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Abstract

Cousider a smooth (at least C*) dynamical system

&= f(z,p) (0.1)

depending on a parameter p. Suppose that the sys-
temn is operating around asymptotically stable equilib-
rinm point z., but at some critical value of the param-
oter p, the system undergoes a bifurcation where the
equilibrium point becomes unstable or vanishes. One
would like to estimate how close to the critical param-
eter value the system is operating when the parameter
is not directly measurable. To accomplish this we as-
suine that the system is experiencing a small harmonic
noise w(t)

T = f(z, 1) + ew(t) (0.2)

whose frequency w is known but whose magnitude e is
unknown. An example would be rotating machinery
where one would expect the period of the dominant
noise to be the same as the period of rotation. By
comparing the first, second and third harmonics we
will be able to estimate how close y is to its critical
value.

Keywords: Identification of bifurcations, nor-
mal forms, Moore-Greitzer Compressor Model

1 Center Manifolds and Normal Forms

We assume the system and variables z, u are such that
£, = 0 Is an equilibrium point of the system (0.1) for
all small ¢, We assume that for p < 0, the linearized
dvnamics

i = A(pz (1.3)
. 9f
A = 2o (1.4)

is asymptotically stable and for ¢ > 0 it is unstable. At
1 = 0 one or two eigenvalues of A cross the imaginary
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axis with positive rate with respect to u and a bifurca-
tion occurs. The first step in analyzing this system is
to compute its center manifold. We start by making a
linear change of coordintes to separate the asymptot-
ically stable and critically stable parts of A(0). After
this change of coordinates, the linearized system (1.3)

at p = 0 becomes
A, 0O T .
RN

T
P
and the nonlinear system becomes
I B A, O T .
)= s ] =

P g,z p) + fs[jm,xc, o+
f([.2](xsvxcvu) + f<£ ](x$7xC7/j’) +

+

where the spectrum of A, is in the left half plane and
the spectrum of A, is on the imaginary axis. Later
we will restrict our attention to the cases where the
dimension of x. is one or two but, for now, it is arbi-
trary, n.. The vector fields fs{d] (zs,xc, 1), fid](xs, Lo i)
are homogeneous polynomials of degree d in x, x., pt-
We seek a change of coordinates in the asymptotically
stable variables

zg = X5 — ¢s(Tc, )
= 25— 0P (e, p) — PN (we, ) + ..

so that Z; = 0 when 2z, = 0. Then x; = ¢s(x., u) is
a submanifold of z;, z., u space which invariant under
the nonlinear system dynamics (0.1) and the additional
parameter dynamics

=0 (1.7)

This submanifold, called the center manifold [2], is
tangent at the origin to the critically stable subspace,
zs = 0, of the linearized system (1.5, 1.7). The center
manifold can be computed term by term to any degree
of approximation assuming that the original system is
smooth enough [1]. For example the degree two and
three approximations satisfy

o¢
0 = AS(ZSLZ](LEC,,U,)“ ad;

e

(Teyp)Acze + fs[Q](O Teo h)



3 9¢5"
0 = Asd)s (QZC,,U)—- Dz, (xc”u)Acmc
&)
+ (FBR e ), ze ) + 1IN0, 7, )
dgl
- a‘L‘ (‘rC7/J‘) 6[2](07x67p’)

where ()P denotes the cubic part. These linear equa-
tions are always solvable because of the assumptions on
the eigenvalues of A,, A.. After qb[sz], Lg] have been
computed, we calculate the approximate dynamics on
the center manifold,

T, = Acx,+ fc[21($cnu) + fc[s](mmﬂ) + ..
where
FA o) = fB0,z., )
7 [3) 2} (2] 13
I remy = f00, ) + (7 e 1), 2 )

Notice that we did not need to know QS[sd] (@, ) to cal-
late £l
culate fo'(z., p).

The next step is to bring this into normal form by a
change of z, coordinates,

o= e — Ge(Te, ) = 25 — ¢ (@, 1) ~ ¢ (e, 1)

to cancel as many of the terms of degrees two and three
as possible. The transformed dynamics is

ieo= Acze + 0P n) + Pz, ) + .
where
ool
'(1},‘](:17(,,;1) = Acé[cz](xc,u)— 6¢z (@ey ) Acte
+ (e, )
. ) (3]
.‘/({3}(112;‘/‘) = AC¢[CS](IC,/1)— a; (xc»,u)Acmc
_ o2 _
e, 1) = 22 (g ) T (e 1)

dx,
The spectrum of the linear mapping
(2]

‘ ‘ P
52z, — A0l 1) — ¢
O (e 1) P (Zey 1) Er (e, ) Ace

consists of all combinations of the form A, —\;—X;, 0 <
1<) < ne. 1<k < n. where A\y,..., )\, are eigen-
values of A, and Ag = 0 is the eigenvalue of the pa-
rameter dynamics (1.7). The eigenvalues need not be
distinct. Hence if none of these combinations are zero,
then there exists a (;5?] (¢, pt) so that g?] (e, pp) = 0. If
a combination is zero then there is said to be a degree
fwo resonance and it may not be possible to cancel all
of (/E'. Suppose A. is diagonal with entries Ay, \g, .. ..

