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Abstract. We extend the method of Kazantzis and Kravaris [Systems Control Lett., 34 (1998),
pp. 241–247] for the design of an observer to a larger class of nonlinear systems. The extended
method is applicable to any real analytic observable nonlinear system. It is based on the solution
of a first-order, singular, nonlinear PDE. This solution yields a change of state coordinates which
linearizes the error dynamics. Under very general conditions, the existence and uniqueness of the
solution is proved. Lyapunov’s auxiliary theorem and Siegel’s theorem are obtained as corollaries.
The technique is constructive and yields a method for constructing approximate solutions.
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1. Introduction. We consider the problem of estimating the current state x(t)
of a nonlinear dynamical system, described by a system of first-order differential
equations,

ẋ = f(x),
y = h(x),

(1.1)

from the past observations y(s), s ≤ t. The vector fields f : Rn → Rn and h :
Rn → Rp are assumed to be real analytic functions with f(0) = 0, h(0) = 0. One
technique of constructing an observer is to find a nonlinear change of state and output
coordinates which transforms the system (1.1) into a system with linear output map
and linear dynamics driven by nonlinear output injection. The design of an observer
for such systems is relatively easy [8], [6], [2], and the error dynamics is linear in
the transformed coordinates. Recently Kazantzis and Kravaris proposed a simpler
method [5]. One seeks a change of state coordinates z = θ(x) such that the dynamics
of (1.1) is linear driven by nonlinear output injection

ż = Az − β(y),(1.2)

where A is an n×n matrix and β : Rp → Rn is a real analytic vector field. One does
not have to linearize the output map.

Such a θ must satisfy the following first-order PDE:

∂θ

∂x
(x)f(x) = Aθ(x)− β(h(x)).(1.3)

Using a particular form of the Lyapunov auxiliary theorem [10], Kazantzis and Kra-
varis showed that (1.3) has a unique solution under certain assumptions.
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Theorem [10]. Assume that f : Rn → Rn, h : Rn → Rp, and β : Rp → Rn are
analytic vector fields with f(0) = 0, h(0) = 0, β(0) = 0 and F = ∂f

∂x (0), H = ∂h
∂x (0),

B = ∂β
∂x (0). Let the eigenvalues of F be (λ1, . . . , λn) and the eigenvalues of A be

(µ1, . . . , µn). If
1. 0 does not lie in the convex hull of (λ1, . . . , λn),
2. there do not exist nonnegative integers m1,m2, . . . ,mn not all zero such that∑n

i=1 miλi = µj,
then the first-order PDE (1.3), with initial condition θ(0) = 0, admits a unique ana-
lytic solution θ in a neighborhood of x = 0.

Based on the above theorem, Kazantzis and Kravaris proposed a nonlinear ob-
server design method [5], where the state observer is constructed using the coordinate
transformation z = θ(x) and the output injection β(y).

Kazantzis and Kravaris Theorem [5]. Assume that f, h, θ, β are as in the
above theorem and additionally that

3. θ is a local diffeomorphism,
4. A is Hurwitz.

Then the local state observer for (1.1) given by

˙̂x = f(x̂)−
[
∂θ

∂x̂
(x̂)

]−1

(β(y)− β(h(x̂)))(1.4)

has locally asymptotically stable error dynamics. In z coordinates, the system is given
by (1.2), the observer is

˙̂z = Aẑ − β(y),(1.5)

and the error z̃ = z − ẑ dynamics is

˙̃z = Az̃.(1.6)

One can show that if the conditions of this theorem hold, then (H,F ) is an
observable pair and (A,B) is a controllable pair. On the other hand, if (H,F ) is an
observable pair, then one can choose an invertible T and B so that A = (TF+BH)T−1

satisfies 2, 3, and if the solution of (1.3) exists for some β such that β(0) = 0,
∂β
∂x (0) = B, then θ is a local diffeomorphism. The size of the neighborhood of 0
on which θ is a diffeomorphism varies with the higher derivatives of β, hence the
advantage of allowing them to be different from zero.

The approach of Kazantzis and Kravaris has an advantage over that of Krener and
Respondek [8] and similar attempts to transform the dynamics and output map into
observer form. The former uses the Lyapunov auxiliary theorem, which depends on a
nonresonance condition, assumption 2 above, while the latter depends on integrability
conditions. The nonresonance condition is generically satisfied while the integrability
conditions are generically not satisfied. However, assumption 1 of Kazantzis and
Kravaris is quite restrictive, as it requires the system to be locally asymptotically
stable to the origin in either forward or reverse time. If the system is stable in
forward time, then an observer is not needed, as we know where it is going. If the
system is stable in reverse time, then it is unstable in forward time, so what good is
a local observer?

