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Abstract— We present a normal form for the quadratic and cubic terms of a nonlinear discrete time control
system around a stationary point under change of coordinates and feedback.
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1 Introduction is a linear operator on the vector space {¢2!(z)}
of n-dimensional quadratic vector fields and a sim-
ple argument shows that its eigenvalues are of the
form A; A — A; where A, are the eigenvalues of A.
We assume that A is diagonal then the eigenvec-
tors of the above mapping are e'z;z; where ek ig
the k®* unit vector. Therefore we can cancel the
part of fl2(z) that is in the span of the eigen-

The theory of normal forms of nonlinear difference
equations goes back to Poincaré (Arnold, 1983),
(Guckenheimer and Holmes, 1983), (Wiggins,
1990). Briefly it is as follows. Consider a smooth
(C*) n dimensional difference equation expanded
in a power series around a fixed point, say ¢ =

0, f(0) =0, vectors corresponding to nonzero eigenvalues and
¥ = f(z) = Az + sl (z) (1.1) reduce the quadratic part to
+£¥(z) + O(x)* RO Z ket 2z zk (1.3)
where 2/(t) = z(t+1) and fl9(z) denotes an n di- Hi=hade

mensional vector field that is a homogeneous poly-
nomial of degree d in z. The group of smooth
changes of coordinates

This is the quadratic normal form of Poincaré.
In a similar fashion we can use #%(z) to re-
duce f¥)(z) to the cubic normal form of Poincaré.

- - _ ol .
z = ¢(1‘[?3]-— Tz ¢ 4(1:) (12) f[B](Z) — Z Czklei zj 2, 2 (14)
-¢*(z) + O(z) A=A A

facts on this difference equation and transforms it (Kang and Krener, 1992) developed a

into . . . .
quadratic normal form for continuous time nonlin-
2 = f(2) = o(f(¢~(2))) ear systems whose linear part is controllable. This
— Azs f(zl(z) n f'[s](z) + 0(2)4 was extended to discrete time systems by {Barbot
et al., 1997). These authors considered a larger
If we consider the effect of the transformation group of transformations to bring the system to
term by term, it simplifies considerably. The lin- normal form, including state feedback as well
ear part is just as change of state coordinates. (Kang, 1998a),

(Kang, 1998b) also developed a quadratic normal

A=TAT™ form for continuous time nonlinear systems whose
. linear part may have uncontrollable modes.
so we can always transform A into Jordan form. . . .
. L . In this paper we will develop quadratic and
If we assume that A is originally in Jordan . . . .
- (2] cubic normal forms for discrete time nonlinear
form then we can take T = I and use ¢*/(z) to control svstems of the form
transform the quadratic term to Y
FO(z) = FAG) - < Az ¢2() > &' = f(z,u) = Az + Bu + fP)(z,v)
+ 8z, u) + Oz, u)* (1.5)
where
here z, u are of dimensions n, 1. We do not as-
(2 — 12 — Al w , )
< Az,¢%(2) >= ¢(Az) — 497(2) sume that the linear part of the system is control-
The mapping lable. Moreover our quadratic normal form differs
from that of (Barbot et al., 1997) for linearly con-
#(2) < Az, 9(2) > trollable systems.
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2 Quadratic Normal I'orms

Consider a smooth (C3) system of the form (1.5)
under the action of linear and quadratic change of
state coordinates and state feedback

z = ¢(z) =Tz - ¢() (1)
v =alz,u) = Kz + Lu — a®(z,u) (2.2)

where T, L are invertible.

It is well known that there exists a linear
change of coordinates and a linear feedback that
transforms the system into the linear normal form

I’l _ Al 0 r + 0
[ N N P By |*
+{ {Zl(xlyxzyu)

+ O(z1, z2,u)®
@y, 22,0) v

(2.3)

where z1, x2 are nj, np dimensional, ny + ny =
n, A; is in Jordan form, Ay, B, are in controller
(Brunovsky) form,

01...0 0
A2: e B2= .
00 ...1 0
00...0 1

The following result generalizes that of (Li,
1999).

