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Abstract— In this study of the nonlinear H∞-optimal con-
trol design for strict-feedback nonlinear systems our objec-
tive is to construct globally stabilizing control laws to match
the optimal control law up to any desired order, and to be
inverse optimal with respect to some computable cost func-
tional. Our recursive construction of a cost functional and
the corresponding solution to the Hamilton-Jacobi-Isaacs
equation employs a new concept of nonlinear Cholesky fac-
torization. When the value function for the system has a
nonlinear Cholesky factorization, we show that the back-
stepping design procedure can be tuned to yield the optimal
control law.
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I. Introduction

AFTER a successful solution of the linear H∞-optimal
control problem, recent research attention has been

focused on the robust control design of nonlinear systems
[2], [3], [4], [5], [6]. The dynamic game approach [7] pro-
vides a natural setting for worst-case designs and requires
the solution of a Hamilton-Jacobi-Isaacs (HJI) equation.

Although a general solution method is not available for
HJI equations, a local solution exists when the nonlinear
system has a controllable Jacobi linearization and the cost
functional has a Taylor series expansion with quadratic
leading terms. Similar to the solution of the Hamilton-
Jacobi-Bellman equation [8], [9], the solution to the HJI
equation can be found by computing the coefficients of its
Taylor series expansion [10], [11], and [12]. This Taylor
series solution may provide an adequate approximation to
the optimal control law in a small neighborhood of the ori-
gin but it may be unsatisfactory, or even unstable, in a
larger region.

Among the recent advances in nonlinear feedback design
surveyed in [13], a systematic procedure, known as integra-
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tor backstepping [14], is applicable to nonlinear systems in
strict-feedback form. This procedure has been perfected in
a recent book [15]. The backstepping design offers a lot of
flexibility at each step of the control design, but it does not
clarify what choice will lead to a better overall design.

In this paper, we approach the H∞-optimal control prob-
lem for strict-feedback nonlinear systems by combining the
Taylor series approach with the backstepping design. Our
objective is to construct globally stabilizing control laws
which match the optimal control law up to any desired
order and are inverse optimal with respect to some com-
putable cost functional. Our recursive procedure employs
a new concept of nonlinear Cholesky factorization, such
that the given positive definite function is equal to the sum
of squares of the state variables when expressed in appro-
priate coordinates. We derive conditions under which a
given positive definite nonlinear function has a nonlinear
Cholesky factorization. When the optimal value function
has a nonlinear Cholesky factorization, we show that the
backstepping procedure can be tuned to yield the optimal
control design. We develop a recursive computation scheme
for an inverse optimal controller that matches the optimal
solution up to any desired order of Taylor series expan-
sion. Using this approximating function and its nonlinear
Cholesky factorization, we recursively construct the desired
matching controller by another backstepping procedure. A
simulation example illustrates the theoretical findings. A
detailed discussion of the first order matching design can
be found in [16].

Inverse optimal design for nonlinear systems has been in-
vestigated in earlier studies [17], [18]. In [17], robust control
problems for systems subject to bounded disturbances are
studied, for which robust inverse optimal controllers that
guarantee input-to-state stability of the closed-loop sys-
tems are obtained. In [18], it is shown that input-to-state
stability is both necessary and sufficient for inverse opti-
mality of nonlinear systems. The objective of this paper,
on the other hand, is to design inverse optimal controllers
which achieve a desired level of L2 disturbance attenuation
with any desired order of local optimality.

We formulate the problem in Section 2. In Section 3, we
present nonlinear Cholesky factorization, which is utilized
for the backstepping design in Section 4. A numerical ex-
ample in Section 5 illustrates the theory. We close with
concluding remarks in Section 6.
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II. Problem Formulation

We consider the following strict-feedback nonlinear sys-
tem with disturbance inputs:

ẋ1 = x2 + f1(x1) + h′
1(x1)w (1a)

ẋ2 = x3 + f2(x1, x2) + h′
2(x1, x2)w (1b)

...
...

ẋn = u + fn(x1, · · · , xn) + h′
n(x1, . . . , xn)w (1c)

where x = (x1, . . . , xn)′ is the state variable with x(0) = 0;
u is the scalar control input; and w is the q-dimensional dis-
turbance input. We will denote the set of locally Lipschitz
feedback control laws u = µ(x) by Mu. We consider that
the disturbance w is generated by some adversary player
according to w(t) = ν(t, x), where ν : [0,∞) × IRn → IRp

is piecewise continuous in t and locally Lipschitz in x. We
will denote the set of of disturbance strategies ν(t, x) by
Mw.

This nonlinear system can be compactly written as
ẋ = f(x) + Bu + H(x)w, where B =

[
0 · · · 0 1

]′.
Associated with it, we introduce a cost functional J =∫∞
0 l(x, u) dt, where l(x, u) = q(x) + r(x)u2.1 The design

objective is to minimize the worst case disturbance attenu-
ation level infµ∈Mu supν∈Mw

J1/2/‖w‖ =: γ∗, where ‖.‖
denotes the L2 norm of a signal and γ∗ is the optimal
performance. The nonlinear H∞ optimal control problem
then consists of the evaluation of γ∗ and finding a con-
troller µ ∈ Mu that guarantees any desired disturbance
attenuation level γ > γ∗.

This nonlinear H∞ problem has been shown [7] to be
closely related to a class of zero-sum differential games with
the cost functional indexed by the desired attenuation level
γ,

Jγ = J − γ2‖w‖2 =
∫ ∞

0
(l(x, u) − γ2w′w) dt, (2)

where the control is the minimizer and the disturbance is
the maximizer. We are particularly interested in the upper
value of the game: infµ∈Mu supν∈Mw

Jγ . For any γ > γ∗

the upper value of this zero-sum game is zero when x(0) = 0
2. On the other hand, for any γ < γ∗ the upper value is
strictly positive. Because of the above stated equivalence,
we will focus on the zero-sum differential game problem (2)
for a given value of γ.

The following two assumptions characterize the functions
in this study.
Assumption A1: The nonlinear functions fi, hi, i =
1, . . . , n, q and r are C∞ (or simply smooth) in all of their
arguments. The open loop system of (1) has the origin as
an equilibrium, fi(x1, . . . , xi)|x=0 = 0, i = 1, . . . , n. '

1We assume that the weighting function is quadratic in u. For the
more general case l(x, u) = q(x) + p(x)′u + r(x)u2, we can easily
remove the cross term by a simple redefinition of the control variable
ũ = u + r−1p(x).

2In the case when x(0) is not zero but fixed, we have the following

inequality if γ > γ∗, T
0 l(x, u) dt ≤ γ2 T

0 w′w dt + C, for some con-
stant C > 0, which depends only on the initial condition, and for any
terminal time T > 0.

Assumption A2: The weighting function l(x, u) is
positive definite and radially unbounded in x and u, and
l(0, 0) = 0. Furthermore, the Hessian of q(x) evaluated
at 0 is a positive definite matrix Ql. The function r(x) is
positive for any x. In particular r(0) = Rl > 0. '

The solution to the nonlinear zero-sum differential game
problem satisfies the HJI equation:

Vx(x)f(x) +
1

4γ2
Vx(x)H(x)H ′(x)V ′

x(x)

−1
4
Vx(x)Br−1(x)B′V ′

x + q(x) = 0 (3)

and, when the solution is available, the optimal control law
is given by

u = µ∗(x) = −1
2
r−1(x)B′V ′

x. (4)

While it is very difficult to obtain V (x) in an explicit form,
it is relatively simple to compute the Taylor series expan-
sions of V (x) and µ∗(x) around x = 0, see, for example, [8],
[9], [10], [2], [11], [12]. Truncated Taylor series expansions
yield near-optimal controllers when x is close to the origin,
but, when |x| is large, they may not guarantee stability for
the nonlinear system.

Our design objective is not only to match the optimal
control design up to any desired order, but also to guar-
antee global stability and inverse robust optimality of the
closed-loop system. This objective is made precise with the
following two definitions.