Assumption 1 requires that the eigenvalues of the linear part of f(x) at the origin
lie in the Poincaré domain, whose definition follows.
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Definition 1. An n-tuple λ = (λ1, . . . , λn) of complex numbers belongs to the
Poincaré domain if the convex hull of (λ1, . . . , λn) does not contain zero. An n-tuple
of complex numbers belongs to the Siegel domain if zero lies in the convex hull of
(λ1, . . . , λn).

Clearly, requiring the spectrum of F to be in the Poincaré domain rules out
many interesting problems, including critical ones where there are eigenvalues on the
imaginary axis [9]. In this paper we extend the observer design method of Kazantzis
and Kravaris to the Siegel domain [1]. We start with a definition.

Definition 2. Given an n× n matrix F with spectrum σ(F ) = λ = (λ1, . . . , λn)
and constants C > 0, ν > 0, we say a complex number µ is of type (C, ν) with
respect to σ(F ) if for any vector m = (m1,m2, . . . ,mn) of nonnegative integers, |m| =∑

mi > 0, we have

|µ−m · λ| ≥ C

|m|ν .(1.7)

Now we are ready to state the main result of this paper.

Main Theorem. Assume that f : Rn → Rn, h : Rn → Rp, and β : Rp → Rn

are analytic vector fields with f(0) = 0, h(0) = 0, β(0) = 0 and F = ∂f
∂x (0), H = ∂h

∂x (0),

B = ∂β
∂y (0). Suppose there exists

1. an invertible n× n matrix T so that TF = AT −BH;
2. a C > 0, ν > 0 such that all the eigenvalues of A are of type (C, ν) with
respect to σ(F ).

Then there exists a unique analytic solution z = θ(x) to the PDE (1.3) locally around
x = 0 with ∂θ

∂x (0) = T , so θ is a local diffeomorphism.

Notes. We have stated this theorem for real analytic functions because we are
applying it to a real analytic system. However, it is true for complex analytic func-
tions, as can be seen from the proof. Assumption 2 implies that the eigenvalues of
A are distinct from those of F . We shall show the following. Assumptions 1 and 2
imply that (H,F ) is an observable pair. On the other hand, if (H,F ) is an observable
pair, then one can let T = I and set the spectrum of A arbitrarily by choice of B.
Almost all complex numbers are of type (C, ν) with respect to σ(F ), so assumption 2
is hardly a restriction on A when (H,F ) is an observable pair. If A is chosen to be
Hurwitz, then the state estimator is given by (1.4) and the error dynamics is locally
asymptotically stable as before. We defer the proof of the main theorem to the next
section.

Converse to the Main Theorem. Consider the class of nonlinear systems
described by the following equation:

ż = g(z),
y = h(z),

(1.8)

where z ∈ Rn, y ∈ Rp, and g, h are continuous vector fields on Rn, Rp, respectively,
with g(0) = 0 and h(0) = 0. If there exists a nonlinear observer

˙̂z = ĝ(ẑ, y)(1.9)

such that the error z̃ = z − ẑ dynamics is linear,

˙̃z = Az̃,(1.10)
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where A is an n× n matrix, then there exists a continuous vector field β : Rp → Rn

such that

g(z) = Az − β(h(z)),(1.11)

ĝ(ẑ, y) = Aẑ − β(y).(1.12)

Proof . The error dynamics is

˙̃z = Az̃ = g(z)− ĝ(ẑ, y).

Assume z = 0. Then

Aẑ = ĝ(ẑ, 0).

Assume z̃ = 0. Then

g(z) = ĝ(z, h(z)).

Define

β(ẑ, y) = ĝ(ẑ, 0)− ĝ(ẑ, y).

Then

Az̃ = g(z)− ĝ(ẑ, y)

= ĝ(z, h(z))− ĝ(ẑ, h(z))

= ĝ(z, 0)− β(z, h(z))− ĝ(ẑ, 0) + β(ẑ, h(z))

= Az − β(z, h(z))−Aẑ + β(ẑ, h(z)).

So

β(z, h(z)) = β(ẑ, h(z)).

But the left side does not depend on ẑ, so neither does the right, and thus

β(ẑ, h(z)) = β(h(z)).

Therefore

ĝ(ẑ, y) = Aẑ − β(y),

g(z) = Az − β(h(z)).

Note. This converse shows that if a system (1.1) admits an observer with linear
error dynamics after a smooth change of coordinates, it is because the PDE (1.3) is
solvable for some smooth θ and continuous β.