Theorem 2.1 Assume that A; is diagonal.
There exist a quadratic change of coordinates and
a quadratic feedback

2]-[a]- e

v=u—o(z,2,u)

which transforms the system (2.8) into the
quadratic normal form

KRk P Al AT
N [f{Z;O](zé;zZ’,u)jl + [ ~1[1;1](Z(;§22,U)]

+ {ﬂO;Z](zl; 22,v)

32 (215 22, v)

} + O(Zla 227U)3

where f~1[2;0](z1,z2,v) is in the quadratic normal
form of Poincaré,

712;0 ik i
f{ b= Z B]" et 21,5 21,k (2.5)
Mi=Aj Ak
and the other terms are as follows.

ny+1

f.{m] = Z Z Z ’Y{k e 21,5 %2,k

A=02A;=0 k=1

+ Z Z ’)’fl e’i 215 221 (2.6)

Ai#0 A #0
ny+1

F0;2 1k i 9 o=
f{ I = Z Z 0;% el z1 22k (2.7)
N#AO0 k=1
ny—1 ng+1

TS G @y

i=1 k=i+2

We use the notation fi[d“dﬂ(zl; 29,V) to denote a
polynomial vector field homogeneous of degree d;
in z; and homogeneous of degree dy in z7,v. For
notational convenience we have defined 23 5,+1 =
v.

Proof: The proof is tedious so we only sketch
the details. We can expand the change of coordi-
nates and feedback as follows,

[z1] _ [xl] _ 5% (zy; )
2 T2 ¢[22:0] (z1:72)
_ [‘?&hll(ﬂfl;xz)] _ {45[10;2]@1;12)]

¢[21;1](I1§932) ¢[20;2]($1;$2)

v =u- oz z2,u)
—oltill (z1322,u) - ol0?l (#1522, u)

The effect of this on the quadratic part of the dy-
namics is
fi[dl;dﬂ(zl;zz,v) = fz‘[d”dzl(zl;zz»v)

—¢£d“d2] (A121; Az220,v)

+ A0 (21 29,0)

- Bl (2 25, v)

where B; = 0, so the proof splits into six cases,
1= 1,2; dl =0,1,2; d2 =2—d1.

o2}, .

f 2 (Z 13 22 ’U)
There are two basic operations, pull up and push
down, which are used to transform the system into
normal form. Consider a part of the dynamics

z;,i—l =zt ...
!
2y = 22,441 +cz 220+ .
!
29441 = 22442 + ...
where 1 < i < mp, 1 £ 7 <k < ny+ 1, recall
22m+1 = V.

If 1 < j we can pull up the quadratic term by
defining

224 = 294 — C22,j-122,k—1
then the dynamics becomes

’ _

241 = 224+ czj-122k-1+ ..
=t
29 = 22441 % ...

!
22,i+1 = 22,442 + ...
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and all the other quadratic terms remain the same.
Notice that if ¢ = 1, we can still pull up and
the term disappears. By pulling up all quadratic
terms until j = 1, we obtain

22441+ C22120k + ... (2.9)

’
=
~2.1

The other operation on the dynamics is push
down. If k < n, define

22441 = 22441 + C22522.k

yielding
2y = 2ot
Zps = Zaqq1t .-
Zhip1 = Zoi42 + €22 jp1Z0 k01 oo
and all the other quadratic terms remain un-

changed. Notice that if i 4+ 1 = n, then we can
absorb the quadratic term into the control. From
(2.9) we push down every term where k < i 4 1.
These terms can be pushed all the way down and
absorbed in the control. The result is (2.8).
fz[l;ll(zl;lzyv)

The two basic operations, pull up and push down,
are slightly different. Consider a part of the dy-
namics

Zé.i~1 =22 + ...
Zy;

Zo4y1tC21 2ok + .
Zpip1 = Zyikz oo
where 1 <i<mp, 1<j<n,1<k<ny+1.

If A; # 0and 1 < k we can pull up the
quadratic term by defining
_ c
224 = 224 — /\—j21,j22,kv1

then the dynamics becomes

C
, -
2y = 224+ ;zl)jzz,k_l + ...
7
=t
294 = 224+1t -

’
22441 = 2242+ -

and all the other quadratic terms remain the same.
Again if i = 1, we can still pull up and the term
disappears. So by pulling up all quadratic terms
where A; # 0 until k£ = 1, we obtain

’
24 = 22441 + €21,522,1 + ...