Definition 1: A smooth control law µ(x) is locally op-
timal matching to the mth order, if the truncation of the
Taylor series expansion of µ(x) up to the mth order is equal
to that of the worst-case optimal control law µ∗. '

Definition 2: A smooth control law µ(x) is inversely ro-
bust optimal, if there exists a nonnegative function ľ(x, u) =
q̌(x) + ř(x)u2 such that the zero-sum game with cost func-
tional

Jγi =
∫ ∞

0
(ľ(x, u) − γ2|w|2) dt (5)

admits µ(x) as its minimax control law. Furthermore, the
value function Vγi associated with the cost functional Jγi

and q̌ are radially unbounded, and the function ř is positive
for any x ∈ IRn. '

Throughout the paper, any function with an “over bar”
will denote a function defined in terms of the transformed
state variables, such as ā denoting a(x) expressed in terms
of a new state variable z. Given any polynomial function
V , we will denote its mth order homogeneous terms by
V[m], and its homogeneous terms up to mth order by V [m],
so that V [m] =

∑m
i=0 V[i]. For a smooth function V , V[m]

denotes the mth order homogeneous terms in the Taylor
series expansion of V around the origin, and V [m] denotes
the homogeneous terms up to mth order in the Taylor se-
ries expansion. The variable z = (z1, . . . , zn) denotes the
transformed coordinates for the nonlinear system.
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Using this notation, we make the following basic assump-
tion.
Assumption A3: The Taylor series expansion of the
optimal value function is given up to (m + 1)st order
V [m+1](x) = V[2](x) + V[3](x) + · · · + V[m+1](x), and the
Taylor series expansion of the minimax control law µ∗(x)
is given up to mth order µ∗[m](x) = µ∗

[1](x)+· · ·+µ∗
[m](x) =

− 1
2 (r−1(x)B′V ′

x)[m]. '

III. A Nonlinear Cholesky Factorization

In the earlier linear-quadratic matching backstepping de-
sign [16], the key step that prescribes all the backstepping
coefficients is the Cholesky factorization of the quadratic
value function. In this section, we study the nonlinear ver-
sion of the Cholesky factorization.

For any given positive definite and radially unbounded
nonlinear function V (x), we are interested in the neces-
sary and sufficient conditions under which there exists
global upper triangular diffeomorphism z = Φ(x) such that
V (x) = Φ′(x)Φ(x), where Φ is called upper triangular if it
can be written as

z =




z1
...

zn



 =




φ1(x1, . . . , xn)

...
φn(xn)



 x =




x1
...

xn



 (6)

Without loss of generality, we will limit our attention to
zero preserving transformations, that is, 0 = Φ(0). While
a lower triangular transformation is important for the
backstepping control design, we pursue a upper triangu-
lar transformation just to parallel the well known Cholesky
factorization for positive definite matrices. The result ob-
tained below has a direct counterpart for lower triangular
transformations if we reverse the ordering of the state vari-
ables (x1, . . . , xn).

The Jacobian of the mapping Φ is

∂Φ
∂x

=





∂φ1
∂x1

∗ · · · ∗
0 ∂φ2

∂x2
· · · ∗

...
. . .

...
0 0 · · · ∂φn

∂xn





where ∗ denotes terms of no particular interest. Since the
mapping Φ is a diffeomorphism, the Jacobian is always non-
singular and the diagonal partial derivatives are nonzero,
∂φi/∂xi )= 0, ∀x ∈ IRn. Therefore, these quantities are
sign definite. Without loss of generality, we consider only

Φ where the diagonal terms of
∂Φ
∂x

are positive.
Definition 3: An upper triangular diffeomorphism Φ :

IRn → IRn is said to be positive if the diagonal partial

derivatives are positive,
∂φi

∂xi
> 0, i = 1, . . . , n for any

x ∈ IRn. '

The Cholesky factorization of a nonlinear radially un-
bounded function V (x), where x ∈ IRn, is defined as fol-
lows.

Definition 4: A radially unbounded C∞ function V (x) is
said to admit a nonlinear Cholesky factorization if V (x) =
Φ′(x)Φ(x) for some global positive upper triangular diffeo-
morphism with Φ(0) = 0. '

It will be shown later that the nonlinear Cholesky fac-
torization is unique within the class of positive diffeomor-
phisms.

Given a positive upper triangular state transformation
z = Φ(x), it is still quite difficult to obtain the inverse
transformation of Φ. To simplify this, we introduced the
notion of the simple upper triangular diffeomorphism.

Definition 5: An upper triangular diffeomorphism Φ :

IRn → IRn is said to be simple if
∂φi

∂xi
≡ 1, i =

1, . . . , n. Then, the individual coordinate map is given by
φi(xi, . . . , xn) = xi −αi(xi+1, . . . , xn), i = 1, . . . , n, where
αi, i = 1, . . . , n (we have set αn = 0) are arbitrary smooth
functions such that αi(0) = 0. '

There exists an equivalence relationship between the pos-
itive upper triangular diffeomorphisms and simple ones in
terms of yet another factorization.

Proposition 1: An upper triangular diffeomorphism Φ
is positive if and only if it can be uniquely factored as
Φ = ∆Φs, where Φs is a simple upper triangular diffeo-
morphism; and ∆ is a diagonal matrix

∆ = diag {δ1(x1, . . . , xn), δ2(x2, . . . , xn), . . . , δn(xn)}
(7)

such that, for each i = 1, . . . , n,

δi(xi, . . . , xn) > 0 (8)
πδi(xi, . . . , xn) := δi(xi, . . . , xn)

+(xi − αi(xi+1, . . . , xn))
∂δi

∂xi
(xi, . . . , xn) > 0 (9)

lim
|xi|→∞

|(xi − αi(xi+1, . . . , xn))δi(xi, . . . , xn)| = ∞ (10)

for all x ∈ IRn.

Proof: The sufficiency part is straightforward by ob-
serving the diagonal of the Jacobian of ∆Φs is exactly
diagonal{πδ1, . . . , πδn}, which is nonsingular. Further-
more, the unboundedness condition (10) implies that the
diffeomorphism Φ is global.

For the necessity part, we observe that φi(xi, . . . , xn) =
0, for any i = 1, . . . , n, has a unique root xi =
αi(xi+1, . . . , xn) when i = 1, . . . , n − 1, or xn = 0 =: αn.
The functions α1, . . . , αn, are smooth by the positiveness

of
∂φi

∂xi
. This uniquely defines a simple upper triangular

diffeomorphism Φs:

η = Φs(x) =




x1 − α1(x2, . . . , xn)

...
xn




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Then, the positive and smooth diagonal matrix ∆ is defined
by

δi(xi, . . . , xn) :=
φi(xi, . . . , xn)

xi − αi(xi+1, . . . , xn)
, i = 1, . . . , n.

Evaluating δi + ηi
∂δi
∂xi

= ∂φi

∂xi
> 0, i = 1, . . . , n, where

ηi = xi − α1(xi+1, . . . , xn), proves that ∆ satisfies (9).
The property (10) is satisfied since lim|xi|→∞ |φi| = ∞.
This completes the proof.

To obtain the nonlinear Cholesky factorization of V (x)
we will go through n steps of a recursive construction. As
shown in the following lemma, the objective of each step is
to find one coordinate transformation.

Lemma 1: Consider a nonlinear function V (a, b), where
a is a scalar and b is a vector. Assume the following con-
ditions hold:
C1: V is C∞ in all of its arguments.
C2: There is a constant C ≥ 0 such that, for each fixed b,
V (a, b) ≥ C, ∀a ∈ IR.
C3: For each fixed b, V is radially unbounded in a, i. e. ,
lim|a|→∞ V (a, b) = +∞.
Then, there exists a unique mapping φ(a, b) such that
1. φ is C∞ in all of its the arguments.

2. For each fixed b,
∂φ

∂a
(a, b) > 0, ∀a.

3. For each fixed b, φ maps IR onto IR, i. e. ,
lim|a|→∞ |φ(a, b)| = ∞.
4. The function V can be decomposed as

V (a, b) = V̂ (b) + φ2(a, b) (11)

for some C∞ function V̂ , such that V̂ (b) ≥ C for any b.
if and only if the following condition holds:

E1: For each fixed b,
∂V

∂a
= 0 has a unique root a = α(b),

which is simple, i. e. ,

∂V

∂a
(α(b), b) ≡ 0;

∂2V

∂a2
(α(b), b) )= 0 ∀b

Proof: To prove sufficiency, we let conditions E1,
C1–C3 hold. Conditions C2 and C3 imply that, for each
fixed b, the function V has at least a local minimum in
a. This, coupled with the smoothness assumption C1 and
uniqueness assumption E1, implies that the the minimum

is achieved at a = α(b), so that
∂2V

∂a2
(α(b), b) > 0, ∀b. The

nonsingularity of
∂2V

∂a2
(α(b), b) guarantees that the root

function α(b) is C∞ by the implicit function theorem.
Let V̂ and π be defined as

V̂ (b) := V (α(b), b) (12)

(a − α(b))π(a, b) :=
∂V

∂a
(a, b). (13)

Then it follows from C2 that V̂ (b) ≥ C for any b. The
function π is well defined because a = α(b) is the root of the

C∞ function
∂V

∂a
. By E1 and the fact that α(b) achieves

the minimum, we have that ∂V/∂a > 0, ∀a > α(b);
∂V/∂a < 0, ∀a < α(b). Therefore, π(a, b) > 0, ∀(a, b).
This allows the following definition of a C∞ positive func-
tion m(a, b):

V (a, b) − V (α(b), b) =: m(a, b)(a − α(b))2 (14)

since

V (a, b) − V (α(b), b) =
∫ a

α(b)
(s − α(b))π(s, b) ds. (15)

The mapping φ is then defined by

φ(a, b) := (a − α(b))δ(a, b); δ(a, b) :=
√

m(a, b) (16)

Statement 1 follows from the definition of φ and δ. State-
ment 3 holds by the assumption C3 and the definition of
φ, while statement 4 holds by the definition of V̂ and φ.