The rest of the paper is organized as follows. Section 2.1 discusses the relationship
between the linear part of the nonlinear system (1.1) and the terms of degree 1 of
the solution (1.3). A unique formal solution of (1.3) is given in section 2.2 and this
is shown to be convergent in section 2.3. We also show in section 2.1 that (1.3) has a
unique solution for any choice of the eigenvalues of A except for a set of zero measure
in Cn. Several examples are treated in section 3. Section 4 applies the main result to
the case when the system has inputs.
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2. Solution of the PDE.

2.1. Terms of degree 1. If we focus on the terms of degree 1 in (1.3), we obtain
the equation

TF = AT −BH.(2.1)

We view this as a linear equation for T in terms of given F , H, A, B.
Lemma 1. Equation (2.1) admits a unique solution T if and only if the eigenvalues

of F and A are distinct, that is, σ(F ) ∩ σ(A) = ∅.
Proof. We give the proof when F admits a basis of right eigenvectors, {vj , j =

1, . . . , n}, and A admits a basis of left eigenvectors, {wi, i = 1, . . . , n}. The general
case is similar using bases of generalized eigenvectors. Define an operator F : T �−→
TF − AT on the space of n × n matrices {T}. Let λi be the eigenvalue of F corre-
sponding to the right eigenvector wi, and let µj be the eigenvalue of F corresponding
to left eigenvector vj . Now {vjwi, i, j = 1, . . . , n} is a basis for {T} and

F(vjwi) = (vjwi)F −A(vjwi)

= (λi − µj)v
jwi.

Thus F is invertible if and only if λi − µj �= 0 for all possible i and j. Therefore
FT = −BH admits a unique solution if and only if σ(F ) ∩ σ(A) = ∅.

Lemma 2. Suppose σ(F )∩σ(A) = ∅. If T is invertible, then (H,F ) is observable
and (A,B) is controllable.

Proof. Suppose (H,F ) is not observable. Then there exist λi ∈ σ(F ) and a vector
x ∈ Rn×1, x �= 0, such that Hx = 0 and Fx = λix. Multiply (2.1) by x to obtain

λiTx = TFx = ATx+BHx = ATx.

Since Tx �= 0, this implies that λi ∈ σ(A), a contradiction.
Similarly, suppose (A,B) is not controllable. Then there is µj ∈ σ(A) and a

vector ξ ∈ R1×n such that ξA = µjξ and ξB = 0. Multiply (2.1) by ξ to obtain

ξTF = ξAT + ξBH = µjξT.

Since ξT �= 0, this implies that µj ∈ σ(F ), a contradiction.
Lemma 3. If T is an invertible solution to (2.1), then A is conjugate to F modified

by output injection.
Proof . Since T satisfies equation

TF +BH = AT

and T is invertible, we thus have

T (F + T−1BH)T−1 = A.

Lemma 4. If σ(F ) ∩ σ(A) = ∅ and A is conjugate to F modified by output
injection, then there exists B such that the unique solution to (2.1) is invertible.

Proof. Since A is conjugate to F modified by output injection, there exist an
n× n invertible matrix S and an n× p matrix G such that

S(F +GH)S−1 = A.
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Hence we have SF = AS − SGH. Let B = SG. Then SF = AS − BH, so T = S
according to Lemma 1. Therefore T is invertible.

Loosely speaking, a complex number µ is of type (C, ν) with respect to σ(F ) = λ
if |µ −m · λ| is never zero and does not approach zero too fast as |m| → ∞. If ν is
large enough, then the set of µ’s which are of type (C, ν) for some C > 0 is dense in
the complex plane.

Lemma 5. If C > 0 and ν > n
2 , then

meas
{
µ : µ is not of type (C, ν)

} ≤ k(n, ν)C2,(2.2)

where k(n, ν) is a constant which depends only on n and ν.
If ν > n

2 , then the set of points which are not of type (C, ν) for any C > 0 is a
set of zero measure.

Proof. Clearly, the set {µ : µ is not of type (C, ν)} is

⋃
|m|≥1

Ball

(
m · λ, C

|m|ν
)
,

where Ball(p, r) stands for an open ball in C centered at p ∈ C with radius r. The

measure of the Ball(m ·λ, C
|m|ν ) is

πC2

|m|2ν . There are no more than (d+1)n−1 choices of

m = (m1,m2, . . . ,mn) such that |m| = d. To see this note that each of m1, . . . ,mn−1

must lie between 0 and d, and then mn = d−m1 − · · · −mn−1. Since (d+ 1) ≤ 2d,
we have

meas
⋃

|m|=d

Ball

(
m · λ, C

|m|ν
)

≤ πC2(2d)n−1−2ν .

