [ [fj""‘,fj“]...]](xo) - {gj', [....[gfw,gfk]...]] )

forany k < r and any jj, ... j,. The dimensions of x and z need not be the same.

This result can be used to construct bilinear and free-nilpotent approximations
whose properties are more easily analyzed. In the theory of hypo-elliptic PDOs,
there is a similar technique called the Rothschild-Stein Lifting Theorem. There is
also a classical theorem for real analytic systems regarding nonlinear maps which
preserve trajectories exactly and lincar maps which preserve the infinite Lic jets.

3.4 Feedback Linearization

We turn to the question that Roger posed and partiallv answered at the IFAC

Congress in Helsinki in 1978 [11]. Given a system affinc in the m-dimensional
control

X = f(x)+ g)u,
find a smooth local change of coordinates and smooth feedback

= ¢(x).
o(x) - Bl)u,

Z

i

transforming it to
2= Az + Br.

Brockett [11} solved this problem under the assumptions that g is constant and the
controt is a scalar, m = 1. The more general question fer 20x) and arbitrary m was
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solved in different ways by Korobov [44], Jakubczyk—Respondek (37}, Sommer
{65) and Hunt et al. [31, 32, 66].

We describe the solution when
exist a C such that

m = 1.1fthe pair A, B is controllable, then there

cA'B =0, k=1,...,n—1,

CAn-\ B=1. ‘
If the nonlinear system is feedback linearizable then there exists a function A(x) = |
C¢(x) such that ‘

Ludk"(f)gh:oq k=1,....,n—1, !

L(ld”_‘(f)gh' —‘,éo, !

where the Lie derivative of a function h by a vector field g is given by

Loh= dh
o L xg ' |
lvability conditions are given by

This is a system of first order PDEs and the so
the classical Frobenius Theorem, namely, that

(g,....ad" (g

, its span is closed under a Lie bracket.

is involutive, i.e.
ecessary and sufficient condition. The

For controllable systems this is an
controllability condition is that {g, .. - ad"~'(f)g} spans x space.
Suppose m = 2. Then the system is said to be controllable with controllability

(Kronecker) indices ki, ko if (possibly after reordering of gl gh

1. ky = ko > 0,

2. ky + ko =n,
3. (gl,...,ad“”l(f)g‘, gl,...ad"'z’l(f\gz} spans X spacc,

4, (ki,kp)is the smallest such pair in the Jexographic ordering.

Such a system is feedback linearizable iff

(o' gh . ad" (g adt (8 ‘
is involutive for i = 1,2. Another way of putting this is that the distributio”
spanned by the first through k™ rows of the following matrix must be involutive
fork =4k —1,i=12 This is equivalent to the distribution spanncd by the first
through kM rows of the following matrix being invoutive for allk =1,.... k¢

t
t

One might :
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I g g ]
ad(f)g ad(f)g?

ad® X (f)g" ad®2(f)g2
adkz‘l(f)g] ad/(zﬁl(f)gz

ad“'72(f)g!
ad"=!(f)g! |
One might ask if it is possible to use dynamic feedback to linearize a system

that is not linearizable by static feedback. Suppose we treat one of the controls u;
as a state and let its derivative be a new control,

uj =,

Can the resulting system be linearized by state feedback and change of state coor-
dinates? Loosely speaking, the effect of adding such an integrator to the j™ control
is to shift the j'™ column of the above matrix down by one row. This changes the
distribution spanned by the first through k'™ rows of the above matrix and might
make it involutive. A scalar input system m = | that is linearizable by dynamic-
state feedback is also linearizable by static-state fecdback. There are multi-input
systems m > 1 that are dynamically lincarizable but not statically linearizabie
(18, 19].

The generic system is not feedback lincarizable but mechanical systems with
one actuator for cach degree of freedom typically are feedback linearizable. This
fact had been used in many applications, e.g., robotics, before Brockett introduced
the concept of feedback linearization.

One should not lose sight of the fact that stabilization, modcl-matching, or some
other performance criterion is typically the goal of controller design. Lincarization
IS ameans to the goal. We linearize because we know how to meet the performance
goal for linear systems.

Even when the system is linearizable, finding the lincarizing coordinates and
feedback can be a nontrivial task. Mcchanical systems are the exception as the
lincarizing coordinates are usually the generalized positions. Since the gt~ ! (g
for k = I,....n — 1 are characteristic directions of the PDE for A, the general
solutions of the ODEs

= ad* SOATIeS

tan be used 1o construct the solution [10]. The Gardner-Shadwick (GS) algorithm
[24] is the most cfficient method that is known.

Linearization of discrete time systems was treated by Lee ct al. [61] and
Jakchzyk {501. Lincarization of discrete time systems around an equilibrium
Manifold wag treated by Barbot ct al. [7]. Banaszuk and Hauser have also consid-
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ered the feedback linearization of the transverse dynamics along a periodic orbit,
{2, 31.