For statement 2, we evaluate the partial derivatives:

∂φ

∂a
(a, b) = δ(a, b) + (a − α(b))

∂δ

∂a
(a, b) =: πδ(a, b)

∂V

∂a
(a, b) =

∂

∂a
(δ2(a, b)(a − α(b))2)

= 2(a − α(b))δ(a, b)(δ(a, b)

+(a − α(b))
∂δ

∂a
(a, b))

= (a − α(b))π(a, b)

Hence, the identity:
∂φ

∂a
(a, b) =

π(a, b)
2δ(a, b)

> 0, ∀(a, b),

which proves statement 2.
Next, we show that the mapping φ(a, b) is unique, which

further implies the function V̂ is unique. We will prove this
by contradiction. Suppose there exists another mapping
φ∗, which corresponds to a function V̂∗, that also satisfies
the statements 1–4, and φ(a0, b0) )= φ∗(a0, b0), for some
(a0, b0). Because V = V̂ + φ2 = V̂∗ + φ2

∗, we have either
(a) V̂ (b0) )= V̂∗(b0) or (b) φ(a0, b0) = −φ∗(a0, b0) )= 0.

In case of (b), we observe the following equality:

∂V

∂a
(a0, b0) = 2φ(a0, b0)

∂φ

∂a
(a0, b0)

= 2φ∗(a0, b0)
∂φ∗

∂a
(a0, b0)

This is a contradiction because both
∂φ

∂a
(a0, b0) and

∂φ∗

∂a
(a0, b0) are positive by statement 2.

In case of (a), we conclude that φ(a, b0) )= φ∗(a, b0), ∀a.
In particular, 0 = φ(α(b0), b0) )= φ∗(α(b0), b0). This leads
to the contradiction:

0 = 2φ(α(b0), b0)
∂φ

∂a
(α(b0), b0) =

∂V

∂a
(α(b0), b0)

= 2φ∗(α(b0), b0)
∂φ∗

∂a
(α(b0), b0) )= 0

where the last inequality follows from statement 2. Conse-
quently, the hypothesis is not valid, and the mapping φ is
uniquely defined. This completes the sufficiency proof.
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To prove necessity, we assume that there exists a map-

ping φ satisfying the statements 1–4. Then,
∂V

∂a
(a, b) =

2φ(a, b)
∂φ

∂a
(a, b). It is concluded that

∂V

∂a
(a, b) vanishes if

and only if φ(a, b) = 0, because of statement 2. Again
by statement 2, φ is strictly increasing in a. Coupled
with radially unboundedness statement 3, we conclude
that there is a unique root a = α(b) for the equation
φ(a, b) = 0. Along with conditions C2 and C3, this implies
that, for each fixed b, the function V has a unique mini-

mum in a. The result E1 follows from
∂2V

∂a2
(α(b), b) =

2
(
∂φ

∂a
(α(b), b)

)2

> 0, and consequently, the necessity

part of the lemma.
We observe that the construction of the mapping φ in

the above lemma involves the following steps. First, we
solve for the unique smooth root function α(b), which is
guaranteed to exist by the condition E1. Next, we can
define the function V̂ by (12). Then, mapping φ is given
by (16).

Now, we are in the position to present the n step recur-
sive construction for the nonlinear Cholesky factorization
of a given radially unbounded and smooth function V .

Step 1: For notational consistency we let V (x) =: V1(x).
Since V (x) is C∞ and radially unbounded, the conditions
C1–C3 of Lemma 1 are satisfied for V , with a = x1 and
b = (x2, . . . , xn)′.

As delineated in Lemma 1, in order for a smooth trans-
formation φ1(x) to exist we make the following assumption:
B1: For any fixed n − 1 dimensional vector (x2, . . . , xn)′,

the algebraic equation
∂V1

∂x1
= 0 has a unique root x1 =

α1(x2, . . . , xn), which is simple,

∂2V1

∂x2
1

(α1(x2, . . . , xn), x2, . . . , xn) )= 0.

Under this assumption, there exists a smooth mapping
z1 = φ1(x1, . . . , xn) and a smooth nonlinear function
V2(x2, . . . , xn) such that

R1.1: For any fixed (x2, . . . , xn)′,
∂φ1

∂x1
(x1, . . . , xn) > 0,

∀x1 ∈ IR.
R1.2: For each fixed (x2, . . . , xn)′, φ1 maps IR onto IR,
i. e. , lim|x1|→∞ |φ1(x1, . . . , xn)| = ∞.
R1.3: The function V1 can be decomposed as

V1(x1, . . . , xn) = V2(x2, . . . , xn) + φ2
1(x1, . . . , xn).

We note here that the assumption B1 is also necessary for
the existence of the transformation φ1 as proved in Lemma
1. Because the zero vector is the global minimum of the
function V , we have:
R1.4: The mapping φ1 is zero preserving, φ1(0) = 0.

Because V1 is radially unbounded and smooth, we can
conclude that the nonlinear function V2 is also radially
unbounded (when restricted to the n − 1 dimensional

subspace (x2, . . . , xn)′) and smooth, based on the equal-
ity: V1(α1(x2, . . . , xn), x2, . . . , xn) ≡ V2(x2, . . . , xn). This
nonlinear function V2 is uniquely defined by Lemma 1 and,
hence, the construction in the subsequent steps is indepen-
dent of the construction at this step.

Step i, 2 ≤ i ≤ n : We assume inductively that the
mappings φj(xj , . . . , xn) are constructed from the previous
steps 1, . . . , i − 1, and we are given a radially unbounded
and smooth nonlinear function Vi(xi, . . . , xn), that satisfies
V (x) = φ2

1 + · · · + φ2
i−1 + Vi(xi, . . . , xn).

The radially unboundedness and smoothness of Vi im-
plies conditions C1–C3 of Lemma 1. We make the follow-
ing assumption, in order for a smooth mapping φi(x) to
exist,
Bi: For any fixed n− i dimensional vector (xi+1, . . . , xn)′,

the algebraic equation
∂Vi

∂xi
= 0 has a unique root xi =

αi(xi+1, . . . , xn), which is simple,

∂2Vi

∂x2
i

(αi(xi+1, . . . , xn), xi+1, . . . , xn) )= 0.

Under this assumption, there exists a smooth transforma-
tion zi = φ1(xi, . . . , xn) and a smooth nonlinear function
Vi+1(xi+1, . . . , xn) such that

Ri.1: For any fixed (xi+1, . . . , xn)′,
∂φi

∂xi
(xi, . . . , xn) > 0,

∀xi ∈ IR.
Ri.2: For each fixed (xi, . . . , xn)′, φi maps IR onto IR, i. e. ,
lim|xi|→∞ |φi(xi, . . . , xn)| = ∞.
Ri.3: The function Vi can be decomposed as Vi(xi, . . . , xn) =
Vi+1(xi+1, . . . , xn) + φ2

i (xi, . . . , xn).
Again, the assumption Bi is necessary for the existence of
the transformation φi as shown in Lemma 1. The mapping
φi is also zero preserving, since Vi admits a global minimum
at (xi, . . . , xn) = (0, . . . , 0).
Ri.4: The mapping φi is zero preserving, i. e. , φi(0) = 0.

The following equality holds, as prescribed by the con-
struction in Lemma 1:

Vi(αi(xi+1, . . . , xn), xi+1, . . . , xn) ≡ Vi+1(xi+1, . . . , xn)

Therefore, from the fact that Vi is radially unbounded and
smooth, we can conclude that the nonlinear function Vi+1

is also radially unbounded and smooth. Furthermore, this
nonlinear function Vi+1 is uniquely defined by Lemma 1
and, hence, the construction of the subsequent steps is in-
dependent of the construction at this step.

Furthermore, at the nth step, we have Vn+1 ≡ 0, which
is equivalent to

V (x) ≡ φ2
1 + · · · + φ2

n (17)

This completes the n-step recursive construction of the
nonlinear Cholesky factorization, which is summarized as
follows:

Theorem 1: A positive definite, radially unbounded and
smooth function V (x) with x ∈ IRn has a unique nonlinear
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Cholesky factorization z = Φ(x) if and only if the assump-
tions B1–Bn are satisfied. Furthermore, under the same
assumptions, V (x) can be factored as

V (x) = Φ′
s(x)∆(x)∆(x)Φs(x) (18)

where Φs(x) a simple upper triangular diffeomorphism and
∆ is a diagonal matrix that satisfies (7)–(10).

Proof: To prove sufficiency let assumptions B1–Bn
hold. By the recursive construction in Lemma 1 there ex-
ists triangular mappings Φ = (φ1, . . . , φn)′ such that the
conditions R1.1–R1.4, . . . , Rn.1–Rn.4 are satisfied and
(17) holds. These conditions imply that Φ is a positive
upper triangular diffeomorphism.