Therefore, if n− 1− 2ν < −1, then

meas
⋃

|m|>0

Ball

(
m · λ, C

|m|ν
)

≤ πC2

( ∞∑
d=1

(2d)n−1−2ν

)
,

so (2.2) follows.

2.2. The formal solution of the PDE. Assume the hypothesis of the main
theorem holds. We show that there is a unique solution to the PDE (1.3) within the
class of formal power series. It is convenient to assume that F and A are diagonal;
the proof in the general case is similar but much messier. We expand the terms in
power series

f(x) = Fx+ f [2](x) + f [3](x) + · · · ,
β(h(x)) = BHx+ β[2](x) + β[3](x) + · · · ,

θ(x) = Tx+ θ[2](x) + θ[3](x) + · · · ,
where f [d], β[d], and θ[d] are homogeneous polynomial vector fields of degree d in x.
The knowns are f , h, β, T and the unknowns are the higher degree terms θ[2], θ[3], . . . .
The linear terms satisfy (2.1) by the above assumption.

The degree d part of (1.3) is

∂θ[d]

∂x
(x)Fx−Aθ[d](x) = −β̃[d](x),(2.3)
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where

β̃[d](x) = β[d](x) + Tf [d](x) +

d−1∑
j=2

∂θ[j]

∂x
(x)f [d+1−j](x).(2.4)

Let ek denote the kth unit vector in z space and let xm = xm1
1 · · ·xmn

n . Then the
above terms can be expanded as

β̃[d](x) =

n∑
k=1

∑
|m|=d

β̃k,me
kxm,

θ[d](x) =

n∑
k=1

∑
|m|=d

θk,me
kxm,

and we obtain the equations

(µk −m · λ)θk,m = β̃k,m.(2.5)

These equations have unique solutions because m · λ− µk �= 0.
The formal approach yields a method for constructing an observer with approxi-

mately linear error dynamics. Start by choosing a T,A,B satisfying the linear equa-
tion (2.1). Then successively solve (2.3) up to some degree d. At each step β[j] can be
chosen to make θ[j] smaller and thereby try to keep θ(x) close to its globally invertible
linear part Tx. The approximate solution

θ(x) = Tx+ θ[2](x) + θ[3](x) + · · ·+ θ[d](x),

β(y) = By + β[2](y) + β[3](y) + · · ·+ β[d](y)

transforms the system (1.1) into

ż = Az − β(y) +O(x)d+1,

so the observer (1.4) has approximately linearizable error dynamics. The error is
O(x, x̂)d+1. When implementing the method, the matrices F,A need not be diagonal,
but this makes solving (2.3) very easy.

2.3. Convergence of the formal solution. Let |x| = max{|x1|, . . . , |xn|}. We
write

f(x) = Fx+ f̄(x),

β(y) = BHx+ β̄(x),

where AT − TF = BH. We first show that the sequence of PDEs

Aθ2(x)− ∂

∂x
θ2(x)Fx = T f̄(x) + β̄(x),

Aθk(x)− ∂

∂x
θk(x)Fx =

∂

∂x
θk−1(x)f̄(x)

admits a sequence of analytical solutions θ2(x), θ3(x), . . . in some neighborhood of the
origin. Then we show that the sum

Tx+ θ2(x) + θ3(x) + · · ·
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converges to an analytic function which solves (1.3).
We define a positive real function bk : [0, 1) → [0,∞) to be

bk(q) := max
d∈Z+,d≥k

[
C−1dνq

d
2

]
,

where C > 0 and ν > 0 are given. We start with an important theorem.
Theorem 1. Let P (x) be a real analytic function in |x| < r with P (0) = 0 and

∂P
∂x (0) = 0. Suppose all of the eigenvalues of A are of type (C, ν) with respect to σ(F ).
Then the first-order PDE

Aθ(x)− ∂θ(x)

∂x
Fx = P (x)(2.6)

admits a unique analytic solution θ(x) in |x| < r with θ(0) = 0.
Proof. The analyticity of P (x) implies that P (x) can be expanded into a Taylor

series

P (x) = P [k](x) + P [k+1](x) + · · · for |x| < r

with

P [d](x) =

n∑
j=k

∑
|m|=d

pj,me
jxm,

where k ≥ 2 is the lowest degree of P (x). We assume a series solution

θ(x) = θ[k](x) + θ[k+1](x) + · · ·+ θ[d](x) + · · ·(2.7)

with

θ[d](x) =

n∑
j=1

∑
|m|=d

θj,me
jxm.