3.5 Input-Output Linearization

Fecdback lincarization as presented above ignores the output of the system but
typically one uscs the input to control the output. Therefore one wants to linearize
the input-output response of the system rather than the dynamics. This was first

treated in [35] and [36].
Consider a scalar input, scalar output system of the form

x = fx) +gu,
y = h(x).
The relative degree of the system is the number of integrators between the input

and the output. To be more precise, the system is of relative degree r = 1 if for all
x of interest,

L(ldf(f)gh(x) =0, j=0,...,r—2,
Ladrfl(f)gh(.x) #0

In other words the control appears first in the ' time derivative of the output. Of
course a system might not have a well-defined relative degree as the r might vary
with x.

Rephrasing the the result of the previous section, a scalar input nonlinear system
is feedback linearizable iff there existan pseudo-output map A (x) such the resulting
scalar input, scalar output system has relative degree equal to the state dimension n.

Assuming we have a scalar input, scalar output system with a well defined
relative degree 1| < r < n. We can define r partial coordinate functions

Lo = (L) T hx),  i=loon

and choose n — r functions & (x), i = 1.. C..n—rsothat (g, §)area full set
of coordinates on the state space. Furthermore it is always possible [33] to choose

£; (x) so that
Ly&i(x) = 0. i=1,.... n—r.

In these coordinates the system is in the normal form

y =18
& = &,
{‘-l‘”] - C,,‘
o= fi(LE) g (.,
E=¢. &)

The feedback u
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The feedback u = u({, £, v) defined by

- U—fr(f,E)
&£, 8)
transforms the system to
y=C¢,
¢ = AL + Bu,
E=0¢,.8),
where A, B,and C arethe r x r,r x 1,and 1 x r matrices, respectively,
f0 1 0 ... 07 o
0 0 1 0
A= 5 B =
0 0 0 1 0
L0 0 O 0 ] L1
c=[1 0 0 -.- 0 ]

The system has been transformed into a string of integrators plus additional
dynamics that is unobservable from the output.
By suitable choice of additional feedback v = K ¢, one can insure that the poles

of A + BK are stable. The stability of the overall system then depends on the
stability of the zero dynamics [16, 17],

£ =¢0%).

[fthis is stable then the overall system will be stable. The zero dynamics is so-called
because it it is the dynamics that results from imposing the constraint y(r) = 0 on
the system. For this 1o be satisfied the initial value must satisfy ¢(0) = 0 and the

control must satisfy
S (0,&())
8- (0,E(1)

Similar results hold in the multiple input, multiple output case: see Isidori [33] for
the details,

u(t)y = —

3.6 Approximate Feedback Linearization

Since so few systems are exactly feedback linearizable, Krener {47] introduced
the concept of approximate feedback linearization. The goal is to find a smooth
local change of coordinates and a smooth feedback

z=¢(x)
u=oalx)+ )

-— v

-
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transforming the system
x = f(x)+gxu

to
7= Az+ Bv+ N(x,u)

in some sense. In the design process, the

where the nonlinearity N (x, u) is small
sign is done on the linear model and then

nonlinearity is ignored, the controller de
transformed back into a controller for the original system.
There are at least three distinct approaches to approximate feedback lineariza-

tion,

1. Power Series Method a 14 Poincaré.
2. Least Squares Method.
3. Homotopy Method.

The power series approach was taken by Krener and co-workers [48, 51, 52,
55, 59]. See also [40]. It is applicable to systems which may not be affine in the

control. The system
x = f(x,u),
the change of coordinates and the feedback are expan
t = Ax + Bu + fm(x, u) + O(x, u)3,
z=x— ¢,
v=u— otm(x, u).

ded in a power series

The transformed system is
5= Az+ By + fBxw
~[Ax+ Bu, o2 (0)] + Bz,

+ 0. u).

nate the quadratic terms, one seeks a solution of the degree
2]
o

To climi 2 homological

equations for o2,
[Ax + Bu, d)m(x)} - Bam(x. Wy = fm(x, u).

Unlike before, the degree 2 homological equations are not square but are
n(”'*";“) lincar cquations in n(”';‘) + m(”";*‘) unknowns. Almost always
the number of unknowns is less than the number of equations. Furthermore, the

mapping
(d)m(x), o Px, u)) > [Ax + Bu. qu(x)] — Ba™(x, 1)

is less than full rank. Hence only an approximate, €.g., & least squares solution. 18

possibic. Krener has written 2 MATLAB toolbox to compute term-by-term solu-
tions to the homological cquations. The Nonlinear Systems Toolbox is availablc

. from
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from
http://scad.utdallas.edu/scad/software

The routine £h2f_h_.m sequentially computes the least squares solutions of the
homological cquations to arbitrary degree.