To prove the necessity part of the theorem, we assume
that V admits a nonlinear Cholesky factorization. We first
consider the mapping φ1 and define V2(x2, . . . , xn) = z2

2 +
. . . + z2

n. Since V is radially unbounded and smooth, it
satisfies conditions C1–C3 of Lemma 1. The definition of
the nonlinear Cholesky factorization implies that φ1 and V2

satisfy the statements 1–4 of Lemma 1 so that E1 holds,
which is equivalent to B1. Therefore, B1 is necessary for
the existence of a nonlinear Cholesky factorization. When
B1 is satisfied, φ1 is uniquely defined, and so is V2.

Arguing inductively for i = 2, . . . , n, we determine for
each i, that the function Vi is independent of the construc-
tion of the previous mapping. The function Vi is radially
unbounded and smooth. Then, by Lemma 1, the unique
mapping φi exists only if assumption Bi holds. Therefore,
assumptions B1–Bn are necessary for the existence of a
nonlinear Cholesky factorization.

By the uniqueness of the mappings φi, at each step i =
1, . . . , n the diffeomorphism Φ is uniquely defined whenever
it exists.

The second part of the theorem follows directly from the
Proposition 1.

The motivation for the introduction of the simple dif-
feomorphism (18) is that the computation of the inverse
mapping Φ−1

s involves only substitutions.
Next, we consider two illustrative examples. The first

example is for quadratic functions. The second example
involves a 4th order polynomial and shows that the order-
ing of the coordinate variables (x1, . . . , xn) in Definition 4
is critical for the existence of the factorization.

Example 1. For V = x′Px, with positive definite P , the
nonlinear Cholesky factorization mapping Φ is z = Ux,
where the upper triangular matrix U is the Cholesky factor
of the matrix P , P = U ′U .

Example 2. Smooth and radially unbounded function
V (x1, x2) = (x1 + x2

2)2 + x2
2 admits a nonlinear Cholesky

factorization in the ordering (x1, x2) with Φ given by[
z1 z2

]′ :=
[

x1 + x2
2 x2

]′. If we switch the order-
ing, we obtain the function W (x1, x2) := V (x2, x1) =
(x2 + x2

1)2 + x2
1. Applying our result, we observe that the

equation
∂W

∂x1
= 4x3

1 + 4x1x2 + 2x1 = 0 has three distinct

roots when x2 = −1. By Theorem 4 the function W does
not admit a nonlinear Cholesky factorization.

A question of practical interest is whether assumptions
B1–Bn can be checked without actually carrying out the
recursive construction. It turns out that this is possible
when V is strictly convex. To prove this proposition, we
need the following corollary to Lemma 1.

Corollary 1: For a nonlinear function V (a, b) that sat-
isfies C1–C3 assume that

C4: V is strictly convex so that
∂2V

∂(a, b)2
(a, b) > 0, ∀(a, b).

Then, E1 is satisfied and statements 1–4 of the Lemma
1 hold. Furthermore, the nonlinear function V̂ (b) of the
decomposition (11) is strictly convex.

Proof: To show that E1 holds under the convexity
assumption, we note that C4 implies that V is strictly
convex in a, so that there is at most one root for the equa-

tion
∂V

∂a
= 0. By C2 and C3, there exists at least one

root because V admits a global minimum for any fixed b.

Therefore, this root is unique and simple because
∂2V

∂a2
> 0.

Hence, E1 holds.

To prove that
∂2V̂

∂b2 (b) > 0 ∀b, we show that p′ ∂2V̂

∂b2 (b)p >

0, for any nonzero vector p and any fixed vector b. For
each b and nonzero p, there exists a scalar δ such that p̄ :=
[
δ p′

]′ satisfies
∂φ

∂(a, b)
(α(b), b)p̄ = 0, where a = α(b)

is the unique root of φ(a, b) = 0. Thus, we have

0 < p̄′
∂2V

∂(a, b)2
(α(b), b)p̄

= p′
∂2V̂

∂b2 (b)p

+2p̄′
(

∂φ

∂(a, b)
(α(b), b)

)′ ( ∂φ

∂(a, b)
(α(b), b)

)
p̄

= p′
∂2V̂

∂b2 (b)p.

This proves the strict convexity of V̂ (b).
For a strictly convex function V , a nonlinear Cholesky

factorization exists for any ordering of the coordinate vari-
ables (x1, . . . , xn). This is an consequence of the following
corollary to Theorem 1, obtained by a recursive application
of Corollary 1.

Corollary 2: Consider a positive definite, radially un-
bounded and smooth nonlinear function V (x), where x ∈
IRn. The function V (x) admits a nonlinear Cholesky fac-
torization z = Φ(x), as defined in Definition 4, if it is
strictly convex, ∂2V/∂x2 > 0, ∀x ∈ IRn.

So far, we have presented a procedure to obtain a non-
linear Cholesky factorization for a given function. For
the nonlinear robust control problem formulated in Sec-
tion 2, the value function V is known only approximately
via its Taylor series expansion. In the remainder of this
section the objective is to derive a factorizable function
W that matches the function V up to any given order
of accuracy. We assume that the quadratic approxima-
tion V [2](x) = x′Px of V is positive definite. Our goal is
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to find, for any positive integer m, a radially unbounded
and smooth function W (x) which has a nonlinear Cholesky
factorization and such that W [m](x) = V [m](x). An ap-
proximate nonlinear Cholesky factorization can be easily
shown to exist by adding higher order terms V∆ to make
W = V [m] + V∆ strictly convex. However, this simplis-
tic convexification approach would cause serious computa-
tional difficulties. Instead, we present an explicit construc-
tion for the approximate function W and the factor Φ(x)
with milder nonlinear growth than the factor obtained via
convexification.

Our recursive construction consists of n steps. The fol-
lowing illustrates a typical step. Consider a polynomial
function V (a, b) of order m, where a is a scalar and b is
a vector. Assume that V [2](a, b) =

[
a b′ ]

P
[

a b′
]′

and P > 0. We partition the matrix P conformal with
(a, b),

P =
[

P11 P12

P ′
12 P22

]

where P11 is a positive scalar. Our goal is to find φ(a, b)
which satisfies the statements 1–4 of Lemma 1, and V̂ (b)
in (11) is such that V̂ [2](b) = b′P̂b with P̂ > 0.

First, we evaluate the root of
∂V

∂a
= 0 approximately.

Let Vp(a, b) :=
∂V [m]

∂a
(a, b). Then, Vp is an (m − 1)th or-

der polynomial and V [1]
p = 2

[
a b′ ] [

P11 P12

]′. This
implies that the equation V [1]

p (a, b) = 0 admits a unique

root a = − 1
P11

P12b.

Although, there may be several roots to the equation

∂V [m]

∂a
= 0 (19)

we are only interested in the root around a = − 1
P11

P12b.

The Taylor series expansion of the root function α(b) up
to (m − 1)st order can be computed by equating homo-
geneous terms of the same order. Starting with α[1](b) =

− 1
P11

P12b, we obtain higher-order terms

α[i](b) = − 1
2P11




i∑

j=2

Vp[j](α[i−1](b), b)





[i]

, (20)

for i = 2, . . . , m − 1. Therefore, we have

(
Vp(α[m−1](b), b)

)[m−1]
= 0 (21)

Next, by adding higher order correction terms we enforce
α[m−1](b) to be the unique root of (19), and to satisfy C1–
C3 and E1. Toward this end, we let η := a − α[m−1](b)
and define a function Π̄(η, b) through

ηΠ̄(η, b) := Vp(η + α[m−1](b), b) − Vp(α[m−1](b), b) (22)

From (21), we get

(
(a − α[m−1](b))Π̄(a − α[m−1](b), b)

)[m−1]
=

∂V [m]

∂a
(a, b)

and
(∫ η

0
(sΠ̄(s, b))[m−1] ds

∣∣∣∣
η=a−α[m−1](b)

)[m]

= V [m](a, b) − (V (α[m−1](b), b))[m] (23)

Next, we proceed to modify the high order polynomial
terms of the function Π̄ to guarantee that it is larger than
a positive constant for all (a, b) so that C2, C3, and E1
are satisfied.

