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1 Introduction

We utilize a standard linear model for the control of
a thin airfoil in subsonic flow [BAH, D, L]. The air-
foil is modeled by a two dimensional section with three
degrees of freedom; plunge, pitch angle and flap an-
gle. This is a six dimensional linear system with states;
plunge, pitch angle, flap angle and their rates. The sys-
tem has three inputs; the lift and moment generated
by the air flowing over the wing and the torque applied
at the flap hinge. This torque consists of two parts,
the torque generated by the air flow and the external
torque that can be applied by a motor. The latter is
the control.

The fluid is assumed to be incompressible and irrota-
tional so that the response of the flow to a sinusoidal
motion in the degrees of freedom is linear and can be
computed by complex variables techniques. The re-
sult is an irrational and improper transfer matrix from
the degrees of freedom to the lift, moment and hinge
torque. This transfer matrix involves the well-known
Theodoresen function [KS]. We take a standard second
order rational approximation to the Theodoresen func-
tion to get an improper rational transfer matrix which
is connected in feedback with the proper transfer ma-
trix from the lift, moment and hinge torque to plunge,
pitch angle, flap angle. The complete model is a proper
linear system which can be realized by an eight dimen-
sional state space model. The one dimensional control
is the additional torque that can be applied at the hinge
by a motor.

This linear model is parameterized by the free stream
velocity. As the velocity is increased, a pair of poles
moves from the left to the right half of the complex
plane resulting in flutter. Flutter is caused by a cou-
pling of the pitch and plunge modes. As the air foil
plunges down, it is pitched down and as it plunges up
it is pitched up so that energy is extracted from the air
and the system loses stability.
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We only study a linear model or more precisely, a fam-
ily of linear models parameterized by the air speed.
The nonlinear system appears to undergo a Hopf bi-
furcation at the flutter speed [M]. The linear model
descibing the effect of lift, moment and hinge torque
on pitch, plunge and flap angle is probably adequate
to capture this bifurcation. But the linear model de-
scribing the effect of pitch, plunge and flap angle on
lift, moment and hinge torque is not. Unfortunately,
the known nonlinear models of the fluid are infinite di-
mensional.

The goal is to use feedback to stabilize the air foil at or
above its flutter speed. We consider several standard
control strategies. The simplest is to assume that all
states are measurable and to design a stabilizing state
feedback using the Linear Quadratic Regulator theory
(LQR). A more realistic approach is to assume that
only some or all of the six physical states are measur-
able and to use dynamic state feedback based on the
Linear Quadratic Gaussian approach (LQG). Lau [1]
explored the stability and robustness of these and con-
trasted them with those of suboptimal H., controllers.
All of these approaches involve solving one or more al-
gebraic Riccati equations.

One major difficulty with all these approaches is that
they must be schelduled on a parameter, the freestream
air speed. The usual approach is to choose several pa-
rameter values, i.e. freestream speeds, and design a
controller at each one by solving one or more algebraic
Riccati equations. Near a parameter value, one uses
the appropriate controller but between parameter val-
ues one must interpolate between controllers in some
fashion, e. g., piecewise linear. This requires the solu-
tion of many algebraic Riccati equations.

We take an alternative approach and approximately
solve the parametrized Riccati equations themselves.
This is done by expanding the system and the con-
trollers in a power series in the parameter, the cur-
rent speed minus the flutter speed. Then each pa-
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Figure 1: Basic Model

rameterized Riccati equation reduces to a unparam-
eterized Riccati equation for the lowest degree terms
plus a sequence of Sylvester equations for the higher
terms. MATLAB code has been developed to do
this to any degree [K1]. We show that the result-
ing parametrized controllers closely approximate the
locally optimal LQR, LQG and H,, ones over a large
parameter range [L].

2 Model of Wing Section

The model is the interconnection of two submodels.
One submodel descibes how the aerodynamic forces af-
fect the motions of the wing section. This is a state
space model derived from classial mechanics. The other
submodel describes how the motion of the wing section
affects the the aerodynamic forces. This model is re-
alized in the frequency domain by solving an unsteady
Laplace PDE and then it is approximated by a state
space model.

The first submodel describes the motion of the wing
section given the aerodynamic forces acting on it, Fig-
ure 1. The model of our section will consist of two
pieces, a main section and a flap. By convention, we
assume that the entire wing has a length of 2b. The
elastic axis, where the springs are attached as seen in
the diagram, will serve as our reference point. We de-
note the point one-fourth the total span from the left
cnd of the wing as the quarter chord point. The guar-
ter chord point is also at a distance b from the elastic
axis. The center of gravity of the wing is x2b to the

right of the elastic axis. Located z3b to the right of
the elastic axis is the hinge which is the connection be-
tween the main section and its tail. Finally, the center
of gravity of the flap is x4 to the right of the hinge.
The wing is situated in a fluid with a free-stream veloc-
ity, V. Several springs will model the effects of nearby
attachments to the wing. A linear spring K} and a
torsional spring K, are mounted at the elastic axis.
Another torsional spring K is mounted on the hinge.