The Least Squares Method was developed by Banaszuk-Swi¢ch-Hauser [6].
Suppose we consider a scalar input system, m = 1, affine in the control,

i = f(x)+ g(x)u.

The goal is to find an approximate integrating factor 8 for the one-form wy that is
dual to the distribution spanned by

{g,....ad" 2 (fHg)

by minimizing the functional

ldBwoll? + I18Bwol?
I Buwgl|?

To define this functional, one needs a Riemannian metric and its induced volume
form. The first term in the functional is a measure of the nonintegrability of By
and the second term is a measure of the nonsmoothness of Swg. Which Riemannian
metric to take is an open question. One can choose it so that

{g,...,ad" " (NHHe)

is an orthonormal frame but there is no systems theoretic reason for doing so.
The Homotopy Method is due to Banaszuk and coworkers {4, 64]. A homotopy
operator is uscd to decompose the one-form wq into an exact and anticxact part.
The design is based on the linearizable system corresponding to the exact part.
As with other methods of approximate feedback linearization, there is a certain

arbitrariness in the solution. In this method, it is in the choice of a homotopy
opcrator.

1(B) =

Xu and Hauser [70] have studied the problem of approximate feedback
linearization around an equilibrium manifold.

3.7 Normal Forms of Control Systems

In[11], Brockett initiated the study of the feedback invariants of a nonlincar control
System

X = fx)+ gx)u.

These arc the quantities that are invariant under change-of-state coordinates and
State feedback. In the category of linear sytems under lincar changes of state coordi-
hates and lincar state feedbacks, the invariants are integers, the familiar Kronecker
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or controliabilities indices. Brockett generalized this result by giving integer invari-
ants in the nonlinear category. Both the Kronecker indices and Brockett’s invariants
are the dimensions of certain distributions associated with the nonlinear system.

Kang [42] and Kang and Krener [43, 58] took a different approach and studied
the invariants of the quadratic part of a control system

% = Ax + Bu + fAu) + gM@u + 0(x, u)?
under quadratic changes of coordinates and feedbacks

z=x %),
v=u—aB(x) - ,B[”(x)u.

Under the assumption that the linear part of the system is controllable, they were
able to find a complete set of quadratic invariants and also the quadratic normal
forms. The invariants are closely related to the generalized Legendre-Clebsch
condition [58].

Suppose the linear part of a scalar input system is controllable. Then by linear
change of coordinates and feedback the linear part can be brought into Brunovsky
normal form where

o010 - 01
001 -0
af
A= —"—0)=
a7 O
000 I
Looo 0 |
0
0
B =g =

0
L1

Kang and Krener [43] showed that there exists a quadratic change of coordinates
and feedback transforming the system to

X = Ax + Bu + fm(x) + 0w )’

where
n

N .
E a,ijz, 1 <i<n-=2,

j=i+2

e =

0. n—1<i<n.

The coefficients a;; are a complete set of invarianis. Kang [42] has found the
normal forms for higher-degree scalar input systems.
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The simplest system with controllable linear part that is not feedback linearizable
is
X1 = X3 + x% ,
X7 = x3,
X3 = u.
Because it is a scalar input system, it is also not exactly linearizable by dynamic

feedback [18]. But it is linearizable to degree 2 by dynamic feedback [43]. We add
a feedback and two states,

u=w+ am(x, w),

wy = wy,
lb2 = V.
Leta@(x, w) = —Zw% —2x3w, then achange of coordinates linearizes the system

through quadratic terms

71 = X1,

S 2

71 =22 = x2 + X3,

22 = 73 = x3 + 2x3wy,

23 = 24 = W) +a[2](x, w) +2w% + 2x3wy + Ofx, w)3,
=24 = Wy,

24 = 25 = Wy,

75 = v.

This technique gencralizes to multi-input systems and higher degrees. Every
system with controllable linear part is approximately dynamically feedback
linearizable to arbitrary degree. But the dimension goes to infinity.

Kang has also studied the normal form of a system with uncontrollable linear
part [41]. Just as a parametrized dynamical system bifurcates at a resonance, a
parametrized control system bifurcates when there is a loss of linear controllability.
Kang has studied the normal forms of such bifurcations where the parameter may
or may not be the control [38, 39].

This work has been extended to discrete time systems by Barbot et al. [8).

