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Abstract

We provide a method for constructing local observers for some nonlinear systems around a critical point where the
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1. Introduction

We consider the problem of estimating the current
state x(¢) of a smooth, nonlinear dynamical system,

x= f(x),
¥ =h(x), 1)
x(0)=x"

when it is known that the state is close to x =0, a
critical point of the dynamics, f(0)=0. By replacing
h(x) by h(x) — h(0) we can assume without loss of
generality that A(0) = 0 also. By smooth we mean C”
for r sufficiently large. Occasionally, we shall assume
real analyticity of /" and h. The dimension of x is n and
the dimension of y is p which is typically less than .
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We wish to construct an observer
i=fGy), #0)=i @

30 that the error £(r) = x(t) — %(¢) goes to zero when
x% and £° are close to x =0,

Most approaches to this problem start with the as-
sumption that the lincarized system

i=Fx,

3)
y=Hx

is observable or detectable where

A
=

A linear system (3) is observable if the largest F in-
variant subspace in the kemel of H is just 0. The sys-
tem is observable iff the spectrum of the matrix F+BH
can be arbitrarily assigned up to a complex conjuga-
tion by the choice of an n x p matrix B.

A linear system {3) is detectable if the spectrum of
F restricted to the largest F invariant subspace in the

oh
(0). H=3-(0)
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kernel of H is in the open left half-plane. The system
is detectable iff the spectrum of the matrix F + BH
can be put in the open left half-plane by choice of
B. Observability implies detectability but the converse
does not hold.

When the linear system (3) is detectable, a local
observer can be easily constructed for the nonlinear
system (1). Choose some B so-that the spectrum of
F + BH is in the open left half-plane and then an
observer is given by

£=f() - By - 7),
J=hx), C))
£(0) = #£°,
The error dynamics of this observer is
¥ = (F + BH)F + O(£)O(x, ), (5)
which converges to 0 if x(¢) stays small and X(0) is
small.

To see this, since the spectrum of F + BH lies in

the open left half-plane, there exists a positive definite
solution P to the Lyapunov equation

(F+BHYP+ P(F + BH)Y= ~I.
So if x(1) satisfies (1) and #(¢) satisfies (4) then
%(i’}’f) = —[#? + (f + BhYP% + ¥ P(J + BF),

(6)

where f= f(x,%)=f(x)~ f(x—%)—FZ%, h=h(x, %)=
h(x) — h(x ~ ¥) - HZ. Assuming that the system is
sufficiently smooth, the last two terms on the right
side are O(x)O(£)* and so are dominated by |¢|? for
small x,%. Hence the right side is negative and the
error converges to zero.

Recently Kazantzis and Kravaris [3] have proposed
an improved method of observer design for systems
(1) whose linear part is observable. They seek a local
change of coordinates z = (x) which transforms 1)
into a linear system up to an output injection

Z= Az~ ﬂ(y)9
y=h(z)=h(0~(2)),

where the matrix 4 is Hurwitz. It is easy to con-
struct an observer for such a system in the new

(M

E=di-py),

coordinate z:

@®)

F=071(),

where the error dynamics is linear and exponentially
stable

Fap ©)

}xltcmatively, one can pull the observer back into the
original coordinates to obtain

-1
i=70)- (50) Gor-poae). a0

The approach of Kazantzis and Kravaris differs
from that of Krener and Respondek [6] and similar
approaches [2,5]. Krener and Respondek seek local
changes of coordinates z = f(x) and w = y(y) which
transforms (1) into a linear system up to an output
injection with a linear output map

Z=Az - p(y).
w=Cz

(11)
Because of the extra requirement that the transformed
output be a linear function of the state, it is harder
to find 6(x) and y(y) to do this. They must satisfy
a system of first-order PDEs, which is solvable iff
rather restrictive integrability conditions are met. Most
systems do not satisfy the integrability conditions.
It is easy to see that z = 6(x) transforms (1) into
(7) iff @ satisfies the first-order PDE

e (/2= 40() - B(y). (12)

Assuming f(x), h(x), B(¥) are smooth enough this
equation has a formal power series solution to degree d
provided that none of the eigenvalues u=(yy,...,,)
of A are resonant of'degree < d with the eigenvalues
A=(A},...,4,)of F. A eigenvalue 44 is resonant of de-
gree d > 0 with 2 if there is a vector m=(m,,...,m,)
of nonnegative integers such that Iml=my+ - 4m,=d
andm -2 =m i +o et My A = ;.