Pushing down eliminates this term and any
term with A; = 0. Define

Z24+1 = 22,i+1 + C21 522,k

yielding
'
2341 = 224+ ...
; -
%24 = 221t
=t _ ’
Zie1 = Z2ar2 HCAj 2L 2+

21

and all the other quadratic terms remain un-

changed. If A; = O then the term drops out. If

A; # 0 then by the above, we can assume that

k = 1 and so the term can be pushed down

repeatedly until it is absorbed in the control. The
. Flna

result is fy ' "'(21; 22,v) = 0.

+12;0
fz[ ! (Zl; 22, U)
Consider a part of the dynamics

!
z2.i—1 = 22,1 + ...
’
2y, = 22441t C21 5216+ ...
’
Zpat1 = P22 T

where 1 <i<mny, 1<j<k<n,.
Pushing down one or more times eliminates
this term. Define

Zya41 = 22441 + C21j21 %
yielding

! P .
ZZA,i—l =224 + ..
’ =
2y, = 22441+ ...
=
Zg 441 = 22,042 + cAj)\kzlyjzl,k + ...

and all the other quadratic terms remain un-

changed. If A;Ax = 0 then the term drops

out. Otherwise the term can be pushed down

repeatedly until it is absorbed in the control. The
o FI201 .

result is f,"" (21; 22,v) = 0.

FE 215 22,0)
This is just the quadratic normal form of
Poincaré and the proof can be found in
(Arnold, 1983), (Guckenheimer and Holmes, 1983)
or (Wiggins, 1990).

fl[l;”(zﬁ z2,v)
Consider a part of the dynamics

!
215 = Mg F ez jzon ..

where 1 <i<ni,1<j<n;, 1<k<n,.
If A; # 0 and k > 1 then we can pull up by
defining

_ c
214 = 21,4 — rzl.jzz,lc—l
J
then
CA;
—f - T
Zl.i = /\izl.i + —‘21']'22’k_1 4+ ...

Aj

If A\; = 0 then the term disappears otherwise we
can continue to pull up until & = 1.
If A; # 0 then we can push down by defining

_ c
214 =215+ 21522,k
Ai

then

ch;
=t J /
—Zlﬁjzz‘k + ...

= AiZig + py
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I[f A; = 0 then the term disappears.
If A; = A; = 0 then we can’t pull up or push
down. The result is (2.6).

ﬂo;Z} (215 22,v)

Consider a part of the dynamics
!
214 = )\,-,zl,i + €22 422,k + ..

where 1 <i<ny,1<j<k<n,.
If 7 > 1 then we can pull up by defining

214 =214 — CZ2,j-122 k—1
then
2/1.1' = MNZ1;+ Chzg 122 k-1t - - -
If A; = 0 then the term disappears otherwise we
can continue to pull up until j = 1. The result is
(2.7).

3 Cubic Normal Forms

Theorem 3.1 Consider a smooth (C*) system in
the quadratic normal form described above

11?/1 _ A] 0 T 0
EIR DA ISR P EC
+ fl[Z;O](iEl;mmu) + {1;1](5131;932,“)
0 0
" 2 (@15 29, u) n I CITEARN)
£ @120, 0) PN @1522,0)
+0(z1, zz,u)?

where A is diagonal. There exist a cubic change
of coordinates and a cubic feedback

{21] _ [1‘1] _ ¢ (1, 72)
%2 B T2 ¢[23] (zly IZ)

v=1u-—olz,z5,u)

which transforms the system (2.3) into the cubic
normal form

21} _[AL 0 21 0
ER oA IR P
[ ¢[(2:0] {1;1] .
1 (215 22,0) A (215 22,0)
o R
4 —floizl(zﬁlzyv) + [fl[s;ol(zl,lz,v)]
0 (21 22,) 0
. —ﬂz;ll(zé;n,v)] . f:lt:zl](zrizz,v)
L f2 (217221U)
—f~1[0;31(21322,11)
+ | " + O(21, 22,V
| A% (215 22,v) (a,72,0)

22

£13;0 . X
where fl[ ](zl,zz,v) is in the cubic normal form
of Poincaré,

230, jkl
9215 22,v) S s el 2y k2

Ai=As A
(3.3)

and the other terms are as follows.