3.8 Observers with Linearizable Error Dynamics

The dual of lincar-state feedback is lincar input-output injection. Linear input-
Oulput injection is the transformation carrying

x = Ax + Bu,
y=Cx,
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into
x =Ax+ Bu+ Ly + Mu,
y = Cx.
Linear input-output injection and lincar change-of-state coordinates
x=Ax+ Bu+Ly+ Mu,
y =Cx,
z2=Tx,
i=TAT ‘x4 TLy+ TMu,
defines a group action on the class of linear systems. Of course, output injection

is not physically realizable on the original system but it is realizable on observer

error dynamics.
Nonlinear input-output injection is not well-defined independent of the co-
ordinates; input-output injection in one coordinate system does not look like

input-output injection in another coordinate system,

X = fx,u),
y = h(x),
%= fleu) Faly, w),
z = ¢(x),
¢

W7 = 22w,
Jdx

C o ox
Notice that the injection term in the z coordinates is state dependent and hence is
not input-output injection.
If a system
X = f(x.u),
y = h(x).
can be transformed by nonlincar changes of state and output coordinates
e AR
w o= (V).
{o a lincar system with nonlincar input-output injection
f= oAz Buo—w(y.
w=Cz,
then the obscrver
5= (A+ LO): + Bu+aly.u) — Lw
has lincar crror dynamics

= I

= (A + LC)Z.
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If C, A is detectable then A + LC can be made stable.
The case when y = identity, there are no inputs m =
x = f(x),
y ="h(x),

was solved by Krener-Isidori [49] and Bestle-Zeitz [9] when the pair C, A defined
by

0 and one output p = 1,

d
A=Y
dx

c- ah(o)
Cax

0),

is observable.
One secks a change of coordinates 7 —

@ (x) so that the system is linear up to
output injection

= Az +a(y),
y=2Cz

If they exist, the z coordinates satisfy the PDEs

Ladnf-k(f)g(z‘j) = 6/\\/
where the vector field g(x) is defined by

0, 1 <k <n,
k—~1
LgLf h=
1. k =n.

The solvability conditions for these PDEs are that for | < k < | <n-1

[ad* (/). ad'"'(f)g] = 0.

The general case with ¥, m, p arbitrary was solved by Krener-Respondek [53].
The solution is a three-step process. First, one must set up and solve a linear PDE
for y(y). The integrability conditions for this PDE involve the vanishing of a
pseudo-curvature [54]. The next two steps are similar to the above. One defines
dvector field g/, 1 < J = p for cach output; these define a PDE for the change
of coordinates, for which certain integrability conditions must be satisfied. The
process is more complicated than fecdback lincarization and even less likely to be
*uccesstul, so approximate solutions must be sought which we discuss later in this
section, We refer the reader to [53] and related work (63, 67. 68, 69, 71].

To show that the set of systems to which these methods a

pply is nonempty, we
close with an example. Consider that a Van der P

ol oscillator

X| = xg,

X2 =ay x| -~ (ayy — X7,

y = x,




AR EITENS ol 6 e

R

e

82 A.J. Krener

can be transformed to

21 =22 +ar(y),
72 = anzi +anz +oay),
y =121
by the change of coordinates
Z1 = X1,
22 = x2 — a1(¥)s

where
3
-y
a(y) = Y
3
o (y) = a2

An observer for the transformed system can easily be constructed,

3=+ () —ki(y — 20,
5y = api2) +aniz +aa(y) —ka(y — 20,

which for proper choice of ki, k2 has stable linear error dynamics

§1 = kI + 22,
72 = (ay + k)71 — ania.
Very few systems can be linearized by ¢
output injection so Krener an
solutions by the power series approach. Againt
are expanded in a power series.
x = Ax + Bu+ fm(.\'. wy+ O(x, u)3,
y=Cx+ Du+ R (x. w) + O(x, u)3,
= X q‘){:"(.\‘).

<

Input-output injection terms
to both the dynamics and the output map

5= Az 4 Bu +a (v, w)

4 B - [Ax + Bu. d)lz](x)] —a(y, u)

+ ()(x,u)j‘
y=Cz+ Du+yy,w

+ WP + C(l)m - ;/-:1(y, u)
+O(x, u).
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The observer is of the form
i=A:+Bu+a(y,u)-L (y - (CE + Du + ¥y, u)))
where L is chosen so that A + LC is asymptotically stable. The error dynamics is
Z=(A+LC)Z :
+ fm(x, u) — [Ax + Bu, d)m(x)] — Py, w)

—L (hm(x, W) + Co? — 121y, u))
+ 0, u)’.

This leads to the degree two homological equations for ¢{?, 2], and 12!

[Ax +Bu, ¢[21(x)]+a[2’(y, w+L(Co — ¥y, w) = G, 1)~ LhP (x, w)

Notice tllxat they depend on the observer gain L. These homological equations are
n("+';+ ) linear equations in n ";Ll Y+ (n+ p)( "+'2"+l ) unknowns. The equations

are not of full rank. In particular, the y21(y, u) term does not increase the set of
fP(x,u), K (x, u) for which the equations are solvable, but it does change the
higher-degree terms, O (x, u)3. The approach taken in [48, 51, 52, 55, 59] is to
seek a least squares solution to the homological equations. Recently, Banaszuk
and Sluis have taken a different type of least squares approach {5].