If we plug (2.7) into (2.6), then we have

θj,m =
pj,m

µj −m · λ for |m| ≥ k, 1 ≤ j ≤ n.

Since the eigenvalues of A are of type (C, ν) with respect to σ(F ), we have

|θj,m| = | pj,m
µj −m · λ | ≤

|m|ν |pj,m|
C

.

We shall show that (2.7) converges on the closed polydisk |x| ≤ qr for any 0 < q < 1.
Hence (2.7) converges on |x| < r.

Consider a new series

P̂ (x) = P̂ [k](x) + P̂ [k+1](x) + · · ·(2.8)

with

P̂ [d](x) =

n∑
j=k

∑
|m|=d

|m|ν |pj,m|
C

ejxm, d ≥ k.
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We next claim that (2.8) converges in |x| ≤ qr. Let ξ := (qr, qr, . . . , qr). Then

|P̂ [d](x)| ≤ max
1≤j≤n

∑
|m|=d

|m|ν |pj,m|
C

|x|m ≤ max
1≤j≤n

∑
|m|=d

|m|ν |pj,m|
C

|ξ|m

≤ max
1≤j≤n

∑
|m|=d

|m|νC−1q
|m|
2 |pj,m|(√qr)|m|

≤ bk(q) max
1≤j≤n

∑
|m|=d

|pj,m|(√qr)|m|.

Notice that P (x) is an analytic function for |x| < r, so its Taylor series converges
there absolutely, which yields

|P̂ (x)| ≤ bk(q) max
1≤j≤n

∞∑
d=k


 ∑

|m|=d

|pj,m|(√qr)|m|


 < +∞.

Thus (2.7) defines an analytic function θ(x) for |x| < r, which solves (2.6).
From Theorem 1, we immediately have the following corollary.
Corollary 1. Suppose all of the eigenvalues of A are of type (C, ν) with respect

to σ(F ). The PDEs

Aθ2(x)− ∂θ2

∂x
(x)Fx = T f̄(x) + β̄(x), θ2(0) = 0,(2.9)

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x), θk(0) = 0, k ≥ 3,(2.10)

admit analytic solutions in |x| < r.
The next step is to prove that

θ2(x) + θ3(x) + · · ·+ θk(x) + · · ·

converges near the origin and solves the PDE (1.3).
Since f̄(x) = O(|x|2) is an analytic function in the polydisk |x| ≤ r, it can be

expanded into a Taylor series:

f̄(x) = f [2](x) + f [3](x) + · · · , |x| ≤ r,

where f [d](x) =
∑n

j=1

∑
|m|=d fj,me

jxm. Thus the following series converges:

∑
|m|=2

|fj,m|r2 +
∑

|m|=3

|fj,m|r3 + · · · := Mj

for j = 1, 2, . . . , n. We define

M̄f := max

{
M1

r2
, . . . ,

Mn

r2

}

and

‖P (x)‖ := max
1≤i≤n

∑
m

|pi,mxm|
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if P (x) is analytic in |x| < r with

P (x) =

(∑
m

p1,mxm,
∑
m

p2,mxm, . . . ,
∑
m

pn,mxm

)
.

Lemma 6. There exists 0 < r1 < r such that if P (x) is analytic in |x| < r1, where
‖P (x)‖ ≤ N , then ∥∥∥∥∂P∂x (x)f̄(x)

∥∥∥∥ ≤ N in |x| < r1.

Proof . First it is easy to see that for any r1 < r we have

|f̄(x)| ≤ r2
1M̄f for |x| ≤ r1,

since for j = 1, 2, . . . , n∑
|m|=2

|fj,m|r2
1 +

∑
|m|=3

|fj,m|r3
1 + · · ·

= r2
1


 ∑

|m|=2

|fj,m|+
∑

|m|=3

|fj,m|r1
1 + · · ·


(2.11)

≤ r2
1

Mj

r2
≤ r2

1M̄f .

Next let

P (x) = (P1(x), P2(x), . . . , Pn(x)),

with Pi(x) =
∑

m pi,mxm and

N(r) := max
|x|≤r

‖P (x)‖.

The analyticity of P (x) implies that

∂Pi

∂xj
(x) =

∑
m

∂

∂xj
(pi,mxm) =

∑
m

pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n , |x| < r1,

and for any given ε > 0 there exists K > 0 such that when |m| > K∑
m,|m|≥K

∣∣∣pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n

∣∣∣ < ε

for |x| < r1. Thus∑
m,|m|≤K

|pi,mmjx
m1
1 · · ·xmj−1

j · · ·xmn
n |‖f̄j(x)‖ ≤

∑
m,|m|≤K

|pi,m|mjr1
|m|r1M̄f .

