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Abstract

We extend our recent results [9], [10] to the
design of reduced-order observers for nonlinear
systems. The approach method is to use change
of coordinates, which is based on the solution
of a system of first-order nonlinear PDEs. The
sufficient condition for the solution of the PDEs
is provided under very general conditions. The
approach is also applicable when the system
is only detectable. The method proposed in
this paper is constructive and can be applied
approximately to any sufficiently  smooth,
linearly observable system yielding a local ob-
server with approximately linear error dynamies.
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and k. The dimension of = is n and the dimension
of y is p which is typically less than n. For the
system (1.1), an observer is a dynamical system
driven by the observation y

5= faw (L.2)
such that the estimation error x—Z goes to zero as
t — oc. A local observer is one whose estimation
error converges to zero when x(0) and £(0) in a

neighborhood of the origin.

Based on the idea of (6] and (7], one tech-
nigue of constructing an observer proposed by
Kazantzis and Kravaris [3],[4], [5] is to seek a local
change of coordinates 2 = §(x) which transforms
(1.1} into a linear system up to an output injec-

Keywords: Nonlinear systems; Nonlinear tion
observers; Output injection; Linearizable error 3 = Az+ 38 13
dynamices. y = h{67(2)) (1.3)

1 Introduction

~ We consider the problem of estimating the
current state z(t) of a smooth, nonlinear dynam-
ical system,

where the matrix A is Hurwitz. It is easy to con-
struct an observer for such a system in the new
coordinate z:

Az + B(y)
671(2)

i

(1.4)

By o

where the error dynamics Z := z — £ is linear

& = flz} . i
y = h(z) (1.1) 7 = Ai (1.5)
(E(U) = Ip

from the past ohservation y(s}, s < t, where
S0} = 0 and R(0) = 0. By smooth we mean
that f and h are C” for r being sufficiently large.
Qccasionally we shall assume real analyticity of f
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and is exponentielly stable. Alternatively one can

"pull the observer back into the original coordi-

nates to obtain

£@)+ (%)™ (8 - BN o

1.6
It is easy to see that z = 6(z) transforms (1.1)
into (1.3) if and only if # satisfies a system of the

e



first-order PDEs

a9
@@ = A8() - Bl). (L7
af o
Let ——(0} := F and its eigenvalues be
(A1, ..+, An) := A If there are no resonances of

any degree d > 0 and the system is real ana-

" Iytie, applying Liapunov Theorem Kazantzis and
Kravaris proved that this formal power series so-
lution converges if A = (A1,....An) is in the
Poincaré domain, that is, 0 is not in the con-
vex hull of {A,..., A} (in other words, eigen-
values in the Poincaré domain implies that either
all of them in the left plane or all of them in
the right plane {1]). If 0 is in the convex hull of
{A1:-..y An} then X is said to be in the Siegel do-
main [1]. Krener and Xiao {9} proved that even if
A is in the Siegel domain then a Hurwitz A can
be chosen so that there are no resonances and the
formal series for 8(z) converges. -

The above approach through change of coor-
dinates requires the observer to have the same
size as the original systems, called a full-order ob-
server, which may result in a high computational
cost that sometimes may be intolerable when the
system has a large size. Hence a reduced-order
observer design is an attractive choice from a
practical viewpoint. '

In this paper we provide a method for design-
ing the reduced-order observer through change of
coordinates, whose idea is presented in [9] and
{10]. Similar to cur prior approach as described
in the introduction, we introduce change of coor-
dinates z = #(z) in which the image of & has a
lower dimension. This leads to a reduction of the
otder of the system of the PDEs (1.7) and reduces
the computation cost, while maintaining the er-
ror dynamics to be linear and thus exponentially
stable.

The paper is organized as follows. Section
2 briefly discusses the existence and uniqueness
of the solution of a system of first-order non-
linear PDEs. A detail discussion of design of
reduced-order observer is given in section 3. Sec-
tion 4 studies the case when the system is only
detectable, Two examples are provided in section
5 to illustrate the results of the paper.