nz+1

F12;1 jki 4
=35 5 ST y¥ el 2 21k 22

Ai=0 A =0 =1
1
+3. > el Ak m
Ai#ED AjAp#0

(3.4)
nz+1lnz+1 )
=3 3 3 Y oM el zy 2ok 2
A=0 A\ =0 k=1 l=k
nz+1

j : jkl i
+ Z Z 53 €] 21,5 22,1 22,k

MNE0 A0 k=1

(3.5)
na+1
0:3 )
f1[ V= Z Z €}kl el 221 22k 22
A#O k=1
(8.6)
~ ng—1 na+1 ) ]
D 0 30 WL T
i=1 A;#01=i+2
(3.7)
. ng—1 na+1 I )
A = Z Z Zflilkl €y 221 Zok 221
i=1 l=i+2 k=1
(3.8)
Proof: The proof is tedious so we only
sketch the details. As before, the proof
splits into cases, this time eight cases,

1= 1,2; d1 :0,1,2,3; d2 =3-d1.

Fo:3] .
f2 (zh 22, U)
We use the two basic operations, pull up and push
down, again. Consider a part of the dynamics
z;,i—l =22i+ ...
zé,i = 23441 + C22,522,k221 + . .-
Zip1 = 22a42F o
where 1 <i<myp, 1 <j<k<I<ng+1,recall
Z2n4+1 = V.

If 1 < j we can pull up the cubic term by
defining

Z2i = 224 — CZ2,j—122 k172,11
then the dynamics becomes
, _
2941 = 224 +cz2 122, k—1220-1 + - ..
=
224 = 22,041 +...

!
2y 441 = 22442 -
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and all the other cubic terms remain the same.
Notice that if 1 = 1, we can still pull up and the
term disappears. By pulling up all cubic terms
until j = 1, we obtain that
pod o
224 =

22441 FC22 122 k221 + - .. (3.9)

The other operation the dynamics is push
down. If | < ny define

Z2i+1 = Z2,i+1 + C22,j22, k22,1

yielding
Zé,i—l =2z2:+...
Zé,i =Zz4+1t+ .-
Zyi01 = 2242 + C22 4122 k4122041 + - -

and all the other cubic terms remain unchanged.
Notice that if 1 + 1 = ny then we can absorb the
cubic term into the control. From (3.9) we push
down every term where | < i + 1. These terms
can be pushed all the way down and absorbed in
the control. The result is (3.8).

T (21 25,0)
The two basic operations, pull up and push down,
are slightly different. Consider a part of the dy-
namics

/ — .
Zy4-1 =225t ...
!
2y = 22,441 T C21 5226220+ - ..
!
23i+1 = 2242t o

where 1 <i<ng, 1<ji<m,1<k<i<ny+1.
If A\; #0 and 1 < k we can pull up the cubic
term by defining

_ c
224 =225 — T‘Zl,jzz,k—IZZ,l»l
J

then the dynamics becomes

c
/ _
2941 = Z24+ o AniF2 ko122, +..
j
=
22‘1- = 22,i+1 +...
!
22441 = 2242+ -

and all the other cubic terms remain the same.
Again if ¢ = 1 we can still pull up and the term
disappears. So by pulling up all cubic terms where
Aj # 0 until k = 1, we obtain

/
22,5 = 22,i+1 +czy 5221220+ - -
We can also push down by defining

Z2i+1 = 22,i+1 + C21,j22,k22,1

yielding
U — .
ZZ,i—l = z2,1. + ...
, "
22,1' = 22,4i+1 + ...
—1 ! /
Zyiyr = 22042 + OG22 52 F

23

and all the other cubic terms remain unchanged.
If A; = 0 then the term drops out. If A; # 0 then
by the above, we can assume that k = 1 and so
if | <14 1 then the term can be pushed down
repeatedly and absorbed in the control. The
result is (3.7)

Fl2;1
BN (15 2,0)
Consider a part of the dynamics

/
22’1»_1 = 224' + ...
Zh; = Zaiq1 +C21 21 k720 F -
!
Z24+1 = 2242 o
where 1 <i<np, 1<j<k<m,1<i<ny+1.

If AjAx # 0and 1 <! we can pull up the cubic
term by defining

_ c
224 = 224 — T 21,j%1,k22,1-1
e

then the dynamics becomes

[

’ _

2341 = 224 + r/\—kzlyjzl,kzz,[_l + ...
J

Zp; = Zoar1+ .-

Z;,i+1 = 22 i+2 + ...
and all the other cubic terms remain the same.
Again if i = 1 we can still pull up and the term

disappears. So by pulling up all cubic terms where
AjAk # 0 until [ = 1, we obtain

'
2y = Zog41 +CZ1 521 k22,1 F .