3.9 Nonlinear Regulation and Model Matching

Consider a nonlinear plant

X = f(x,u,x i)
=Ax+ Bu+ Fi+Gia+ fP . u, x, )
+ O0(x,u, 3, 0)°,
y=h(x,u,x,u)

=Cx+ Du+ Hx +Ju+h¥x, u %, @)

+ O(x, u, x, [4)3,
and nonlinear model
x = f(&, i)
Ak + Bia+ [P 0+ 0@ 0y’
y = Ii(i', i)

=Cx + Du+h¥& 0+ ow, 1)

‘ The goal of model matching is to use a combination of feedforward and feedback
control u = w(x, x, u) so that the output of the plant asymptotically tracks that of
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the model
e(t) = y(t) - y@0) — 0
for every x(0), x(0) and every constant . The plant should also be internally

stable.
The model matching problem is quite broad and in some sense it general-

izes the nonlinear problems of feedback linearization, input-output linearization,
regulation, disturbance rejection, and gain schelduling. We elaborate on this below.

The solution of the model matching problem is in two steps. The first is to use
feedforward from the model state and input to insure exact tracking when the initial
conditions of the plant and the model permit this. The linear version of the problem
was solved by Francis [22] and its nonlinear generalization is due to Isidori and
Byrnes [34]. One seeks 6(x), A(X, i), satisfying the Francis-Byrnes-Isidori (FBI)

PDE
_ .- 0 _ - _ _
FO@), AX, @), X, 4) = ﬁ(x)f(x, u),
h(6 (%), M(X, it), X, 4) = h(x, ).
If the FBI PDE is solvable, then the control u = A(X, i) makes x = 6(x) an

invariant manifold of the combined system consisting of plant and model. And on
this manifold, exact tracking occurs, ¢ = 0.
One can attempt to solve the FBI equations term by term. Suppose
0(x) = Tx + 0% + 0%,
A B, ) = LE + Ma+ AP G, @) + 0G0

The linear part of the FBI equations are the Francis equations

A B T 0 T 0 A B F G
C D L M o I ¢ D | H J |
These are solvable if there is output zero of the model corresponding to every

output zero of the plant [29, 30, 56, 57]. In other words, the model cannot excite

those frequencies that are output zeros of the plant.-
The higher-degree equations are Jinear and depend on the solutions of the lower-

degree equations. They are solvable if the resonances of the model don’t excite the
zeros of the plant. The degree 2 equations are
o 80 . o=
A9y + BAPI (R ) — = () (AT Bi)
X
= — Tk, L%+ M, ¥, 1) + TP .

co @y + DAz, )
TR Lx + M, E, 0+ RPN,

Now supposc that the FBI cquations have been solved. The second step is

use additional feedforward and feedback to insure that the closed loop system co¥
verges to the tracking manifold x = 6(x) wheree =

0. This can be achieved locally

|
|
|
|
|
|

by linear pole placement te
control methods to achieve
and e by

vV=u— A(x, u)
e:y—)-;

In these coordinates the
(z,v,%,i)=
(%, 1) = Ax

e=h(z,v,x,i) =

7=
X =

'\H \[

where

{'(z, v, %, @) = f(z+60
h(zv v, i’ E) = h(Z + O(j

A stabilizing feedback can
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by linear pole placement techniques, but an alternative approach is to use optimal
control methods to achieve a solution [56, 57]. Define transverse coordinates z, v,
and e by

z=x -0 =x-Tx-69) + 0(x)°,
v=u—ME, i) =u— Li—-Mia— 20+ 0, a)?,
e=y—y.

In these coordinates the plant and model are of the form

i=f(z,v,%,i) = Ax + Bu + [Pz, v, %, &) + O(z, v, %, i),
x=f& @)= Ax+ Bi+ fOG%, a) + 0, 0)%,
e = ~(Z, U,i, 12) =Cz + Dv +};[2](Zv U,.X_I, 12) + O(Za l),.i, 12)3’
where
f@v, %8 = f+0F ), v+ B, @), %, @) — fOF, L), B, i), %, i),
h(z, v, %, i) = h(z + 0(x, 1), v + B(X, &), %, &) — h(6(%, @), B(%, k), %, if).

A stabilizing feedback can be found by minimizing

L 2
5‘/(; llell” + llvl*dr.

Let w(z, x, i) denote the optimal cost and « (z, ¥, &) the optimal feedback where
1
n(z, %, u) = EZ/PZ + 78 % 8 + 0z 5, @),
k(z, %, i) = Kz + Pz, 3, 0) + 0. &, ).
Then 7, « satisfy the Hamiliton-Jacobi-Bellman (HJB) PDE

om . - - _. 0w oo
0= E(Z,x, u) f(z, (2, X, ), X, it) + g(z,x, u) f(x, i) + Uz, k(z, x, u), x, u),

i _ _af I 1|
0= ——(z,%, ) == (z, (2, X, &), X, 1) + — (2, k(2. %. @), %, i),
a9z dv dv
where

1
lz, v, %, i) = E(Hellz + [vll?)