The total lift L, defined positive upward, and the pitch-
ing moment M, measured counterclockwise, are calcu-
lated at the quarter chord point. The flap torque con-
sists of a part due to the fluid, T, and a part due to the
actuator, Ts. They are calculated counterclockwise at
the flap hinge. Corresponding to these forces are the
three degrees of freedom. The plunge, A, is the vertical
movement of the wing along the z-axis measured posi-
tive down. The pitch angle (or the angle of attack), a,
is the angle measure clockwise from the unperturbed
axis (dotted line in Figure 1). And the flap angle, 3, is
measured clockwise with respect to the main section.

From Newton’s Laws we obtain the equations of motion

-L
—M 25 = (2.1)
—T +Ts)
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where my, m, are the masses of the main section and
flap, I, I> are the moments of inertia of the main sec-
tion and the flap and

m = mj+ma

g
I

(mlrz:z + MmoT3 + m2x4)b

Sg = m2174b
I, = mxzs (CE1 +:L‘2)b2+11

+ mg(x; + 23+ T4) (z3 +.’L‘4)b2+12
Iz = m2z4b2 +1;

3 Unsteady Aerodynamic Loads

Kiissner and Schwarz [KS), derive the unsteady aerody-
namic loads L, M, and T due to sinusoidal motions in
the three degrees of freedom in the frequency domain.
We note that all the terms in these equations are re-
lated to the free-stream velocity, V. As the air moves
past the wing, the wing pushes the air around it. This
will cause the wing to experience a force pushing down
on it. If the air was stagnant, then the interaction
would disappear after the system reaches equilibrium.
But since the air is moving past the wing at velocity
V. or in the nondimensional form, U = V/w,b, where
wq is the frequency of the uncoupled pitch oscillation
in a vacuum, the wing will keep pushing on new air.
More energy is needed each time the wing accelerates
previously unperturbed air. Therefore, the faster the
air moves, the more energy is transferred between the
wing and the surrounding air.

Each of the loads has essentially two parts. One is the
circulatory term involving the Theodorsen function,
C(k) and the other is the non-circulatory term with-
out C(k). The Theodorsen function, C(k), depending
on the reduced frequency &, describes a circulatory lift
build-up after a periodic change in incidence The re-
duced frequency is defined as k = wb/U = —isb/U
where w = is is the frequency of oscillation of the de-
gree of freedom.

Note that the moment equation lacks the circulatory
term because we have chosen to take the moment at the
quarter chord point, where the C(k) term conveniently

cancels out.
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(3.2)
Here h = h/b and ®; are constants which depend on
the location of the flap hinge [KS].

We replace the Theodorsen function C(k) in the above
equations with the Jones’ approximation in the scaled
frequency p

C1p C2p
=1
Clp) +p+u1U+p+u2U

where ik = wb/U = sb/U = pw,b/U and ¢; =
0.165, ¢ = 0.335, v, =0.041, vy = 0.32.

We define the aeroelastic lag states
Ga
Gp

-nUG, + lllil"r(l/] ~l)d+ (%Uﬁbz-—%@ﬂﬁ
-nUGs + Vzi't + (v - Da+ (%ng)2 - -71;@1) i}
(3.3)

]

4 LPV Model

By combining (2.1,3.2,3.3) we obtain a family of linear
state space model parametrized by the free-stream air
speed U of the form

= Az + Bu
where the eight dimensional state is
z=[h/b a B hfb & B Go Gg)7

the one dimensional control is ©u = T, and the matrix
A varies with U [L]. Note that this is a different z than
that in Figure 1.

The eigenvalues of A change with the free stream ve-
locity. At low velocities all of the eigenvalues are in
the open left-half plane but as the speed increases, the
system looses stability as a pair of eigenvalues moves
across the imaginary axis to the right-half plane. The
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speed at which this happens is called the flutter speed.
Table 1 shows the eigenvalues for a typical section as
the speed varies where the flutter speed has been nor-

the optimal costs P and feedbacks K depending on the
parameter, U. These feedbacks do make the closed loop
sytem more stable as can be seen by comparing Table

malized to Vy = 1.00.