To modify the high-order terms of Π̄ in the (η, b) coordi-
nates we need a polynomial Π̄s(η, b) of order (m− 2) such
that

(
Π̄2

s(η, b)
)[m−2] + C = Π̄[m−2](η, b) (24)

for some constant C > 0. From Π̄(0, 0) = 2P11, for the root
function Π̄s to exist around the origin, we must choose C

to be a fraction of P11, say
1
m

P11. The substitution of Π̄s

into (24), where Π̄s is expanded as

Π̄s(η, b) =
m−2∑

i=0

Π̄s[i](η, b), (25)

and equating polynomials of the same order, results in

Π̄s[0] =
√

2P11 − C

Π̄s[i] =
1

2
√

2P11 − C
(Π̄[i] −

i−1∑

j=1

Π̄s[j]Π̄s[i−j])

for i = 1, . . . , m − 2.
Therefore, by (23) and (24), we have

V [m](a, b) =

(∫ η

0
s(Π̄2

s(s, b) + C) ds

∣∣∣∣
η=a−α[m−1](b)

)[m]

+
(
V (α[m−1](b), b)

)[m]
(26)

For large values of m, Π̄2
s(a, b) and α[m−1](b) involve high-

order polynomials that grow rapidly in magnitude as x de-
viates from the origin. We alleviate this difficulty with two
smooth scaling functions S(b) and T (a, b), which satisfy

S[m−1](b) ≡ 1 (27)
T [m−2](a, b) ≡ 1, T (a, b) > 0 ∀(a, b). (28)

Using these scaling functions in (26), we have the following
identity

V [m](a, b) =
(
V (α[m−1](b), b)

)[m]
(29)

+
(∫ η

0
s(Π̄2

s(s, b) + C)T̄ 2(s, b) ds

∣∣∣∣

)[m]
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where η = a − α[m−1](b)S(b). We note that multiplier S

has been removed in the term
(
V (α[m−1](b), b)

)[m] because
(
V (α[m−1](b), b)

)[m] =
(
V (α[m−1](b)S(b), b)

)[m].

Define δ̄(η, b) =

√
1
η2

∫ η

0
s(Π̄2

s(s, b) + C)T̄ 2(s, b) ds and

V̂ (b) = (V (α[m−1](b), b))[m]. We note that δ̄ is a smooth
positive function of (a, b), and V̂ is an mth order polyno-
mial of b. Then, V [m](a, b) = W [m](a, b), where

W (a, b) :=
(
η2δ̄2(η, b)

∣∣
η=a−α[m−1](b)S(b)

)[m]
+ V̂ (b)

(30)

Since η = 0 is the unique root of η(Π̄2
s(η, b)+C)T̄ 2(η, b) =

0 and
∂

∂η
(η(Π̄2

s(η, b) + C)T̄ 2(η, b))
∣∣∣∣
η=0

= (Π̄2
s(0, b) +

C)T̄ 2(0, b) > 0, condition E1 is satisfied for the func-
tion W . By inspection, condition C2 is satisfied.
For condition C3 to hold, it is sufficient that T̄ 2 ≥
Ĉ

1
(1 + η2)(C + Π̄2

s(η, b))
, ∀(η, b), for some positive con-

stant Ĉ.
With the scaling function S, we can shape the growth

rate of the function α̂(b) := α[m−1](b)S(b), which corre-
sponds to the virtual control law in the backstepping de-
sign. With the scaling function T̄ , we can indirectly shape
the growth rate of the function δ(a, b), which further de-
termines the growth rate of the approximate value function
and the virtual control law in the backstepping design. For
induction purpose, we verify that the quadratic part of the
function V̂ is V̂ [2](b) = b′P̂b, where P̂ = P22 −P ′

12P
−1
11 P12

is positive definite due to the positive definiteness of P .
By repeated application of the above process, we can

prove the following theorem.
Theorem 2: Assume that a smooth function V (x) with

x ∈ IRn is locally quadratic, V [2](x) = x′Px, and P is
positive definite. Then, for any desired matching order
m ≥ 2, there exists a radially unbounded and smooth func-
tion W (x) which admits a nonlinear Cholesky factorization
such that W [m](x) = V [m](x) and W = Φ′Φ = Φ′

s∆∆Φs,
where Φs, a simple upper triangular diffeomorphism, and
∆, a diagonal matrix, are recursively constructed by the
above procedure.

When V (x) is an analytic function and admits a
Cholesky factorization V = Φ′

V s∆V∆V ΦV s, then there ex-
ists an ε0 > 0 such that, ∀|x| ≤ ε0, limm→∞ W (x) = V (x),
where the function W is constructed as above under the ad-
ditional assumption that as m → ∞ the scaling functions S
and T , introduced at each step of the construction, converge
to 1 on the set {x : |x| ≤ ε0}.

Proof: The first part follows from the construction
preceding the theorem. When V is positive definite and
analytic, the functions ∆V and ΦV s are analytic because
the elements of ΦV s are roots of n analytic equations. By
the analytic version of the implicit function theorem, they
are also analytic under the necessary and sufficient condi-
tions of Theorem 1.

For the second part of the theorem, we first consider
the case when the scaling functions S and T are set to 1
at each step of recursive construction. Then, the simple
diffeomorphism Φs is the truncated Taylor series approxi-
mation to ΦV s up to the order of m−1. By the analyticity
of ΦV s, it converges to Φs as m → ∞ within a radius of
convergence. The nonlinear function Π̄s in (25) is also the
truncated Taylor series approximation for the function V .
It converges, again due to the analyticity of ∆V , as m → ∞
within a radius of convergence. This further implies that
∆V s converges to ∆V as m → ∞ within the same radius
of convergence. Hence, the function W converges to V as
m → ∞ within the common radius of convergence.

For the general case, when the scaling factors S and T
converges to 1 as m → ∞, we can conclude the same con-
vergence result because of the fact that a product converges
when all its factors converge.

In general, the function generated by the recursive pro-
cedure is not convex. Therefore the approximate function
W includes lower order polynomial terms as compared with
the approximation resulting from the simplistic convexifi-
cation approach.

Equipped with this high-order matching result we pro-
ceed to present our design procedure for an inverse optimal
control law that matches the optimal design up to any given
order.

IV. Higher Order Matching Control Design

Applying the nonlinear Cholesky factorization result to
the robust optimal control problem for system (1) and cost
functional (2), we can prove that a backstepping procedure
can produce the optimal solution as long as the value func-
tion solution is factorizable in the lower triangular fashion.

Theorem 3: Consider the nonlinear system (1) and cost
functional (2) under Assumptions A1 and A2. Assume
that there exists a smooth value function V (x) satisfying the
HJI equation (3), which has a nonlinear Cholesky factoriza-
tion V = Φ′

s∆∆Φs in the reverse order of state variables,
(xn, . . . , x1). Then, the value function, minimax control
law (4) and the corresponding worst-case disturbance can
be obtained by a backstepping procedure.

The proof is straightforward and can be found in [1].

Theorem 3 assumes the knowledge of the value function
V (x). Instead, we pursue the inverse optimal design with
locally optimal matching as prescribed in Definitions 1 and
2.

Let m ≥ 1 be the desired matching order. By a result of
[8], we obtain the Taylor series expansion of V up to (m +
1)st order. Using Theorem 2, we can find a function Wl(x)
that matches V up to (m + 1)st order and can be factored
as Wl(x) = Φs(x)′∆(x)∆(x)Φs(x). Clearly, Wl satisfies
the HJI equation (3) up to (m + 1)th order. Introducing
zl = Φs(x), we further assume that the Φs and ∆ are given
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by

Φs(x) =





x1

x2 − αl1(x1)
...

xn − αl n−1(x1, . . . , xn−1)




(31a)

∆(x) = diag{δl1(x1), . . . , δln(x)} (31b)

where the subscript l indicates that this nonlinear function
is to be matched in the backstepping design. System (1)
in the zl coordinate is

żl1 = zl2 + ¯̂f l1(zl1) + ¯̂h
′
l1(zl1)w

... =
...

żln = u + ¯̂f ln(zl1, . . . , zln) + ¯̂h
′
ln(zl1, . . . , zln)w

Jγ =
∫ ∞

0
(q̄l(zl) + r̄l(zl)u2 − γ2w′w) dt

or, in compact form,

żl = ¯̂f l(zl) + Bu + ¯̂H l(zl)w.

Then, the function Wl can be expressed as W̄l(zl) =∑n
i=1 δ̄

2
liz

2
li and satisfies the HJI equation (3) up to (m +

1)th order:
(
∂W̄l

∂zl

¯̂f l −
1
4
∂W̄l

∂zl
(Br̄−1

l B′ − 1
γ2

¯̂H l
¯̂H
′
l)
(
∂W̄l

∂zl

)′

+q̄l)
[m+1] = 0 (32)

As a consequence of this construction, we have

π̄i(z
{i}
l{1}) := δ̄2li + zliδ̄li

∂δ̄li

∂zli
> 0, for any zl and all i =

1, . . . , n. Setting zl i+1 = · · · = zln = 0 yields the following
approximate HJI equation for W̄li, for any i = 1, . . . , n−1,



 ∂W̄li

∂z{i}
l{1}

¯̂f
{i}
l{1} +

1
4γ2

∂W̄li

∂z{i}
l{1}

¯̂H
{i}
l{1}

¯̂H
{i}
l{1}

′ ∂W̄li

∂z{i}
l{1}

′

+q̄{i}
l{1}

)[m+1]
= 0 (33)

where z{i}
l{1} =

[
zl1 . . . zli

]′ and

W̄li :=
i∑

j=1

δ̄2
ljz

2
lj

q̄{i}
l{1} := q̄l(zl1, . . . , zli, 0, . . . , 0)

¯̂f
{i}
l{1} :=





zl2 + ¯̂f l1(zl1)
...

zl i + ¯̂f li−1(z
{i−1}
l{1} )

¯̂f li(z
{i}
l{1})





¯̂H
{i}
l{1} :=

[ ¯̂hl1(zl1) . . . ¯̂hli(z
{i}
l{1})

]′
.