€90

2 Solution of a System of First-Order
PDEs

We first introduce the following definition:

Definition 1 Given an nxn matriz F with spec-
trum o(F) = A = (M, ..., ) and constonts
C >0, v>0, we say a complex number pu is of
type (C,v) with respect to o(F) if for any vector
m = (my, Mz, ..., My} of nonnegative integers,
Im| = 3_m; > 0, we have

C

lp—m-Al = Ty (2.8}

Loosely speaking, a complex number g is of type
(C,v) with respect to ¢(F) = Aif [u—m- Al is
never zero and does not approach zero too fast as
|mj — oc. If v is large enough then the set of u's
which are of type (C, v) for some €' > 0 is dense
in the complex plane [9)].

A minor modification of the proof given in [9]
leads to the following theorem.

Theorem 1 Assume that f : R — R%h :
R — RP and 8 : R? — R"" P are analytic vec-
tor ﬁeg‘ifs with f(0) gh[}, R(0) =0, B(0) =0 and
eigenvalues of F be A = (A1,....\,). Let A be
an (n —p) x {(n — p) metriz end its eigenvalues be
(£81;-++; Mtn—p). Suppose that

1. if A is in the Pointcaré domain, then there
does not exist non-native integers my, ma,
.y Myu_p not ell zere such that

n—p
z midi = pji
i=1

2. if X is in the Siegel domain, then there exists
aC >0, v >0 such that all the eigenvalues
of A are of type (C,v) w.r.t. o(F).

Then there exists a unique analylic solution z =
8(x) to the system of PDEs

S (2)f(2) Ab(z) + 3(h(2)).

locally around the origin, where 8 : R* — R* 7P,

(2.9)



One can show that the assumption 1 of the
theorem actually implies that all the eigenvalues
of A are of type (C.v) w.rt. o(F) [9]. Hence the
assumption of type (C, v} w.r.t. o(F) is essential
for the formal series of §(x) to be convergent.

Note that A has only n — p eigenvalues, thus
the requirement of A being of type (C,v) w.r.t.
o{F) is easier to be verified than one in [9].

3 Reduced-Order Observers

We assume that the {ollowing p x n matrix has
rank p:

&h
5a(0)

H:

(3.10)

oh
52(0)

We wish to construct an observer with order (n—
p)x (n—p):

Az + B(y)
¥(z,y)

such that the error #{t} = z(t) — £(t) goes to
zero when xg and #g are close to x = 0, where
¥ : B* ~ R" will be discussed next. Thus
we seek a coordinate transform-z = #(x} which
can translate (1.1) into the first part of (3.11).
Clearly, there exists such a coordinate transform
if and only if & satisfies (2.9).

(3.11)

& e

Theorem 2 Suppose that the assumptions of
Theorem 1 are satisfied and (1.1} is linearly ob-
servable. Let

h]_(.’li)

®(z) = N (:c)
()

(3.12)

Then & is an analytic function. Moreover, there
always exrists an output injection function 3 such
that @ is an invertible map in a neighborhwod of
the origin.

The proof of Theorem 2 will be given in the
end of this section.

Let 20 = 8(xg) and £(0) = 2;. Define the error
to be 2(t) := 2(t) — £(t). Then if we choose A to
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be Hurwitz, the error dynamics is given by

At) = A5(t) (3.13)
and is exponentially stable. Under the as-
sumption of Theorem 2, we can denote z
B (y, 2) U(y,z). Let us define %
&Yy, 2) = ¥y, 2) and

fi=x—-1

(3.14)
Since z(t) — £(t) as t — oc, one can see that

H) = a(t) - alt)
q)—l(y: z(t)) - q)_l(ys 2@))
Wy, 2(0)) — Uy, 52)) — 0,

i

(3.15)

il

in a neighborhood of z = 0. This leads to the
following theorem:

Theorem 3 Under the assumptions of Theorem
1 and Theorem 2, if A is chosen to be Hurwitz,
then

E) =2(t) - 2(t) >0 ast—oxc. (3.16)
Hence if we choose zy, 2y are close to z =0, then
we have
ast — oc.