If A\p — A; = A; = 0 then the coeflicient of e’c‘”xcixcj in

g?] cannot be changed by ¢{CZ] where z; denotes the

i coordinate and e¥ denotes k*" unit column vector
in z. space. If Ax —A; = 0 then the coefficient of eff:vm-,u

in g?] cannot be changed and if A\;, = 0 then the coeffi-
E] cannot be changed. We choose ¢>£2]

to cancel the rest of g([;z].

cient of ef 2 in g

Now suppose that x. is one dimensional so A, must be
0. We let A denote the eigenvalue of A and v denote the
eigenvalue of the parameter dynamics (1.7), of course
both are 0. There are three resonances of degree two,
A —2X=A— A= )\=0 so the normal form is

2. = b123+b225,u,+b3,u2+...

Ae have assumed that z = 0 is a critical point for all
it s0 bg = 0. We have also assumed that the linearized
system (1.3) is stable for u < 0 and the eigenvalue
crosses the imaginary axis with positive rate with re-
spect to u so by > 0, by redefining p, without loss of
generality by = 1. Finally we can scale 2z, and obtain
the normal form of a transcritical bifurcation

Ze = pze+ 224 .. (1.8)

A pair of equilibria z. = 0, 2. & —p exist for all small i,
the smaller one is stable and the larger one is unstable.

Suppose that . is two dimensional and

0 -\
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The case where A = 0 is quite complicated and because
of space limitations, we do not consider it. We also omit

the case where
0 1
4= o)

We refer the reader to [3]. When X # 0, then there are
two resonances, tA — ¢A = 0 and (—iA) — (—i)) = 0.
The normal form of degree two is

icl _ —Zc2 1 -b Zcl
IR )

.. (1.10)

(1.9)

after rescaling p. For p < 0 we have a stable focus
which bifurcates into an unstable focus for > 0. The
stability at ;1 = 0 depends on the higher degree terms
as we discuss below.

Now suppose that the quadratic terms in z. can be
canceled in the dynamics on the center manifold, hence
the only quadratic terms are those which are bilinear
in z. and p. There never are terms in p alone because
x = 0 is assumed to be an equilibrium for all y. Bilinear
terms must be present if the eigenvalues of A(u) that
cross the imaginary axis are to do so at a positive rate.



The terms quadratic in = vanish if the system (0.1) has
an odd symmetry f(z,u) = —f(—z,u) so then there
are no terms even in z,. in the center manifold dynamics.
If the center manifold is two dimensional and A # 0 in
(1.9) then as we have seen (1.10) the terms quadratic
in z. can be canceled.

The spectrum of the linear mapping

3]

o : O¢c
o (xe, 1) — AcdBN e, p) — G (Ter ) Ace

consists of all combinations of the form A\ — Ay — A; —
)\l:~ ()S/\7S)\j§/\k§nm 1§)\l§nc~

Suppose that z. is one dimensional so A, = 0. There
are four degree three resonances so the normal form is

Ze = uze+ blzg 4+ bngu -+ bgzc,u2 + b4u3 + ...

but by = 0 as before. For the moment assume that
by = £1, by = bg = 0 and the higher terms are zero then
we obtain the normal form of a pitchfork bifurcation,

e = ze(ux2?) (1.11)

It by =1 then for small y < 0 there is one stable equilib-
rium, z. = 0, and two unstable equilibria, z, = £/—p.
For small ¢ > 0 there is one unstable equilibrium,
2. = 0. This is called a subcritical pitchfork bifur-
cation.

It by = —1 then for small u < 0 there is one stable
equilibrium, z, = 0. For small g > 0 there is one un-
stable equilibrium, z, = 0 and two stable equilibria,
z. = & /u. This is called a supercritical pitchfork bi-
furcation.

For general by # 0 and by, bs and the higher terms not
necessarily zero, the basic picture stays the same except
that the shapes of the outer prongs of the pitchfork are
changed. They are approximately the real roots of

bi22 4 baprze + bap® + =0

ax a function of u. Notice that for small p the roots
are real where by < 0 as before. If by = 0 then higher
degree terms must be considered.

Now consider the case where z. is two dimensional and
{1.9) holds. As before the case where A = 0 is quite
complicated and will not be treated here. If A # 0
then the degree three normal form extending (1.10) is

{ i(‘l } = (u+br? +bip?) [ ;: ] (1.12)

+()\ + by + b47‘2 + b5/12) { ;ZC? ] + ...
cl
2

where r? = 22 + z2,.