Stable Marginally Stable | Unstable

V =0.95 Vy =1.00 V =1.05

- 0.05 + 1.211 [ -3.78 107 + 1.12i | + 0.07 + 1.06i

-0.05-1.21i |-3.7810°7-1.12i | + 0.07- 1.06i

- 0.10 - 0.09 - 0.09

-0.35 + 0.731 | - 0.46 + 0.79i -0.61 + 0.84
t-0.35-0.731 | -0.46-0.79i -0.61 - 0.84i

- 0.52 - 047 - 0.42

-0.57 + 3.19i | - 0.60 + 3.21i -0.63 + 3.23i

-0.57-3.19i | -0.60-3.21i - 0.63 - 3.23i

1 and Table 2 where H = I.

[V =095 [V =100 V =1.05 ]
010 + 1.261 | - 0.11 + 1.191 | - 0.13 + L.111
©0.10-1.26i |-0.11-1.19i |-0.13-1.11i
-0.13 -0.14 -0.15
-0.42 + 0.77i | - 0.49 + 0.82i | - 0.58 + 0.86i
-042-0.771 |-049-0.82i |-0.58-0.861
- 0.67 - 0.68 - 0.68
-1.23 -1.22 -1.20
- 161.00 - 161.00 - 161.00

Table 1: Open Loop Eigenvalues at Different Speeds

5 Control

We consider several standard approaches to linear con-
trol. All start with a model of the form

i = Ar+ Bu+Guw
= Czx+v
y = (5.4)
= ]
u

where r is the state, u is the control, y is the observed
signal, z is the signal to be controlled, w is the driving
noise and v is the observation noise. Throughout the
paper we take the simplest forms to speed the exposi-
tion while illustrating the basic approach. More com-
plcated models can often be reduced to these forms.

The Linear Quadratic Regulator approach assumes
that there are no noises, w = 0, v = 0, and the state
is fully observable, C' = I. One finds the optimal feed-
back u = Kz which minimizes some criterion such as

/ |z|? dt
0

The optimal cost given that 2(0) = z is 7 Pz where
P satisfies the algebraic Riccati equation

PA+ ATP+ HTH - PBBTP =0

(5.5)

(5.6)

if (A, B) is stabilizable and (H, A} is observable, then
there is a unique positive definite solution to this equa-
tion. The optimal feedback gain is

K=-BTp (5.7)

and this stabilizes the system

Of course we have a family of linear models so we must
solve a family of algebraic Riccati equations (5.6) for

Table 2: Closed Loop Eigenvalues at Different Speeds

If the full state is not available for measurement and
the measurements are corrupted by noise then one must
estimate the state. The Linear Quadratic Gaussian
approach is to use a Kalman filter to estimate the state.
This is derived by assuming that the noises w and v
in (5.4) are standard white Gaussian noises. Assuming
that the measurement process has gone on long enough
to reach steady state then the optimal estimate &(t) of
z(t) is given by

& = Ai + Bu+ L(y — C%) (5.8)
where the filter gain is L = QC and Q is a solution of
the algebraic Riccati equation

AQ + QAT 4+ GGT - QCTCQ =0 (5.9)

If (H, A) is detectable and (A, G) is controllable, then
there is a unique positive definite solution to this equa-
tion. The feedback

u= K3 (5.10)
minimizes the expected long term average cost
N T LA
E¢ lim — |z|° dt (5.11)
n—co T Jo

The closed loop system consisting of plant (5.4) and a
controller, for example, the LQG controller (5.8, 5.10)
defines a mapping from the noises w, v to the controlled
variable z. As shown by Doyle, the LQG design can
fail to be robust. A small perturbation could cause
the closed-loop system to become unstable. The H,,
controller is designed to minimize the operator norm of
the closed loop mapping from noises w, v to controlled
variable z. The £; norms are used to measure the
sizes of w, v and z. If Ty .(s) denotes the transfer
function from w, v to z, then the optimal H, controller
minimizes

Twv.zll oo = sUp F{Tpy. 2 (it0)) (5.12)
w
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where & denotes the maximum singular value.

This is a difficult problem to solve directly so instead
one sets a desired attenuation level 4 and seeks a con-
troller to achieve this,

(Tws,zlloo < (5.13)

This is equivalent to finding a controller such that

e o]
inf / lw? + ¥ = |22 dt >0
0

w,v,x(0)=0

As with LQG design, this problem can be solved in two
steps.

First we assume that the state is fully observable, C =
I, and there is no observation noise, v = 0. We seek a
feedback u = Kz which

o0
sup inf / 72 |w)? - |z|2 dt (5.14)
K wwvz(0)=z fg

It can be shown that this is a quadratic form z7 Pz
where P staisfies the algebraic Riccati equation

PA+ATP+HTH - P (BBT - %GGT) P =0
(5.15)
If this equation has a positive definite solution and
(H.A) is observable then the feedback (5.7) stabilizes
the system. The worst case noise for this control law is

w=%GTPz (5.16)

We define A = A + #;GTP, this is the open loop dy-
namics assuming the worst case noise.