If there are no resonances of any degree d > 0 and
the system is real analytic, Kazantzis and Kravaris
proved that this formal power series solution con-
verges if 2 = (4,,...,4,) is in‘the Poincaré domain,
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that is, 0 is not in the convex hull of {4,,...,4,} [1].
If 0 is in the convex hull of {4,,...,1,} then 2 is said
to be in the Siegel domain [1). Krener and Xiao [8]
proved that even if A is in the Sicgel domain then a
Hurwitz 4 can be chosen so that there are no reso-
nances and the formal series for 0(x) converges.

One does not need an exact solution of PDE (12)
to construct a local observer, a finite series suffices.
Suppose 0(x)=01(x)+92(x)+- - .+ ¥l(x) satisfies

'gg(x)f(x)=A0(x)_ﬁ(y)+0(x)d+l, (13)

where 0 ¥(x) denotes a polynomial vector field that is
homogeneous of degree k. Without loss of generality
we can let 0{')(x) = x. Then observer (10) has nearly
linear error dynamics in transformed coordinates
£ =0(x) ~ 0(3),

£ = A% + O(z,£)70(3). (14)
Since the spectrum of 4 lies in the open left half-plane
then there exists a positive definite solution P to the
Lyapunov equation

AP+ PA= -1 (15)

So if x(t) satisfies (1) and #(¢) satisfies (10) then
2 (#P) =~ g + O 2YOY. (16)

From a comparison of (6) and (16) one expects (10)
to outperform (4).

2. Solution of the first-order PDE

We focus on the quadratic terms of (12) assuming
formal expansions of all the functions involved.

) =Fr+ By + Py +...
h(x) = Hx + H¥(x) + hBlx) + ... |
0(x)=x+8%x) + 0PN x) + ... ,
B(h(x)) = BHx + fP)(x) + BC)(x) + - -
A=F +BH.

They must satisfy the following first-order PDE:

26 @ 2 2 2
5 W% = A0Px) = — fCl(x) — fPUx).  (17)

This equation admits a unique solution 8 @)(x) for any
right-hand side iff none of the eigenvalues of 4 are
resonant of degree 2 with the spectrum of F [7].

Similarly, the degree k part of (12) is given by the
solution of

]
Qg;- (X)Fx — 40W)(x)

k-1

0] . '
== %‘ ) #x) - B¥)x). (18)

i=1

This equation admits a unique solution 8 ¥1(x) for any
night side iff none of the eigenvalues of 4 are res-
onant of degree k with the spectrum of F [7]. The
unknowns B%l(x),..., B¥(x) can be chosen to keep
60(x),...,0¥(x) close to 0 so O(x) remains a dif-
feomorphism over a wide region.

If system (1) is real analytic and a slightly stronger
condition than no resonances of any degree is satis-
fied then PDE (12) has a real analytic solution, i.e.
the formal power serious solution converges [8]. The
stronger condition is that all of the eigenvalues of
A must be of type (C,v) with respect to the spec-
trum of F for some C > 0, v > 0. A complex num-
ber y; is of type (C,v) for {m| > d with respect to
A =(4y,...,4,) if for any nonzero vector of nonzero
integers m = (my,...,m,), |m| > d it is true that

C
lj—m-2 > Tl (19)

Loosely speaking, a complex number p; is of type
(C,v) with respect to A (€ o(F)) if |i; — m- 4] is never
zero and does not approach zero too fast as jm| — oo.
If v > n/2 then the set of y,’s which are not of type
(C,v) for any C > 0 is a set of measure zero in the
complex plane [8].

If the system is linearly observable then the spec-
trum of 4 can be set arbitrarily by the linear part of
the output injection. Hence, we can choose it to be in
the open left half plane and to be of type (C,v) with
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respect to the spectrum of F'. This will insure that the
formal power series for 6(x) converges.

3. Linearly unobservable systems

We. consider systems (1) whose linear part is un-
observable. For simpﬁcity of exposition we focus our
attention on scalar output systems with only a few un-
observable modes, But our techniques can be applied
to more general systems.