= (Z/QZ. +2z'Sv + v Ry) + PG e )+ 0z, v, X, )

Notice that

Sz v, 5,0 = 0@z, v),
h(z,v,%, i) = O(z, v),
Iz, v, %, it) = O(z, v)?,
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so we expect that -
(2, %, @) = 0@, v)%,
K(z, X, 4) = 0(z,v).

In particular,
1
n(2, % @) = 57 Pra @ LI+ 0%, a)*,
(e, %) = Kz + 1P 5,8 + 0z, ).
The lowest-degree terms in the HIB equations are the familiar Riccati equation

and the formula for the optimal lincar feedback

0= AP+ PA+Q—(PB+SR(PB+S),

K=—-R Y(PB+S).

At each higher-degree d > 1, the equations are linear in the unknowns 7
41 and depend on the lower-order terms of the solution. They are solvable if the
linear part of the plant is stabilizable and the model is at least neutrally stable. For
example, to find the next terms xBl(, %, i), «@(z, %, i) one plugs the first two
terms of 7, « into HIB equations and collect the next terms (degree 3 from the
first HIB equation and degree 2 from the second HJB equation)

[d+1]

87[[3] 37[[3] _ _
= (Z,i,ﬁ)(A+BK)Z+——_—(z,i,ﬁ)(Ai+Bﬁ)

9z ax

4P Ko &, w) + 1PN e, Ko &),

a3 g flai

0=2 (z,X,i)B+27'P / (z, Kz. %, @)
Jdz v
131

d
+ kP, % @Y R+ ——(z Kz x. Q).
I

Notice that the first equation involves only 7831 the other unknown k2! does not
appear. This equation is solvable if A — BK is asymptotically stable and A is at
least neutrally stable. Given the solution 7131 then we can solve the second equation

for 21
FRas
K[z](z,x u) = —RrR! (—8——~(: x,u)B
£
a1 M RS
+7 P (z. Kz, %, u) — — (2. Kz, x,u) } .
du v

The higher-degree terms are found in a similar fashion.
Given the solutions of the FBI and HJB cquations, the desired feedfor-

ward/feedback for model matching is

u=o(x,Xx,u.
= k(x — 6(X), X, ). + ~LX, u).
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Krener has written a MATLAB toolbox to compute term by term solutions of
the FBI and HIB equations. The Nonlinear Systems Toolbox is available from

http://scad.utdallas. edu/scad/software

The routines £bi.m and hjb.m sequentially compute the least square solutions
of the FBI and HIB equations to arbitrary degree. The routine md1 _mtch . m uses
these to solve the model matching problem to arbitrary degree.

As we mentioned above the model matching problem is a generalization of the
feedback lincarization problem. In the latter, we are given a system

X = f(x,u) = Ax + Bu + O(x, u)?

and we seek a change-of-state coordinates and state feedback

x = 0(%),

u = Ax, i),
which transforms it into a linear system

x = f(x,i) = A% + Bi.
But then 6, A satisfy the first of the FBI equations
O, ME, @) = gg(i)f’(i, i).
The model matching problem also generalizes the input-output linearization

problem. Suppose we are given a scalar input, scalar output nonlinear system

&= [0+ g(ou,

y = h(x)u,
withwell-dcﬁnedrclativcdegreer>O.Lel/i,1§,ébclhcrxr,rxl,andlxr
matrices

B 0 - 07 M0 7]
0 0
A= oo | b=,
0 0 0 --- 1 0
L 0 0 0 0 | L]
C=[1 00 0 ]

Define the model to be

X = [(%.q) = A% + Bi.
y=h(x a)=Cx.

Thcn the ¢, & that satisly the FBI equations are a partial change of coordinates

Y= & and feedback which transform partof the system into a string of integrators
and makes the rest unobservable from the output.
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The regulation or servomechanism problem [34] is a particular case of the model
matching problem when there is no input to the model, i is absent. And the model
matching problem can be viewed as a regulation problem by viewing « as additional
states of the model with trivial dynamics, u=0.

In the disturbance rejection problem, the model system is a source of distur-
bances that affect the plant. These disturbances can be static & or dynamic x. The
output of the model is taken as y = 0 so that goal of model matching is to keep
the output of the plant at zero in the presence of disturbances. We are of course
assuming that the dynamic nature of the disturbances is known and that they are
measurable. If this were not the case, then a Heo formulation of the problem would
be more appropriate.

Finally, the gain scheduling problem is to design a parametric family of linear
controllers for a parameter dependent family of linear systems. This can also be
viewed as model matching problem where X, i are dynamic and static parameters.
The advantage of the latter point of view is that the control varies continuously
with the parameter rather than discretely as is usually the case.