Let r1 be small enough such that

∑
m,|m|≤K

|pi,m|mjr1
|m|r1M̄f ≤ N(r1)

n
.
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Then for |x| < r1

∑
m

∣∣∣∣ ∂

∂xj
(pi,mxm)

∣∣∣∣ ∥∥f̄j(x)∥∥ <
N(r1)

n
+ εr2

1M̄f .

Thus we have∥∥∥∥∂Pi

∂xj
(x)f̄j(x)

∥∥∥∥ ≤
∑
m

∣∣∣∣
(

∂

∂xj
(pi,mxm)

)∣∣∣∣ ∥∥f̄j(x)∥∥ ≤ N(r1)

n
.

Therefore ∥∥∥∥∂P∂x (x)f̄(x)

∥∥∥∥ ≤ max
1≤i≤n

n∑
j=1

∥∥∥∥∂Pi

∂xj
(x)f̄j(x)

∥∥∥∥ ≤ N(r1).

In the definition of type (C, ν), without lose of generality we can assume that ν
is a positive integer since if ν is not, we can replace it by a larger integer.

Lemma 7. Let r2 := r1/n, where r1 is given in Lemma 6. Let θk(x) be the
solution of

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x).

Then if ‖θk−1(x)‖ ≤ N for |x| < r2, we have

‖θk(x)‖ ≤ NP (|x1|+ |x2|+ · · ·+ |xn|)
C (r1 − (|x1|+ |x2|+ · · ·+ |xn|))ν+1

for |x| < r2, where P is a polynomial of degree ν with coefficients depending only on r1.

Proof. We first let g(x) := ∂θk−1

∂x (x)f̄(x) and

φ(x) :=
Nr1

r1 − (x1 + · · ·+ xn)
.

Clearly for |x| < r2,

φ(x) =
N

1− (x1 + · · ·+ xn)/r1
= N

∞∑
d=0

(
x1 + · · ·+ xn

r1

)d

= N

∞∑
d=0

1

rd1

∑
|m|=d

|m|!
m!

xm

and

Dmφ(0) = N |m|!r−|m|
1 .

By the previous lemma, |g(x)| ≤ N for |x| < r1, so the Cauchy estimate yields

|Dmg(0)| ≤ N |m|!r−|m|
1 ,

where Dm is a partial differential operator of order m defined to be

Dm =
∂m

∂xm1
1 · · · ∂xmn

n
.
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Let

g(x) = g[k](x) + g[k+1](x) + · · ·+ g[d](x) + · · ·
with g[d](x) =

∑n
j=1

∑
|m|=d gj,me

jxm, where

|gj,m| =
∣∣∣∣ 1m!

Dmg(0)

∣∣∣∣ ≤ N
|m|!
m!

r
−|m|
1

and

θk(x) = θ
[k]
k (x) + θ

[k+1]
k (x) + · · ·+ θ

[d]
k (x) + · · ·

with θ
[d]
k (x) =

∑n
j=1

∑
|m|=d θj,me

jxm. Then (2.12) implies that

θj,m =
gj,m

µj − λ ·m.

Since the eigenvalues of A are of type (C, ν) with respect to σ(F ), it follows that

|θj,m| =
∣∣∣∣ gj,m
µj − λ ·m

∣∣∣∣ ≤ |m|ν
C

|gj,m| ≤ |m|ν |m|!
Cm!

r
−|m|
1 .

Next we claim that

N
∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!C

xm =
NP (x1 + x2 + · · ·+ xn)

C(r1 − x1 − x2 − · · · − xn)ν+1
.

For convenience, we denote x̂ = x1 + · · ·+ xn. Notice that for |x| < r2,

r1
r1 − (x1 + · · ·+ xn)

=
∞∑
d=0

1

rd1

∑
|m|=d

|m|!
m!

xm.

We differentiate above both sides with respect to x̂ and then multiply both sides by x̂,

r1x̂

(r1 − x̂)2
=

∞∑
d=0

1

rd1

∑
|m|=d

|m||m|!
m!

xm.