F)y=z2()—£(t) -0 (3.17)

The size of the neighborhood of = 0 on
which ® is a diffeomorphism varies with the
higher derivatives of 3, hence a careful selection
of 3 can enlarge the domain of the convergence
of the observer. We will provide two examples to
illustrate this.

In the linear case, that is, f(z) = Fz,h(z) =
Hz, (3.11} can be reduced to the reduced-order
Luenberger observer through change of coordi-
nates. To see this, we assume

H=[07xP; ]pxw*p)]
3 Fl(lﬂ-—p)X(n-p) Fl(;—p)m:

(3.18)
o e

Fglx (n—p)

Let z = 0(x). We need to solve the.following
matrix equation: )
TF = AT + BH, where T = ££(0).

(3.19)



We let
A = L +MFy
B = Fla+MFyp-— (F11+f|1'F21)ﬂ-1(,

(3.20)
where M is an (n—p) x p matrix. Since (H,F)is
observable, so does (Fu1, F11). Thus the spectrum
of A can be set arbitrarily by choice of Af. Now
notice that (3.19) has a solution

© T = [[n-px(n-p) :M].' (3.21)
Hence in this case
o(z) = [ I(n—p)ox(nfp) I;;_p }z (3.22)
Thus
U(z,y} =2 z.7)
B (3.23)

M [(r-pix(n-p)
Ie*p 0

I[:]

Therefore the reduced-order observer is given by

,é:(Fll'f‘ﬁ’fFQl)ﬁ 7
+(F12 + MFyy — (Fll + ﬂ'fFlz)ﬁ'I)y"

P I B N 4 —Af (3.24)
= 0 z I Y.

Now we are ready to show Theorem 2.

Proof of Theorem 2: Since hy,---,hy

are analytic according to our assumption and # is
analytic by Theorem 1, ® is an analytic function.
Without loss of generality, we can assume that

— Qﬁ — [pPXPp . pX{(n—p)
H=%(0)= [P 1 I

Now we set  to be such that

28(0) = B = Fyg + MFyz — (Fu1 + MFy)M
(3.25)

and M is an arbitré.ry (n - p) x p matrix, then

where

iy
Fy

F12

3.26
Fay (3.26)

g-;(o)=p=[

0 JP*P

8 —_

%(0) - [ I(n—p)x(n—p] M ] (327)
which has a full rank. Therefore ® is an invertible
map in a neighborhood of the origin. ]

One does not need an exact solution of the
PDEs (2.9) to construct a local observer, a finite
series suffices. Suppose

8(z) = Tz + 0 z) + .- + (=) (3.28)

satisfies the following system of PDEs

22 () f(=) Ab(z) + B(h(x)) + Ofz)*,
(3.29)

where 6%(z) denotes a polynomial vector field
that is homogeneous of degree k, and T is an (n—
p) X n matrix satisfies

TF = AT — BH. (3.30)

Then the observer {3.11) has nearly lincar error
dynamics in transformed coordinates

7= Az + O(z, 2)?0(3). (3.31)
since the spectrum of A lies in the open left half
plane, Z — 0 in a neighborhood of z = 0. Hence
z—2—0ast—oc.

4 Linearly Unobservable systems

We consider systems (1.1} whose linear part
is unobservable. Assume that the linear part of
(1.1) has n, observable modes z, and n, uncb-
servable modes x, whose linear dynamics is diag-
cnalizable. Then after a linear change of coordi-
nate we can assume the following form,

[ ;v: ] [ FOO jgu ] [ ;Z } + O(0; Tw)*

y = [H, 0] [ zo ]+O(Io,$u)2
u
where F,, H, are in the observable form and F,
is diagonal
Aud --- 0
Fu = .
0 e "\u.,ﬂ,u

Let T be an {n — p) X n matrix such that the
following matrix

H

T

is nonsingular, where H = [Hg, 0.