3.10 Backstepping
Recently backstepping [60] has become a popular technique for designing
stabilizing control laws for nonlinear systems in strict feedback form,

X1 =x2+ filx1)
i =xip1 + filxr, .. X0

xn =u-+ .fn(xlv e X))

Such systems are feedback linearizable by choosing the pseudo-output to be
h(x) = x1.

The first step in backstepping is to use x3 as a pseudo-control for x;. We seck a
relation x5 = a1 (x1) to stabilize xi. Define new partial coordinates

71 =\
72 = 11— o(21).

and a partial Lyapunov function
2,
‘/1 = =71

then

o=z )+ i
Vi =21 (z2 +o{z) + Jnad)-

If we set

then

Next we seek are
and a new partial

Then
22
v
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If we set
ai(z1) = —z1 — fi(z1), ‘ '
then
Vi= —zf+znzz,
21 =—21 + 22,

22 = x3 + fr(z1, 22),
~ ) d
falzr,22) = (21, 22) — ;@) |

Next we seek arelation x3 = a2(zy, 22) to stabilize z;. We define a new coordinate
and a new partial Lyapunov function

73 = x3 — az(z1, 22),

Vo=V +1 2
= —2Z5.
2 1 ) 2
Then
72 =23 + 0221, 22) + fal21, 22),
Vo = *Z% + 22 (Zl + 23+ a2(z1, 22) + fo(z1, 22)) .
it |
@221, 22) = —21 — 22 — falz1. 22), |
then '
R S !
Vo = —zy — 25 + 2223,
7t = —2) + 22,
= -1 — 22 + 3.

Assume that by proper choice of a;_1,

iy = —Zj-2 — Zi-1 + 2,
2 zl
Vici=—+---+4 )
2 2
Vici= =2y = =20+ 1
Define
iyt = Xy —aay, oo
v,:ﬁ+m+£.
2 2
Then for some fi(zy, ..., z)

4G =zigy +ai(2rs . z) A+ fi(Zh e 2)

2
A e TR R A I (:,'H+Oli(fz--~

L)+ _f,'(zl..‘.,:,'))
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If
@i (21, nn2i) = —Zie1 — 2 — fi@, - 1)
then
Zi = —Zi-1 — Zi t2i+1,
y 2 2
Vi=—2]— ... — 2] tZiZi+1:
At the last step
Z.n = ﬁl(zlv "'1211) + u.
Define
u:an(zla-"vzi)
= —Zp-1 —Zn — fn(Zh v Zn)s
2 2
4 n
v, o= L. 42
"2 2
Then
Zn = —Zn—1— n,
R

So asymptotic stability is assured.
Backstepping is feedback linearization on the Lyapunov function; it cancels the

nonlinearities in V. One advantage of backstepping over feedback linearization is
that one does not need to cancel benign nonlinearities. For example, consider the

system

Xy =Xy — Xj.
.f2=u.
If we proceed as above and define
1 = X1,
22 = X2 —a1tl1),
2
2
v =2,
2
then
v B 4
Vi =21(z2 () — 24,

We can take a1(z1) = 0 because the az‘f term partially stabilizes V. We define

2 2
Ao
Vy = o 2
R

az(z1, 22) = —Z1 — 22.

u

Then

Another
Lyapunov .

3.11 F

Feedback
following r.

one seeks a

that transfo;

[f the desire(
of the input

For syster

that transfor,

where (k.
desired outpt

Whep the out
(\Utpu[ “ncar:




v enZi)s

. Zn)»

unov function; it cancels the
ver feedback linearization is
.. For example, consider the

‘ly stabilizes V. We define

output lincarization. The system must have well-defined relative degree to be
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Then

V2 = —Z? - Z%.

Another advantage of backstepping is that because stability is assured by a
Lyapunov argument, it can be done robustly and adaptively [60].

3.11 Feedback Linearization and System Inversion

Feedback linearization is sometimes called dynamic inversion [20] for the
following reason. To feedback linearize a scalar input system

x = f(x)+gx)u,
one seeks an output map and feedback

y =h(x),
v=a(x)+ fx)u,
that transforms the system into a string of integrators

d”y

dm

Ifthe desired value of the output y(¢) is known and it is smooth then the computation
of the input u(t) is straightforward,

L) — ax(1))
Blxt))

For systems with /m inputs one seck m outputs and a feedback

u(t) =

yi = hi(x), i=1,...,m,
v = c(x) + Bx)u,

that transforms the system into m strings of integrators
dtiy;
drki

where {k,, ... k,) are the Kronecker or controflability indices. Once again if the
desired output y(1) is known then the desired input is

= v, I=1,...,m.