We are now ready to present the backstepping procedure
for high-order optimal matching design with global inverse
optimality.
Step 1: Define z1 := zl1 = x1 and W̄1(zl1) :=
δ̄2
l1(z1)z2

1 . The virtual control law prescribed by the non-
linear Cholesky factorization of Wl is x2 = ᾱl1(z1). Under
this control law, the value function W̄1 satisfies the HJI
equation (33), with i = 1. Therefore, the derivative of W̄1

is given by

˙̄W 1 = −q̄{1}l{1} + γ2w′w − γ2

∣∣∣∣∣w − 1
2γ2

¯̂H
{1}
l{1}

′ (∂W̄1

∂z1

)′
∣∣∣∣∣

2

+ξ̄1(z1) + 2z1π̄1(z1)zl2

where ξ̄1 is the remainder of the approximate HJI equality
(33),

ξ̄1(z1) =
∂W̄1

∂z1

¯̂f
{1}
l{1} +

1
4γ2

∂W̄1

∂z1

¯̂H
{1}
l{1}

¯̂H
{1}
l{1}

′ (∂W̄1

∂z1

)′

+q̄{1}l{1}.

This suggests the following smooth virtual control law zl2 =

− 1
2π̄1(z1)z1

ξ̄1(z1), which is equivalent to

x2 = ᾱl1(z1) −
1

2π̄1(z1)z1
ξ̄1(z1)

=: ᾱl1(z1) + ˜̄α1(z1) := ᾱ1(z1). (34)

Because ξ̄[m+1]
1 = 0 and π̄1 > 0, we conclude that ˜̄α[m]

1 = 0,
and hence is higher-order than the desired matching order.
Under this control law, we have

˙̄W 1 = −q̄{i}
l{1} + γ2w′w − γ2

∣∣∣∣∣w − 1
2γ2

¯̂H
{i}
l{1}

′ (∂W̄1

∂z1

)′
∣∣∣∣∣

2

+2z1π̄1(z1)(x2 − ᾱ1(z1)).

Step i, 1 < i < n: From the preceding step we have
a value function W̄i−1 =

∑i−1
j=1 δ̄

2
ljz

2
j and a virtual control

law ᾱi−1 for xi, which can be decomposed into a match-
ing part and a high-order part as follows: ᾱi−1(z

{i−1}
{1} ) =

ᾱl i−1(z
{i−1}
{1} ) + ˜̄αi−1(z

{i−1}
{1} ). The derivative of W̄i−1 is

˙̄W i−1 = −q̄{i−1}
l{1} (z{i−1}

{1} ) + γ2w′w − γ2
∣∣∣w − ν̄i−1(z

{i}
{1})

∣∣∣
2

+2zi−1π̄i−1(xi − ᾱi−1(z
{i−1}
{1} )) (35)

where ν̄i−1 is the corresponding worst-case disturbance,

ν̄i−1 =
1

2γ2

(
¯̂H
{i−1}
l{1} + ¯̂N

{i−1}
{1}

)′


 ∂W̄i−1

∂z{i−1}
{1}




′

(36)

¯̂N
{i−1}
{1} =





¯̂N1(z1)
...

¯̂N i−1(z
{i−1}
{1} )



 .
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The dynamics of the state variable z{i−1}
{1} are

ż1 = z2 + ¯̂f l1(z1) + ¯̂h
′
l1(z1)w + ¯̂M1(z1)

+ ¯̂N1(z1)w (37a)
... =

...
żi−1 = xi − ᾱi−1(z

{i−1}
{1} )

+¯̂f l i−1(z
{i−1}
{1} ) + ¯̂h

′
l i−1(z

{i−1}
{1} )w

+ ¯̂M i−1(z
{i−1}
{1} ) + ¯̂N i−1(z

{i−1}
{1} )w (37b)

where ¯̂M j(z
{j}
{1}) and ¯̂N j(z

{j}
{1}), j = 1, . . . , i − 1 are high-

order nonlinear (possibly vector-valued) functions.
By hypothesis, the transformation zj matches zlj, j =

1, . . . , i − 1, up to mth order. At the ith step, we define
the new coordinate zi := xi − ᾱi−1(z

{i−1}
{1} ). Because of

the matching between ᾱi−1 and ᾱl i−1, and the matching
between z{i−1}

{1} and z{i−1}
l{1} , the dynamics of zi is given by

żi = ¯̂f li(z
{i}
{1}) + zl i+1 + ¯̂h

′
li(z

{i}
{1})w

+ ¯̂Mbi(z
{i}
{1}) + ¯̂N i(z

{i}
{1})w

where ¯̂M bi and ¯̂N i are high-order nonlinear functions.
Again, based on the approximate factorization, we recur-

sively define the value function for this step as: W̄i(z
{i}
{1}) :=

W̄i−1(z
{i−1}
{1} )+ δ̄2

li(z
{i}
{1})z

2
i . Using the relationship (33), the

derivative of W̄i can be expressed as follows:

˙̄W i = −q̄{i}
l{1}(z

{i}
{1}) + γ2w′w − γ2

∣∣∣w − ν̄i(z
{i}
{1})

∣∣∣
2

+2ziπ̄izl i+1 + ξ̄i(z
{i}
{1})

where

ξ̄i(z
{i}
{1}) = q̄{i}

l{1} − q̄{i−1}
l{1} + γ2ν̄′iν̄i − γ2ν̄′i−1ν̄i−1

+
i−1∑

j=1

2z2
i δ̄li

∂δ̄li

∂zj
(zj+1 + ¯̂f lj + ¯̂M j)

+2ziπ̄i(
¯̂f li + ¯̂M bi) + 2zi−1π̄i−1zi (38)

ν̄i(z
{i}
{1}) =

1
2γ2

(
¯̂H

{i}
l{1} + ¯̂N

{i}
{1}

)′


 ∂W̄i

∂z{i}
{1}




′

(39)

¯̂N
{i}
{1}(z

{i}
{1}) =

[
¯̂N1(z1)

′
. . . ¯̂N i(z

{i}
{1})

′ ]′
.

By the approximate HJI equality (33), we conclude that(
ξ̄i(z

{i}
{1})

)[m+1]
= 0. From the expressions (38), (39) and

(36), we also conclude that ξ̄i(z
{i}
{1}) contains zi as a factor.

Hence, the smooth virtual control law for zl i+1 is zl i+1 =

− 1
2ziπ̄i

ξ̄i(z
{i}
{1}).

This leads to the satisfaction of a dissipation inequality
for the x{i}

{1} dynamics with supply rate, q̄{i}
l{1}(z

{i}
{1})−γ

2w′w.

The equivalent virtual control law for xi+1 is

xi+1 = ᾱi(z
{i}
{1}) := ᾱli(z

{i}
{1}) −

1
2ziπ̄i

ξ̄i(z
{i}
{1})

=: ᾱli(z
{i}
{1}) + ˜̄αi(z

{i}
{1}).

Therefore, the matching property of the virtual control law
is verified. Under this control law, the derivative of W̄i is

˙̄W i = −q̄{i}
l{1}(z

{i}
{1}) + γ2w′w − γ2

∣∣∣w − ν̄i(z
{i}
{1})

∣∣∣
2

+2ziπ̄i(xi+1 − ᾱi(z
{i}
{1})).

This completes the ith design step, up to i = n − 1.
Step n: For the final nth step, we define zn := xn −
ᾱn−1(z

{n−1}
{1} ). Now the actual control variable u appears

in the derivative of zn:

żn = ¯̂f ln(z) + u + ¯̂h
′
ln(z)w + ¯̂Mn(z) + ¯̂Nn(z)w

where ¯̂Mn and ¯̂Nn are present due to the higher-order mis-
matches between z and zl.

The value function for this final step, which becomes
the value function for the complete system, is W̄n(z) :=
W̄n−1(z

{n−1}
{1} )+ δ̄2ln(z)z2

n =: W̄ (z). Because of the approx-
imate HJI equality (32), the derivative of W̄ is equal to
the following expression, after two “completion of squares”
arguments:

˙̄W = −q̄l(z) − ¯̌ru2 + γ2w′w + ¯̌r
∣∣∣u + ¯̌r−1π̄n(z)zn

∣∣∣
2

−γ2 |w − ν̄n(z)|2 − (¯̌r−1(z) − r̄−1
l (z))π̄2

n(z)z2
n

+ξ̄n(z)

where

ξ̄n(z) = q̄l − q̄{n−1}
l{1} + γ2ν̄′nν̄n − γ2ν̄′n−1ν̄n−1

+
n−1∑

j=1

2z2
nδ̄ln

∂δ̄ln

∂zj
(zj+1 + ¯̂f lj + ¯̂M j)

+2znπ̄n(¯̂f ln + ¯̂Mn) + 2zn−1π̄n−1zn

−r̄−1
l (z)π̄2

n(z)z2
n

ν̄n(z) =
1

2γ2

( ¯̂H
′
l + ¯̂N

)′ (∂W̄

∂z

)′

¯̂N(z) =
[

¯̂N1(z1)
′

. . . ¯̂Nn(z)
′ ]′

.