We repeat this procedure ν times and obtain

P (x̂)

(r1 − x̂)ν+1
=

∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!

xm,

where P (x̂) is a polynomial of degree ν with coefficients depending only on r1. Hence

∞∑
d=0

1

rd1

∑
|m|=d

|m|ν |m|!
m!

|xm| = P (|x1|+ · · ·+ |xn|)
(r1 − (|x1|+ · · ·+ |xn|))ν+1

,

which yields the conclusion.
Let r3 := r2/2 and

N̂ := max
|x|≤r3

P (|x1|+ · · ·+ |xn|)
C(r1 − (|x1|+ · · ·+ |xn|))ν+1
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and

M := max
|x|≤r

∞∑
d=2

(
|β[d](x)|+ |Tf [d](x)|

)
.

Theorem 2. Let θk(x) be the solution of

Aθk(x)− ∂θk
∂x

(x)Fx =
∂θk−1

∂x
(x)f̄(x), θk(0) = 0.

Then for any |x| ≤ qr3 with 0 < q < 1 we have

‖θk(x)‖ ≤ bk(q)N̂
k−2M.

Proof. According to the previous lemma, we know that

‖θ2(x)‖ ≤ MN̂ for |x| ≤ r3.

Applying the lemma in a recursive way yields

‖θk(x)‖ ≤ MN̂k−1 for |x| ≤ r3 and k = 3, 4, . . . .

Let g(x) = ∂θk−1

∂x (x)f̄(x). Then g(x) can be expanded into a Taylor series in |x| ≤ r3:

g(x) = g[k](x) + g[k+1](x) + · · ·
with g[d](x) =

∑n
j=1

∑
|m|=d gj,me

jxm. Similar to the proof given in Theorem 1,

‖θk(x)‖ ≤ bk(q)

∞∑
d=k


 ∑

|m|=d

|gj,m|(√qr3)
|m|


 ≤ bk(q)N̂

k−2M,

and the proof is complete.
Corollary 2. When q is small enough, the series

θ2(x) + θ3(x) + · · ·+ θk(x) + · · ·
converges in |x| ≤ qr3, where θd(x) for d = 2, 3, . . . is the solution of (2.10).

Proof. Let q ≤ 1
2ν+1N̂

. It is sufficient to show that

θk(x) + θk+1(x) + · · ·
converges for some fixed k in |x| ≤ qr3. According to the definition of bk(q), we know
that when k ≥ 2ν/ ln 1

q , the following holds:

bk(q) > bk+1(q) > · · · > bd(q) > · · · → 0 as d → ∞.

Choose k ≥ 2ν/ ln 1
q and notice that

bk(q) = kνqk, bk+1 = (k + 1)νqk+1, . . . , bd(q) = dνqd, . . . .

According to Theorem 2, we have

‖θk(x)‖+ ‖θk+1(x)‖+ · · · ≤ bk(q)N̂
k−2M + bk+1(q)N̂

k−1M + · · · .
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Since

bd+1(q)N̂
d−1M

bd(q)N̂d−2M
=

(
1 +

1

d

)ν

qN̂ < 2νqN̂ ≤ 1

2
, d ≥ k,

we thus complete the proof.
From Corollary 2, we know that series

θ2(x) + θ3(x) + · · ·+ θd(x) + · · ·(2.12)

defines an analytic function in |x| ≤ qr3. Now we are ready to prove the main result
of this paper.

Proof of the main theorem. We first define two functions in |x| ≤ qr3:

θ(x) := Tx+ θ2(x) + θ3(x) + · · ·+ θd(x) + · · ·
and

θL(x) := Tx+ θ2(x) + θ3(x) + · · ·+ θL(x),

where θ2(x), θ3(x), . . . are the solutions of (2.9), (2.10). We next show that θ(x) solves
(1.3). Now

AθL(x)− ∂θL(x)

∂x
f(x)− β(h(x))

= AθL(x)− ∂θL(x)

∂x
(Fx+ f̄(x))− (BHx+ β̄(x))

=
∂θL(x)

∂x
f̄(x).

If |x| ≤ qr3, then ‖θL(x)‖ ≤ bL(q)N̂
L−2M and∥∥∥∥∂θL(x)∂x

f̄(x)

∥∥∥∥ ≤ bL(q)N̂
L−2M → 0 as L → ∞

since series

bk(q)N̂
k−2M + bk+1(q)N̂

k−1M + · · ·
converges. Therefore θ(x) is an analytic solution of (1.3). Uniqueness follows from
the uniqueness of the formal power series.

A slight modification of the proof of the main theorem yields the following.
Corollary 3 (Lyapunov’s auxiliary theorem). Assume that f : Rn → Rn and

γ : Rn → Rn are analytic vector fields with f(0) = 0, ∂f
∂x (0) = F , and γ(0) = 0.