d/\'l\.
—= ) — g (X))
dr~

Wty = g7 (x(1)
dLm)(!) (x(r)
e a \ 1
dtkn b

When the output function 4 is specified a priori then the problem is one of input-
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invertible, and the zero dynamics must be stable. This problem was solved by

Hirschorn [27, 28]. -
Another form of system inversion is possible for differentially flat systems [21].

l
A system .
¥ = f(x,u) !
with m-dimensional input « is differentially flat if there exists an m-dimensional
output y of the form

y:h(x,u,it,...,u(”)) ;

such that
x=¢0 9 YD)
u=a(y,y, .- YD),

The class of differentially flat systems is slightly larger than the class of feedback
linearizable systems [62]. Given a smooth desired output for such a system, it is
straightforward to find the desired state trajectory and input.

All of the above approaches to nonlinear inversion are modeled after linear
inversion techniques. Roger Brockett, in his characteristically creative fashion,
has suggested another approach that depends on a decidedly nonlinear technique.
In [12], he considered the system

% = fl@u + f20m ,

where
1 0 I
floo=1 o |, fo=]1 |
—X2 xy

Clearly this system is nonlinear and its first-order linear approximation around any
x is not controllable because n = 3, m = 2, and the drift is zero. The system is
nonlinearly controllable because

0

[Fl@, o] =| o
2

All the higher Lic brackets are zero. This is a free-nilpotent system in the fol-
lowing sense. All the brackets up to degree 2 are linearly independent (free), and
all brackets of degree 3 or higher arc zero (nilpotent). By the theorem quoted aboe
[46] it closely approximales any three-dimensional system with two inputs and no
drift. Given any other smooth initialized system

— —

;=g @ui + &' @ua,
2(0) = 2°,

e
|
i
|
|
|
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trajectories to degree 2 for every bounded control ()
P(x(1) = 2() + 0

pecause f1(x%), £2(x%), and [f', /7] (x9) are linearly independent for any x0.
Consider the problem of steering the system from x% = Otoany pointx(t;) = X
while minimizing

1

f lu%(z) +ud(t) dt.
0

This is a problem in sub-Riemannian geometry also known as singular or pseudo
Riemannian geometry. Loosely speaking, the metric tensor is the inverse of the
singular matrix

2
—X2 X xlz + X5

In other words we are allowed to travel only in the directions in the span of
the vector fields f', f2, which are orthonormal vector fields. Travel in the third
direction [ f!, £2] is accomplished by alternately going out in the directions f!,
72, — f', = f2 (12]. Brockett [12, 13, 15] has shown that the gcometry of such
systems is rich and interesting.

We turn now to the problem of inverting such a system [14]. Suppose we are
given a desired trajectory x(¢). What input « () should we use so that {x(¢) —x(¢)]
is small for ¢ € [0, T]? We assume that x(0) = %(0) = 0 and that x(¢) is a low-
frequency signal. Brockett’s ingenuous solution is to split the control u(t) into
low- and high-frequency components. The low-frequency component of u; (1) is
used to track x; (1) for j = 1,2, and the high-frequency components are used to
track x3(¢). Brockett [14] considered a low-pass version of the above system; we
will present a different analysis for the system itself. First consider the case where
X1(t) = %p(1) = 0. Since x3(t) is a low-frequency signal, we can assume that there
exists a constant K such that

ld/ x o
— ) <K, for j =0,1,2.3.
dir! 1
First consider the case where X (£) = i-0) = 0. Let
dxs
v(t) = (1.
dt
|
wi (1) = wivy)coswi,
wy(t) = w?sinwt.
Then
u(t) . dv coswi Ly cos T
X1y = = sinwt + ——~(O)—— — | 5 — dT.
w? d w? o dt w:
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1 —coswt
xa2(f) = ———,
w?

x3(t) = v(t) — v(t) coswt + o

SO

K KT
) =0{—)+0\|\—|.

w? w?

K
n®=0{—)

w?

_ K KT KT?
x3(t) = x3(t) + O <—,-) + 0 <——) +0 (———) .
w?l w w

By choosing w sufficiently large we can insure that |x(¢) — x(¢)| is small.

For general x(t) let

i
jpmm

v = 20 - L20n0 +
dt dt
dx 1
ui(t) = W(t) + w2 v(t) cos wt,
@(I) +a)% sin w!.
dt

- K KT
x () =x1t)+ 0 (—]> + 0 <—|) )
w? w?

x2(t) =x2() + O (

ur(f) =

Then

Again by choosing  sufficiently large we can insure that [x (1) — x(1)| is small.

3.12 Conclusion

R. W. Brockett originated the concept of feedback linearization in 1978. Over the
past two decades this concept and its intellectual descendants has stimulated a

large part of the rescarch work in nonlinear systems theory.

sin wt (dv(t) /" d%v(t) cos wr
coswt — _—
0

dr),

very
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