Because the approximating value function W satisfies (32),
the function ξ̄n is higher-order such that ξ̄[m+1]

n = 0. Fur-
thermore, from the definition of ξ̄n, we conclude that ξ̄n
contains zn as a factor, and ξ̄f (z) := ξ̄n(z)/zn is a smooth
function such that ξ̄[m]

f = 0.
As ř we choose the locally Lipschitz continuous function

¯̌r(z) =






¯̌r1(z) if q̄l(z)/4 < ξ̄f (z)zn

r̄l(z) if q̄l(z)/2 − r̄−1
l (z)π̄2

n(z)z2
n − ε

≤ ξ̄f (z)zn ≤ q̄l(z)/4

¯̌r2(z) if q̄l(z)/2 − r̄−1
l (z)π̄2

n(z)z2
n − ε

> ξ̄f (z)zn

(40)
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where

¯̌r1(z) =
2q̄l(z)π̄2

n(z)z2
nr̄l(z)

(q̄l(z)/4 − ξ̄f (z)zn)2r̄l(z) + 2q̄l(z)π̄2
n(z)z2

n

¯̌r2(z) = r̄l(z)(1 + (q̄l/2 − r̄−1
l π̄2

nz2
n − ε− ξ̄fzn)2π̄2

nz2
n),

and ε is any positive constant.
Therefore, the control law,

µ̄(z) = −¯̌r−1π̄n(z)zn (41)

is the desired inverse optimal matching control design, and
it is inverse robust optimal with respect to the cost function
q̌ + řu2, where

¯̌q := q̄l(z) + (¯̌r−1(z) − r̄−1
l (z))π̄2

n(z)z2
n − ξ̄n(z). (42)

With this choice of ř, we note that, in a neighbor-
hood of the origin, q̄l(z)/2 ≥ c1|z|2 ≥ c2|z|3 ≥ ξ̄f (z)zn

for some positive constants c1 and c2, and ε ≥ q̄l(z)/2 −
ř−1
l (z)π̄2

n(z)z2
n − ξ̄f (z)zn. Therefore, in a neighborhood of

the origin, we have ¯̌r(z) = r̄l(z). This implies that the
control law (41) satisfies the matching requirement. In the
case when q̄l(z)/2 − r̄−1

l (z)π̄2
n(z)z2

n − ε > ξ̄f (z)zn, we have
¯̌q(z) > q̄l(z)/2 + ε. In the case when q̄l(z)/2 < ξ̄f (z)zn, we
have |z| > 0, which implies that q̄l(z)/2 > 0, and therefore
zn )= 0. Then, ¯̌r(z) > 0 and

¯̌r−1(z) − r̄−1
l (z))π̄2

n(z)z2
n − ξ̄f (z)zn +

3
4
q̄l(z)

=
1
2
q̄l(z)

∣∣∣∣1 − znξ̄f − q̄l(z)/4
q̄l(z)

∣∣∣∣
2

≥ 0

This completes the control design. This result is sum-
marized in the following theorem.

Theorem 4: Consider the nonlinear system (1) and cost
functional (2) with Assumptions A1, A2, and A3. Let the
function Wl be any radially unbounded and smooth func-
tion that has the same Taylor series expansion as the value
function V up to (m + 1)th order and admits a nonlinear
Cholesky factorization in the reverse order of state vari-
ables (xn, . . . , x1). Then, the control law (41) is locally
optimal matching up to mth order and is inverse robust
optimal with respect to the cost functional (5), where q̌ is
a positive definite and radially unbounded function defined
by (42), and ř is a positive function defined by (40).

Proof: We note that the constructed value function
W̄ is positive definite and radially unbounded because Wl

is assumed to be positive definite and radially unbounded,
and W̄ (z) = W̄l(z). The function q̌ is positive definite
and radially unbounded because it is larger than or equal
to q(x)/4. Furthermore, the function W̄ satisfies the HJI
equation and the matching requirements by the recursive
construction.

In the above recursive construction, we can start from
any given factorizable function Wl that approximates the
value function V . Clearly, for different Wl’s, the construc-
tion leads to, in general, different controller designs, that
all satisfy the inverse robust optimality requirement and
the local matching property. A question that remains to
be answered is whether there is any criterion to distinguish
which Wl is more appropriate for a particular problem.

V. Example

We consider a second order nonlinear system:

ẋ1 = x2
1 + x2 + w

ẋ2 = u

with cost functional

Jγ =
∫ ∞

0
(x2

1 + x2
2 + u2 − γ2w2) dt

where we fix the desired disturbance attenuation level to
be γ =

√
2.

The HJI equation associated with this zero-sum differ-
ential game is

Vx1(x
2
1 + x2) +

1
4γ2

V 2
x1

− 1
4
V 2

x2
+ x2

1 + x2
2 = 0 (43)

where V (x1, x2) is the value function for the game, if it ex-
ists. The Taylor series expansion of the function V (x1, x2)
around the origin up to 3rd order is given by [2]

V [3](x1, x2) = 6.680x2
1 + 9.657x1x2 + 4.724x2

2 + 89.92x3
1

+189.4x2
1x2 + 134.7x1x

2
2 + 32.50x3

2.

1st order matching

For m = 1 we are only concerned with the 2nd order
Taylor series expansion of the value function

V [2](x1, x2) =
[

x1

x2

]′ [ 6.680 4.828
4.828 4.724

] [
x1

x2

]
.

The controller design starts by first obtaining a factor-
izable function W that matches the value function V up
to 2nd order. It turns out that the function W is exactly
V [2]. The nonlinear Cholesky factorization is equivalent to
the Cholesky factorization for positive definite matrices:

V [2](x1, x2) = 1.3232x2
1 + 2.1742 (x2 + 1.022x1)

2 .

Hence, the simple diffeomorphism is given by
[

zl1 zl2

]′

=
[

x1 x2 + 1.022x1

]′. In the zl = (zl1, zl2)′ coordi-
nates, the original system is given by

żl1 = −1.022zl1 + z2
l1 + zl2 + w

żl2 = −1.045zl1 + 1.022z2
l1 + 1.022zl2 + u + 1.022w,

and the cost functional is

Jγ =
∫ ∞

0
(2.045z2

l1 − 2.044zl1zl2 + z2
l2 + u2 − 2w2) dt.

Next, we proceed through the two steps of backstepping.
In the first step, we set z1 = zl1, and choose a value function
V1(z1) = 1.3232z2

1 = 1.751z2
1, so that

V̇1 = 3.502z1(zl2 − 1.022z1 + z2
1 + w)

= −2.045z2
1 + 3.502z1(zl2 + z2

1) + 2w2

−2(w − 0.8755z1)2.
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Hence, the desired virtual control law for zl2 is −z2
1 . The

worst case disturbance for this step is ν̄∗1 = 0.8755z1.
In the second step, which is also the last step, we define

the state variable z2 = zl2 + z2
1 and obtain

ż2 = u − 0.1502z1 + 1.022z2 + 2z1z2 − 0.2940z2
1

+(1.022 + 2z1)(w − 0.8755z1).

The value function for this step is V2(z1, z2) = V1 +
2.1742z2

2 , and, after some algebraic manipulations, we get

V̇2 = −2.045z2
1 + 2.044z1z2 − z2

2 + 2w2

−2(w − 0.8755z1 − 2.415z2 − 4.728z1z2)2

−¯̌ru2 + ¯̌r(u + 4.726¯̌r−1z2)2 − 22.34z2
2(¯̌r

−1 − 1)
+64.58z1z

2
2 + 44.71z4

1 − 2.779z2
1z2.

Therefore, we have ξ̄2 = 64.58z1z2
2 +44.71z4

1−2.779z2
1z2 =:

ξ̄f z2, and define ¯̌r(z1, z2) as in (40) with q̄l(z) = 2.045z2
1 −

2.044z1z2 + z2
2 , r̄l(z) = 1, π̄2

2 = 2.1744, and ε = 0.1. Then,
the inverse optimal control law with optimality matching
up to 1st order is

u∗ = −4.726ř−1(x)(x2 + 1.022x1 + x2
1).

The worst case disturbance is ν̄∗2 = 0.8755z1 + 2.415z2 +
4.728z1z2.

2nd order matching

For m = 2, we are concerned with the 3rd order Taylor
series expansion of the value function V . Again, we start
by obtaining a factorizable function W that matches the
value function V up to 3rd order. We follow the recursive
procedure of Section 3 to construct the function W that is
factorizable in the order (x2, x1). Let

Vp(x2, x1) =
∂V [3]

∂x2
= 9.657x1 + 9.448x2 + 189.4x2

1

+269.4x1x2 + 97.50x2
2.