For the moment assume that by = £1, by = b3 = by =
bs = 0 and the higher terms are zero then we obtain
the normal form of a Hopf bifurcation,

7361 —Zc2 2 Zel
. = A + (u =+
|: Zc2 jl |: Zcl ] (,U ’ ) l: Zc2 jl

If by = 1 then for small g < O there is a stable equi-
librium, 2z, = 0, and an unstable limit cycle of radius,
r = y/=u. For small & > 0 there is one unstable equi-
librium, 2z, = 0. This is called a subcritical Hopf bifur-
cation.

If by = —1 then for small 4 < 0 there is one stable
equilibrium, z, = 0. For small p > 0 there is an un-
stable equilibrium, z, = 0 and a stable limit cycle of
radius z. = £,/p. This is called a supercritical Hopf
bifurcation.

In the general case, the picture stays the same as long
as by £ 0. Of course the shape and period of the limit
cycle is changed. If b; = 0 then higher degree terms
must be considered.

An important bifurcation, the fold or saddle node, does
not immediately fit into the above context. It’s normal
form is

:t:,u+22

For 1 < O there is a stable equilibrium z, = —/—u
and an unstable equilibrium z, = /= which coalesce
at u = 0. There are no equilibria for g > 0. This does
not fit into the above picture because we assumed that
z, = 0 is a equilibrium for all small u. Moreover given
such a system it is easy to estimate the parameter p if
the equilibrium is known.

Consider a parameter dependent change of coordinates
that freezes the stable equilibrium at 0,

z=a+ |pt?

Of course this is not smooth in u at u = 0 but we are
only interested in descibing the system before bifurca-
tion has occured, p < 0, and determining how close the
parameter is to bifurcating value. For u < 0 the new
system is

2= —2u|?z + 2

which we recognize as a reparametrized transcritical
bifurcation (1.8). So given a system with a stable equi-
librium for p < 0 that vanishes in a saddle node bifur-
cation at ¢ = 0, we can treat it as a transcritical for
purposes of detecting nearness to bifurcation.



2 Bifurcations

We assume the system is in a near normal form of a
transcritical bifurcation

&= pr+ bz +ew(t)+ ...

and it is being perturbed by a noise w(t) of known
frequency w and unknown small intensity e¢. Assum-
ing p < 0 so that the system is stable, we expect the
energy in the system at the fundamental frequency w
will be proportional to ¢, at the second harmonic fre-
quency, 2w, it will be proportional to € and so on. If
we consider the quadratic term in the dynamics as an
exogenols input then the transfer function from z? to

ris
T(s) = b/(s — )

We can estimate this at 2w, T'(2wi) as the cross power

spectral density at 2w between x and z2. Notice that

this does not involve the unknown noise intensity e.

Siuce the frequecy w is known, this vields the estimate

|l 1 dw?

10| T(2wi)[2 b
The expression |u|/[b] is a better measure of how close
the system is to instability than |u| alone as the unsta-
ble equilibrium is at z ~ —u/b. Notice that this de-
pends only on the amplitude of T(2wi), a less reliable

estimate could be obtained using the phase of T(2wi)
as we shall show in an example in the next section.

Next we assume that the system is in a near normal
form of a pitchfork bifurcation

T = pz+ bt + ngz,u + b3xu2 +ew(t) + ...

and as before it is being perturbed by a noise w(t) of
known frequency w and unknown small intensity e. As-
swning ¢ < 0 so that the system is stable, we expect
the energy in the system at the fundamental frequency
« will be proportional to €, that at the second har-
monic frequency, 2w, will be proportional to €2u, at
the third harmonic frequency, 3w, will be proportional
to €* and so on. The cross power spectral density of
r{t) with x3(t) at frequency 3w should approximately
be the transfer function Ti(s) = by/(s — (u + b3u?))
at s = 3wi. If we assume that p is small enough so
that b3u? can be neglected, this gives us an estimate of
1l/1b1] as before. This is a good measure of nearness
to instability because to leading order the bifurcating
equilibria are at z ~ £/|u/b;] to leading order in u.
The sign of by and the criticality of the pitchfork bifur-
cation can be estimated from the fact that if +5; > 0
then arg(47(3wi) — Fw/2 as p — 0.

‘T'he normal form of a Hopf bifurcation (1.12) in polar

coordinates closely resembles the pitchfork

ro= urb17’3+b2r/12+...
0 = N+bap+bar®+bsu®+ ...

and the analysis is similar.