Agsumc that the linear part of (1) has n, observable
modes x, and #, unobservable modes x, whose linear
dynamics is diagonalizable. Then after a linear change
of coordinate we can assume the following form:

Xy F, 0 Xo
[ ! ] = ] [ ] +O(xo-xu)2’
Xy

0 F | {x
Xo )
y=[H00][ J+0(xo,xu)‘
Xu
where F,, H, are in the observable form
[0 1 0 ... 0
001..0
Fy= s Ho=[100...0]
00 0 ... 1
| St f2 f3 oo S
and F, is diagonal
[ At .. O
Fy= ..
L O ... dus,

If any of the eigenvalues of F, lies in the open right
half-plane then it is not hard to show that it is impos-
sible to construct a smooth observer (2) with asymp-
totically stable error dynamics [4]. Henceforth, we as-
sume that the spectrum of £, lies in the closed left
half-plane.

Next, we seek a change of coordinates and an output
injection which carries the system to (7) or something

similar. Let

e 4, 0
0 4,
with 4, = Fy,

Theorem 1. Suppose that the system is linearly
detectable, that is, the spectrum o(F,) of F, lies in
the apen left half-plane. Then:

(1) for any formal power series B(x), there is a for-
mal power series for 8(x) satisfies (12);

(2) if in addition the system is real analytic and the
spectrum of F, is of type (C,v) for |m| > 1 with
respect to the spectrum of F then the formal
power series converges.

Proof. (a) Without loss of generality we can assume
that the linear part of the change of coordinates is the
identity. Thus let :

0(x):=x + 63(x),
where 8;(x) is to be determined. Let
O2(x) = 0¥ x) + 0PN x) 4 - + W) 4o -,

Then 8%i(x), k > 2 can be obtained from Eq. (18)
since the eigenvalues of 4, are resonant of degree 1
with respect to the spectrum of F,, due to the linear
detectability assumption.

(b) The detail proof can be found in [8), O

Now we consider the coordinate transformation
Zo O,(x0, Xy x

Z - o( 0 )} - 0} +0(x°'xu)2
| 2y ou(xo,xu) Xu |

and note that the linear part of the output injection
only affects z,

‘ﬂo(y) B, 5
= +O(Y,
,ﬂucy)} [ 0 ] Y+

where

by
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Then

Ao=Fo+ BH, = .

bp-1 0 0 ... 1
bo+ 1 f2f3 o [
gy .. O
A, =F, =
0 .o dum,

The spectrum of A, is arbitrarily assignable up to
the complex conjugation by choice of B,. In fact the
characteristic polynomial of 4, is

Pols) =
=1 =

s 4 Z —é._-‘- ~f1+| -+ Z bjfk+j+] S'k
k=0 L J=1

and clearly the coefficients of this can be arbitrarily
assigned by choice of by,...,b,,. First b, is used to
set the coefficient of s*=! then b, is used to set the
coefficient of s*~2, etc.

On the other hand the matrix 4, and its spectrum
cannot be changed by the output injection. Clearly, the
cigenvalues of 4, are resonant of degree | with the
spectrum of F,, but this causes no difficulty as we have
chosen the linear part of 8 to be the identity. When the
system is lincarly detectable, that is the spectrum of F,
is in the open left half-plane, and if the spectrum of F,
is not resonant with the spectrum of F for degrees k ==
2,...,d then for any formal power series for S(x) there
is a formal power series for 0(x) that satisfies (12).
From this formal series we can construct an observer
(10) with nearly linear error dynamics (14). This leads
1o the following corollary. In the next section we give
an example of this technique applied to the Lorentz
equations.

Corollary 1. If assumption (2) of Theorem \ holds,
then z = 0(x) defines a local change of coordinate
transformation which transforms (1) into (7). An ob-
server for (1) can be constructed in the form of (8)
and the error dvnamics is linear which is given by (9).

If A is chosen to be Hurwitz, then the error dynamic
is exponentially stable.

Next suppose that there is only one unobservable
mode and the corresponding eigenvalue A,  =0. Then
the spectrum of F,, is resonant with the spectrum of F
for all degrees

ko= Ay =0
and Eq. (12) may not be solvable.

(20)

Theorem 2. Suppose that (20) are the only reso-
nances. Then for any B*! we can always find QW
such that

k]
i’%;— (X)Fx = 48™)(x)

< 20U & 0
+3_ o O + i =aed, @D

f=1

where e, is the unit vector in the unobservable direc-
tion

0
=i
(4]
1
Moreover, if for some odd d, ¢; =---=c4_y =0 and

¢4 < 0 then observer (10) is locaily convergent.