Using (20), the root function for x2 up to second order
is α(x1) = −1.022x1 − 1.684x2

1. In terms of η := x2 +
1.022x1 + 1.684x2

1 and x1, the function Π̄ is obtained as
Π̄(η, x1) = 9.448 + 70.11x1 + 97.50η − 328.4x2

1. Choosing
C = 0.448, we obtain Π̄s(η, x1) = 3 + 11.69x1 + 16.25η.
Then, we have the following identity

V [3](x1, x2) = 1.745x2
1 + 2.351x3

1

+
(∫ η

0
s((3 + 11.69x1 + 16.25s)2 + 0.448)T̄ 2

1 ds

)[3]

where η = x2 + 1.022x1 + 1.684x2
1, T̄ 2

1 (s, x1) := 1
1+p1s2 and

p1 ≥ 0 is a design parameter.
Hence, the function to be matched at the second step of

the nonlinear Cholesky factorization is V̂ (x1) = 1.745x2
1 +

2.351x3
1.

Let Vp(x1) = ∂V̂
∂x1

= 3.490x1 + 7.053x2
1. For this last

step, the root function is fixed to be x1 = 0. Then, we
have Π̄(x1) = 3.490 + 7.053x1. With C = 0.250, Π̄s is

given by Π̄s(x1) = 1.8 + 1.959x1. Thus, V̂ matches the
following function up to 3rd order.

V̂ (x1) =
(∫ η

0
s((1.8 + 1.959s)2 + 0.250)T̄ 2

2 (s) ds

)[3]

= 5p−1
2

(
(0.349 − 0.384p−1

2 ) ln(1 + p2x
2
1)

−1.41 tan−1(p0.5
2 x1)p−0.5

2 + 1.41x1 + 0.384x2
1

)[3]

where η = x1, T̄ 2
2 := 1

1+p2s2 and p2 ≥ 0 is a design param-
eter.

The scaling functions T̄1 and T̄2 are chosen to reduce
the control effort for the inverse optimal matching design.
Compared with a design using T̄1 ≡ 1 and T̄2 ≡ 1, the con-
trol effort is dramatically reduced. A choice for T̄ 2

1 which
could further reduce the control effort, but which leads to
a more complicated control law, is 1

1+p11x2
1+p12x1s+p13s2 .

This completes the construction of the matching function

W (x1, x2) = Ŵ1(η)
∣∣∣
η=x1

+ Ŵ2(x1, η)
∣∣∣
η=x2+1.022x1+1.684x2

1

where

Ŵ1 :=
∫ η

0
s((1.8 + 1.959s)2 + 0.250)T 2

2 ds

Ŵ2 :=
∫ η

0
s((3 + 11.69x1 + 16.25s)2 + 0.448)T 2

1 ds

with the properties ∂Ŵ1
∂x1

(x1) = 2x1π̄1(x1), ∂Ŵ2
∂η (x1, η) =

2ηπ̄2(x1, η), ∂Ŵ2
∂x1

(x1, η) = I(x1, η), and where

π̄1(x1) := 0.5 (1.8 + 1.959x1)2 + 0.25 /(1 + p2x2
1) > 0

π̄2(x1, η) := 0.5 (3 + 11.69x1 + 16.25η)2 + 0.448 /(1 + p1η2) > 0

I(x1, η) := −5.0 −75.985η + 75.985 tan−1(p0.5
1 η)p−0.5

1

−7.014 ln(1 + p1η2) − 27.33 ln(1 + p1η2)z1 p−1
1 .

This function W matches the value function V up to the
3rd order.

The simple diffeomorphism Φs in the nonlinear Cholesky
factorization for the function W is

[
zl1

zl2

]
= Φs(x1, x2) =

[
x1

x2 + 1.022x1 + 1.684x2
1

]

and, in the zl coordinates, the original system becomes

żl1 = −1.022zl1 − 0.684z2
l1 + zl2 + w

żl2 = −1.044zl1 − 4.141z2
l1 − 2.304z3

l1 + 3.368zl1zl2

+1.022zl2 + u + (1.022 + 3.368zl1)w.

The approximate value function W can be expressed as

W̄ = Ŵ1(zl1) + Ŵ2(zl1, zl2)

and the cost functional is

Jγ =
∫ ∞

0
(2.044z2

l1 + 3.442z3
l1 + 2.836z4

l1 +

(−2.044zl1 − 3.368z2
l1)zl2 + z2

l2 + u2 − 2w2) dt.
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With the function W available, we now proceed to the
two steps of backstepping for the construction of an in-
versely robust optimal controller that matches the optimal
control law up to 2nd order.

For the first step, we define z1 = zl1, V1(z1) = Ŵ1(z1),
and get

V̇1 = 2w2 − 2(w − 0.5π̄1z1)2 − 2.044z2
1 − 3.442z3

1

−2.836z4
1 + 2z1π̄1(zl2 + ᾱ(z1)),

where (ᾱ(z1))[2] = 0. Hence, the desired virtual control is
zl2 = −ᾱ(z1), and the worst case disturbance for this step
is ν̄∗1 = 0.5π̄1(z1)z1.

For the second step, we define a new state variable z2 =
zl2 + ᾱ(z1) which satisfies

ż2 = −1.044z1 − 4.141z2
1 + 3.368z1z2 + 1.022z2 + u

+H.O.T [3] + (1.022 + 3.368z1 + H.O.T [2])w

where H.O.T [i] denotes the terms of ith order and above.
The value function for this step is

V2(z1, z2) = V1(z1) + Ŵ2(z1, z2),

and its derivative is given by

V̇2 = 2.044z2
1 − 3.442z3

1 − z2
2 − 2.836z4

1

+2w2 − 2
(

w − 0.5π̄1z1 −
1
4
I(z1, z2)

−1
2
(1.022 + 3.368z1 + H.O.T [2])π̄2z2

)2

+(2.051z1 + 3.368z2
1)z2 + z2ξf (z1, z2)

−¯̌ru2 + ¯̌r(u + ¯̌r−1π̄2z2)2 − (¯̌r−1 − 1)π̄2
2z

2
2

where ξ[2]f (z1, z2) = 0. Now ř can be chosen according to
(40). The inverse robust optimal control law is given by

u∗ = −¯̌r−1, π̄2(z1, z2)z2

and the corresponding worst-case disturbance is

ν̄∗2 = 0.5π̄1z1 +
1
4
I(z1, z2)

+
1
2
(1.022 + 3.368z1 + H.O.T [2])π̄2(z1, z2)z2.

Simulations are used to illustrate the theoretical find-
ings. The design parameters p1 = 2000 and p2 = 4 are
chosen to reduce the control magnitude. For comparison,
the 2nd-order local controller has also been simulated with
the control law ulocal = −Vp/2. The phase-portraits for
the disturbance-free closed-loop systems under the two con-
trollers are shown in Figure 1. While the manifold Ms2 is
the stability boundary for the local controller, the matching
controller guarantees global asymptotic stability. Starting
at point A2, we have depicted the state trajectories in Fig-
ure 2 and the control trajectories in Figure 3. We observe
that initially the control magnitude for the matching con-
troller is somewhat larger than that for the local controller.
This is the price to be paid for global robustness with re-
spect to the disturbance input.

!0.5 0 0.5 1 1.5
!2

!1.5

!1

!0.5

0

0.5

1

 x
2

 x1

!   MS2

 A2 "

!  B2

Local
Global
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VI. Conclusion

We have developed a design procedure which combines
the Taylor series expansion and integrator backstepping
to solve the problem of nonlinear H∞ optimal control for
strict-feedback nonlinear systems. The procedure recur-
sively constructs a cost functional and the corresponding
solution to the HJI equation for a strict-feedback nonlinear
system such that the optimal performance is matched up to
any desired order of the Taylor series expansion. Moreover,
this procedure is also applicable to the nonlinear regulator
problem. What lies at the heart of the recursive construc-
tion is the new concept of nonlinear Cholesky factorization.
The nonlinear Cholesky factorization for a given positive
definite function is defined as an upper triangular coordi-
nate transformation such that in the new coordinates the
given function is equal to the sum of squares. We have
obtained precise conditions under which a given nonlinear
function has a nonlinear Cholesky factorization.

When the value function for the optimal control problem
has a nonlinear Cholesky factorization, we have shown that
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Fig. 3. Control efforts.

the backstepping procedure can be tuned to result in the
optimal control design, thus justifying backstepping as an
optimal design method. Making use of the Taylor series
expansion for the value function, we have developed ex-
plicit recursive computation schemes for a globally stable
and inversely optimal controller that matches the optimal
solution up to any desired order. A simulation example has
been included to illustrate the theoretical findings.

References

[1] Z. Pan, K. Ezal, A. J. Krener, and P. V. Kokotović, “Backstep-
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[6] Z. Pan and T. Başar, “Robustness of minimax controllers to
nonlinear perturbations,” Journal of Optimization Theory and
Applications, vol. 87, pp. 631–678, December 1995.
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