The second step is to construct an H,, estimator of the
state from the noisy observations. We follow Tadmor
[T], see also [K2]. The dynamics of the estimate is

given by
% = A% + Bu+ L(y — C#) (5.17)
where
L=qcCT (5.18)

and Q is a solution of the algebraic Riccati equation

AQ + QAT +GGT - Q (CTC - ;1,KTK) Q=0
(5.19)
If (A, G) is controllable and Q is positive definite then
the controller {5.17, 5.10) stabilizes the system and
achieves the attenuation level v, (5.13).

6 LPV Control

The LQG controller requires the solutions of the two
algebaic Riccati equations (5.6) and (5.9). The Hy

controller requires the solutions of the two algebaic
Riccati equations (5.15) and (5.19). Since the system
(5.4) depends on a parameter, the free stream air speed
U, so does each of these Riccati equations. One ap-
proach to designing a controller that operates over a
range of speeds is to choose a set of representative op-
erating points, i. e., parameter values, and then solve
the appropriate pair Riccati equations at each of these
parameter values. Near a parameter value one uses
the appropriate controller but between parameter val-
ues one must interpolate between controllers in some
fashion. This can be difficult to implement and for
high accuracy would require many parameter values.
We propose an alternative approach which is to solve
the parametrized algebaic Riccati equations in a series
form. The expansion is in terms of powers of the de-
viation of the parameter from some set point. This
requires solving a Riccati equation and a sequence of
Sylvester equations. The latter are much easier to solve
than the former as they are linear rather than quadratic
equations.

We start by considering the parameter dependent ver-
sion of the LQR problem. Suppose the model (5.4) is
expanded in powers of a parameter U,

g = f(z,u,U)=A{U)z+ B{U)u
+ (Boy+ByU+BgU?+...)u
. H({U)x _ [ (H[O] +HyU+HU?+.. )z
u u

(6.20)
We seek a controller that minimizes the cost func-
tion (5.5). This is equivalent to solving the Hamilton-
Jacobi-Bellman equations

0 = Te.0)fan(z,U),U) +Uz.5(z,U).U)

0 = @(z,u)%(x,n(z,U),UH%(x,n(z,U),U)

ox
(6.21)

for the optimal cost w(x,U) and the optimal feedback
k(z,U) where i(z,u,U) = |z|*=|Hz|? + |u|?.

It is not hard to see that the optimal cost 7 is quadratic
in z,

m(z,U) = %ITP(U)ZL', (6.22)
the optimal feedback is linear in z,

k(z,U) = KU)x (6.23)

and they satisfy the parametrized forms of (5.6) and
(5.7).

We expand P, K in powers of U

PU)y = P[01+P[1]U+P[2]U2+... (6.24)
K({U) = Kjg+KylU+KgU?+... ’
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We plug these into (5.6), (5.7) and extract the terms
that are constant in U to obtain

0 = AfPo+ Podpo + HoHjy — PoBjo By Po)

K = —BgPo
(6.25)
These are solved for Py, Kjq We plug these into
(5.6), (5.7) and extract the terms that are linear in U
to obtain

0 = A’[I;]P,g,?] + P[%}A[l] + lﬁ'[lBIP[I] + P[Tl]A[o]
+ (HH")y — Bo(BB ) Po
— Po(BB ) — Py(BB )0 Plo
Ky = —ByHo — BigHy
(6.26)
The first equation reduces to
0 = (A+BK)F(;]P[1] +P[1](A+BK)[0]
T T (6.27)
+ (HH")y + P (BB )1 P

This is in the form of a Sylvester (or Lyapunov) equa-
tion,

AX+XA=C (6.28)

where A and C are known and X is the unknown that
needs to be found. This is a linear equation for Py
This process can be repeated to obtain higher degree
controllers. Each step requires the solution of another
Sylvester equation.

The other parametrized algebraic Riccati equations can
be solve in a similar manner. The software package
Nonlinear Systems Toolbox [K1] solves this and more
complicated problems to any degree.

We computed the gains at 60 operating points over
the range, flutter speed +5%, by solving 60 algebraic
Riccati equations (5.6). We also computed the LPV
controller to third degree in U = V — V; by solving 1
algebraic Riccati equation and 3 Sylvester equations.
Figure 2 shows the relative error in the gains between
these solutions. It required the solution of 60 algebraic
Riccati equations to guarantee that the piecewise linear
interpolated gains where within 1% of the true solution
throughout the range, flutter speed +5%. The third
degree LPV controller achieves the same goal and only
requires the solution of 1 algebraic Riccati equation 3
Svlvester equations. Moreover, the feedback is easier
to impliment because it is a simple cubic polynomial in
U rather than a piecewise linear funcion.

For more details regarding the stability and robustnss
of the LQR, LQG and H, controllers we refer the
reader to [L].
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