Proof. Eq. (12) is unsolvable when the homogeneous
vector-valued polynomial 6 ] of degree £ equal to the
degree of resonance. However, we can construct the
0% as follows: let

B =33 pime'x”

J=1 =t

and set

0¥(x) = i Y Omels”
J=1 |mjsk

with
Bim

Om= i
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for those m and j for which the denominator is different
from zero. After substituting this 8%1 into (12), we
obtain (21).

Next, let us consider the error dynamics in F=2—7
coordinates. It takes the form

F= AF + cgey(2¢ - 20y + O(z, 5/ 0(3). (22)

Since the spectrum of 4, can be placed in the open left
half-plane then there exists a positive definite solution
P, to the Lyapunov equation

ALPo + Pody = —]">"e, (23)
Define

P, 0
p= [ " ;]
then
d -t - - - o -y
G EPD =~ + cafiulz] - £) + O, 20,

which is negative definite for small z,Z. [

4. Examples

We consider an observer for the Lorenz equations
for the standard parameter values. We assume that the
first state is directly measurable but the others are not,

X -1010 0 X 0

Xyl = 28 -1 0 |+ =-xxi,
.i; 0 0 -—g X3 X1X2
y=2Xx.

The first two states are linearly observable but
the third state is not. The spectrum of F is
{—22.83, 11.83, —2.67} and, in particular, the ejgen-
value of the unobservable mode is —2.67 so the
system is linearly detectable.

We let

-10
-501y
0

B =

then A = F + BH has the spectrum {—10.5 £
jl1.39, -2.67}.

There are no resonances at least through degree 3
so we are able to find 0(x)=011(x)+0@(x)+0B}(x)
which transforms the Lorentz system to

Z -2010 0 z ~10

Hl=|-22-10{|za|-|-s0]y

Z3 0 0 ;;—g z3 0
+0(z, y)*.

The transformation which accomplishes this is

25 Xy
n=1x
23 X3

0.0249x;x3 — 0.0025x;x;3
-+ 0.0111x1x3 + 0020&1.!:3

0.0020x} + 0.0012x;x; ~ 0.0184x3
~0.1647x .~ 0.0290x3x;
+107% | 0.0834x +02158x]x; ;
~0.2288¢3x; — 0.1197x,2333 |
0319005 +0.561 70,3
+1073 | —0.1552xxF +0.3745x33 |
-0.5983x3x; .
[ 0.04925] — 0.0509:x;
+1073 | ~0.2354x3 +04921xdxs
i 0
+0(x)*.

In Fig. 1 we show the dynamics of the Lorenz system
for 20 s starting from x; =10, x,==20, x3=230. Notice
x1{t) = x2(t) and these two variables oscillate with
x3(t). The oscillation shift erratically from positive
values of x; (1), x2(t) to negative oncs.
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Fig. 1. Dynamics of Lorenz system for 20 8.

. " " N A a M " N
° (2] 04 oe s ] w 14 18 LX) z

Fig. 2. Error of Lorenz observer for 25,

In Fig. 2 we show the error of the observer for
the Lorenz system for two seconds starting from
X =10, % =0, %3 = 30. Notice that the observer con-
verges in < 1 s which is roughly equal to the period of
the oscillations of x;(#) = x,(¢) with respect to x3(?).

Next, we consider an example where there is one
¢ unobservable mode whose cigenvalue is 0.

.X.:| = =X +X2,
Xy = —x)xg, (24)
%y=x|.

o

ot

ot

Fig. 3. Dynamics of the second example and its observer for 10s.

=g 1 2 ) . T r 7 . » [
ey
Fig. 4. Ervor of the observer for 10s.
Let
-1
B =
0

then

30
2
A=F +BH = .
00
If 2l = g3 = 0 then
zn=x-3x-$ng,

2y =X — X1X2 + %xfxz
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carries the system to

H=-—3z+ 1y +0@2),

#=—z3 + O(z)*

and an observer can be constructed by the above
method. Fig. 3 shows the simulations of the dynamics

of the system and the observer, and Fig. 4 provides
the error dynamics.

5. Conclusion

We have shown how the method of Kazantzis and
Kravaris can be extended to some systems that are not
lincarly observable and even to some systems which
are not linearly detectable. Two examples included in
the paper serve to illustrate the results.
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