(1.32)
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Theorem 4 Suppose that the system is linearly
detectable, that is, the spectrum o(Fy) of F, lies
in the open left half plane. Then:

1. for any formal power series 3(x), there is a
formal power series for §(x) satisfies (2.9);

2. #f in addition the system is reql analyfic
and the spectrum of Fy, is of type (C,v) for
|m| > 1 with respect to the spectrum of F
then the formal power series converges.

Proof: (a) Without loss of generality we can as-
sume that the linear part of the change of coor-
dinates is Tz. Thus let

0(x) ;=T + G2(z)
where 8:(r) is to be determined. Let
0s(x) = 0 (z) + 68 (z) +. ..+ g (z) 4 .- .

Then 8)(x), & > 2 can be obtained from the fol-
lowing equation

o
a_g}_( VEx — AB%H(z)

k- : 4.33)
—i%&mW%%WM)(
i=1 :

since the eigenvalues of A, are resonant of degree
1 with respect to the spectrum of F;, due to the
linear detectability assumption.

{b)} The proof is similar to the one given in [9].0

Note that in this case, the function & is an
invertible map near = = 0 since

H
Tl
Thus the conclusion of Theorem 3 still holds with-
out the observable assumption.

80 = [ (1.34)

5 Examples

First we consider a Van der Pol oscillator:

F+(x?-i+z=0
y=z

693

which is equivalent to the planar system

BRI e
v=[1 o3[ 2]

by letting 1 = &, 23 = &. Now we have

&I
)

@=] o, | Mo =a
p:[_ﬂl i] H=1{1 0].

In this case, o(F) = {1/2 + jv/3/2}. The PDE
(2.9) becomes

mg_i +(—a1 + z2 —~ afx) £ = A6 + Blh(x)).

S =

(5.35)
If we let
3 19 3
A=-3, N
5 AW AR
then {5.35) has an analytic solution:
B(z1,5) = —Sz, + Z + 22, (5.36)
Thus we have
Iy .
B(zyi2) = - . (537
(-Tl, 2) [ "'%1‘1+‘j‘+$2:| ( )

The {global) reduced-order observer is then given
by |

—

A

™.

3 9 3
=, Al T (5.38)
3%~ 7

1>

X}
Il
ey

Porhed-Orier Opservge i Yun der Pl Oucltmer

L Onctee
[T o,

Figure 1: Observation of Van der Pol Oscillator



Next we consider the inverted pendulum
driven by an armature controlled DC motor gov-
erned by the equations:

.’tl Ia
2 | = | sinx1+ 3
I3 zo + 3 (539)
y=1=o.
In this case
1 0
F=]101 {5.40)
6 1 1

which has eigenvalues {—1.2470,0.4450,1.8019}.
In this case, (2.9) is in the form of

80, 30 86, 2
8z, 93y Dz xo + T3 (5.41)
&
_A[ 5, ] + 8(y).

Let us choose

.4:[‘02 _01],13(9)=[

siny — 10y/3 ]

y— 2siny
(5.42)
Then (5.41) has the solution
Hry,x2,23) = 3oLt T2 - 3% (5.43)
135228 Ty —2zT0 + 13 ) ’
Thus we hrave
Il
O(z1, 22, 23) = “%wl +x2 — %Is
X1 — 21‘2 =+ x3
(5.44)

Hence the (global) reduced-order observer is given

by

2 = =23 +siny— 10y/3

2 = —ZIn+y-—2siny (5.45)
Zy = 4y+3i1+ 5

T3 = Ty+6% + 3%.

Figure 2 shows the error dynamics of the observer,
where e; i= X2 — £2, €2 1= x3 — I3.
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