Pushing down eliminates this term and any
term with A;Ax = 0. Define

Zgi+1 = 22441 + €71 521 k22

yielding
zé’i_l = 22;+ ...
Zé,i =2Z2i41+ ...
Zé.i+1 = 224+2 + C)‘j/\kzl.jzl,kzlz,l + ...

and all the other cubic terms remain unchanged.

If AjAx = 0 then the term drops out. If A; A, #0

then by the above, we can assume that [ = 1

and so the term can be pushed down repeatedly

until it is absorbed in the control. The result is
2l (215 29,0) = 0.

£(3;0]
FEN s 22, 0)
Consider a part of the dynamics
! —
2341 =225+ ...
!
29 = 2y FC21z1 K210+

/
Zy 41 = 22,42 T o

where 1 <i<ny, 1 <j<k<l<n,.
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Pushing down one or more times eliminates
this term. Define

22,041 = 2Z2,i+1 + 21,521 k211

yielding
/ —
2941 T 224 + ...
' -
294 = Z2i+1+ -

=t
Zy i1 = 22442 t+ c)\j/\k/\lzlyjzlykzlyl + ...

and all the other cubic terms remain unchanged.
If Aj Ak A; = 0 then the term drops out. Otherwise
the term can be pushed down repeatedly until
it is absorbed in the control. The result is
f~2[3;0](21; 29,0} = 0.

FEO (215 29,0)
This is just the cubic normal form of Poincaré
and the proof can be found in (Arnold, 1983),
(Guckenheimer and Holmes, 1983) and
(Wiggins, 1990).

);1[2;1](21; 23, )
Consider a part of the dynamics

2’1,1‘ =XNzii+en izt ...
where 1 <i<ny, 1 <j<k<mn,1<I<n,.

If AjAx # 0 and ! > 1, we can pull up by
defining

_ c
214 = 215~ T R1,5R1,k22,1-1
B ’ ' A T
Nk
so that
= A3 C)\i
215 = AiZii+ o 21,j21,k22,0-1+ - - -
jAk

If A; = 0 then the term disappears otherwise we
can continue to pull up until / = 1.

If X\; # 0 and A;Ax = O then the term disap-
pears by pushing down,

c
T 21,5%1,k220

21 =215+
El A‘l

so that

C. k
5t - ’
2= )\izlyi + 21,j21,k%9 + ...

K
= AiZ14

If Ay = AjAx = 0 then we can't pull up or
push down. The result is (3.4).

Fl1:2]
Ji % (215 22, 0)
Consider a part of the dynamics

’
Zl,i == )\,-zl_i -+ C21,j22 k22, +...

where 1 <i<ny, 1 <j<ny, 1<k<<n,.

24

If A\; # 0 and k£ > 1 then we can pull up by
defining

c
T %1j%2.k-1221-1
Aj 7

tH

1

=214

then

C)\i
S 21%2.k-1220-1F ...
A

3= NZg+
If A; = 0 then the term disappears otherwise we
can continue to pull up until £ = 1.
If A; # 0 and X; = 0 then the term disappears
by pushing down,

_ c
21 =215+ rh,jlz,kzz.t
?

then

c

= \F . I,

2= N2+ X 21,52y k200 F oo
T

= A2
The result is (3.5).
f’:{O;lB]

(21522,0)
Consider a part of the dynamics

/
214 = Aiz14 + C22 522 k220 + ...

where 1 <i<ny,1<j<k<l<ny.
If j > 1, we can pull up by defining

214 = 214~ €22, 122 k—122,0~1
then
» -
21 ;= AiZyi + C)\,-Zzyj_lZz‘k_lZz,[_l + ...

If A; = 0 then the term disappears otherwise we
can continue to pull up until j = 1. The result is
(3.6).

4 Conclusion

We have developed a theory of quadratic and cu-
bic normal forms for discrete time control systems.
To avoid notational difficulties, we have restricted
our attention to scalar input systems whose un-
controllable part is diagonalizable. But the basic
operations of pull up and push down extend to
more general systems. Because of limitations of
space, we have not shown the uniqueness of the
normal forms but we believe they are unique based
on results found in (Li, 1999). The development
of a normal form is the first step in the analysis
of the local behaviour of control systems. In par-
ticular, it is essential in the study of the possible
bifurcations of control systems which we are now
engaged.
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