'3 Example

We close with an example that shows how the above
techniques can be used even when the system is not
in normal form We consider the Moore Greitzer 3 di-
mensional model [5] for an axial flow compressor with a
smooth compressor characteristic ¥.(¢) around stable
operating point ¥ = ¥,, ® = &,, A = 0. In displace-
ment coordinates ¥y = ¥ — ¥, &5 = & — &, A4, the
dynamics is

W.d = o_1 [dsd-i‘@e—(KT“‘f‘U) VW, + Qdil

. @2 A2
by = op [DIWC by — ¥, + D%V, [Td—l—f}

3 2@
+D3u7€[¢—d+A d”+...

6 4
A = o [D'W. A+ D?0, Ad,

. Ady2 A3
+D"Wc[ d+—”+...

2 3

¥ = annulus averaged pressure rise
annulus averaged mass flow

k5]
I

A = amplitude of first mode stall

B = Greitzer stability parameter

K7 = throttle parameter

le = length of inlet duct in wheel radians
m = Moore outlet duct parameter

U = inertia of gas in blade passage

_ 1
41 = 1B,

1

oy = -

0 I
1

&1 =

m—+ U

and D7 ¥, is the j** derivative of the compressor char-
acteristic ¥, evaluated at the operating point. The pa-
rameter is K7 which fixes equilbrium point ¥,, &., A,.
For Kr sufficiently large, the system is stable but at
a critical value of Kt the system looses stability in
a pitchfork bifurcation which is usually supercritical.
We refer the reader to McCaughan [4] for an excellent
analysis of the dynamics. McCaughan uses R = A?
rather than A as a coordinate thereby transforming a
pitchfork bifurcation to a transcritical one.

The bifurcation takes place at the top of the compres-
sor characteristic where D! ¥, = 0. Because the com-
pressor characteristic changes with age and operating



femperatures, it is not known how close to bifurcation
(called rotating stall) the machine is operating. Early
warning of impending stall would be extremely helpful
for safe operation. Because of it rotary nature, there is
considerable noise at this frequency.

The transfer function from A@, to A is

a1D2 WC

T y = —-—-————
() s—a1 D1y,

If D ¥, <0 then the amplitude at s = 2w,i is

—alDQ ¢c

VAwZ + 3Dt ot

where w, is the frequency of the compressor revolutions
{one rev).

1T(2wei)| =

This changes with the set point @,. The derivative
with respect to @, is

—a1D? W (4w? + 2D .Y + 3D ¥, D2 w,?
(dw?2 + a?D? !702)3/2

At the stall point where D ¥, = 0 this reduces to

~Q1D3 WC
2w,

Hence the change in the gain depends on the skewness
of the comprssor characteristic.

Right Skew D¢, >0 D! |T(2w.i)| <0
Left Skew D%, <0 DT (2wi)| >0

As a right skewed compressor goes into stall, the am-
plitude gain at 2w, from the product of 4 and & to
A s increasing. As a left skewed compressor goes into
stall. the amplitude gain is decreasing.

('This assumes ¥, is smooth thru stall.)

The phase of the transfer function at s = 2w,i is

2w

arctan{ ——¢ —
rc "Ln(alDl Wc)

which is in (% 7) since D! ¥, < 0.
Tlie derivative with respect to @, is

—2we.o1 D2 W,
4w? + a2D1w,?

This is positive under the reasonable assumption that
D ¥, < 0. Hence as the compressor stalls the phase
decreases to %

We now describe the behaviour of these quantities on

Wright Patterson 4 stage data supplied by Hoying. The

rig consists of 4 stages of a core compressor. The stages
are labeled 2-5. There were eight sensors, which can be
resolve into the 0-3 circumferential Fourier modes, la-
beled &, A;,0;,Ap,03, A3, O3. The low speed runs
(< 85%) were very noisy and therefore ignored. The
high speed runs were taken with a sample rate 1000hz
and an analog cut off frequency of 400hz to avoid alias-
ing. For the 100% speed run, twice the rotor frequency
2w, is higher than the Nyquist rate of 500hz so only
a 90% speed run, efc6207_st590%, was processed. A
window of 2048 data points was used and the cross
spectral density was computed using the MATLAB Sig-
nal Processing Toolbox. Then the window was shifted
a step of 256 data points and the cross spectral density
recomputed. One step of 256 data points is approxi-
mately 64 rotor revolutions.

Figure 1. shows the amplitude gain as the compres-
sor stalls along with a raw sensor signal. Figure 2.
shows the phase as the compressor stalls along with
a raw sensor signal. The rise in amplitude indicates
the impending stall 400 rotor revs early. The fall off
in amplitude immediately prior to stall is because of
the increasing noise in this regime. The phase is less
conclusive.

4 Discussion

The above approach of estimating nearness to a bifur-
cation works when the driving noise is predominantly
of one frequency and the system is in near normal form.
Suitably modified it will also work when the noise con-
sists several discrete frequencies by taking resonances
into account. If the noise has a continuous spectrum
then it will not work.
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