Suppose that the eigenvalues λ1, . . . , λn of F lie wholly in the open left half plane or
lie wholly in the open right half plane. Let A be an n × n matrix with eigenvalues
µ1, . . . , µn such that there do not exist nonnegative integers m1,m2, . . . ,mn not all
zero such that

∑n
i=1 miλi = µj. Then there is a unique analytic solution in some

neighborhood of the origin of the first-order PDE:

∂θ

∂x
(x)f(x)−Aθ(x) + γ(x) = 0

with initial condition θ(0) = 0.
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Proof. Let h(x) = x and β(h(x) = γ(x). The main theorem cannot be applied
directly because the Lyapunov auxiliary theorem does not require θ(x) to be a local
diffeomorphism. But the proof stills holds provided we can show that the spectrum
of A is of class (C, ν) with respect to the spectrum of F . Suppose the spectrum of
F lies wholly in the open right half plane. Then there is a constant c > 0 such that
c ≤ Re λi, i = 1, . . . , n. Suppose M ≥ Re µj , j = 1, . . . , n. Then

|m · λ− µj | ≥ 1

whenever |m| ≥ M+1
c . Let ν = 1 and choose 0 < C ≤ 1 satisfying

|m · λ− µj | ≥ C

whenever |m| < M+1
c . This is possible because the left side is never zero. We have

shown that the spectrum of A is of class (C, ν) with respect to the spectrum of F .
Corollary 4 (Siegel’s theorem). Assume that f : Rn → Rn is an analytic

vector field with f(0) = 0, ∂f
∂x (0) = F . Suppose, for some C > 0, ν > 0, the eigenvalues

of F are of type (C, ν) with respect to σ(F ). Then there is an analytic solution in
some neighborhood of the origin of the first-order PDE:

∂θ

∂x
(x)f(x) = Fθ(x)

with initial condition θ(0) = 0. Moreover z = θ(x) is a local analytic diffeomorphism
around x = 0 which transforms the differential equation

ẋ = f(x)

into its linear part

ż = Fz.

Proof. Apply the main theorem with β = 0, A = F , and T = I.
Note. Lyapunov’s auxiliary theorem and Siegel’s theorem are usually stated for

complex analytic vector fields. We have stated them for real analytic vector fields
since we stated our main theorem that way. But the proof of the main theorem holds
for complex vector fields too.

3. Examples. As discussed in the introduction, there are distinct advantages to
considering nonlinear output injection β(y). It is desirable that θ be a diffeomorphism
over as large a range as possible, for this is the domain of convergence of the observer.
Nonlinear output injection can make θ a global diffeomorphism.

To illustrate this, we consider a Duffing oscillator

ẍ = x− x3,

y = x,

which is equivalent to the planar system[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0

−x3
1

]
,

y = x1.
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This system is trivially transformed into a linear system with output injection (1.2)[
ż1

ż2

]
=

[ −2 1
−2 0

] [
z1

z2

]
−
[ −2y

−3y + y3

]

by

θ(x) = x,

β(y) =

[ −2y
−3y + y3

]
.

Notice that β is nonlinear and θ is trivially a global diffeomorphism. The observer
(1.4) is [

˙̂x1

˙̂x2

]
=

[ −2 1
−2 0

] [
x̂1

x̂2

]
−
[ −2y

−3y + y3

]
,

and the error dynamics [
˙̃x1

˙̃x2

]
=

[ −2 1
−2 0

] [
x̃1

x̃2

]

is linear and exponentially stable with poles at −1± i.
The example is trivial but illustrates two important facts. The first is the advan-

tage of allowing nonlinear β. We could take it to be linear,

β(y) =

[ −2
−3

]
y,

and still solve the PDE (1.3) for θ. But the solution might be hard to find, it could
have an infinite power series expansion, and it might not be a global diffeomorphism.

The second point is that the Duffing oscillator is truly nonlinear; it has three
equilibria and two homoclinic orbits, and the rest of the trajectories are limit cycles.
Yet it is possible to build a globally convergent error with linear error dynamics.

Next we consider a Van der Pol oscillator,

ẍ = −(x2 − 1)ẋ− x,

y = x,

which is equivalent to the planar system[
ẋ1

ẋ2

]
=

[
0 1
−1 1

] [
x1

x2

]
−
[

0
x2

1x2

]
,

y =
[
1 0

] [ x1

x2

]
.

Now we have

f(x) =

[
x2

−x1 + x2 − x2
1x2

]
, h(x) = x1,

F =

[
0 1
−1 1

]
, H =

[
1 0

]
.
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We look for a nonlinear coordinate transformation z = θ(x) such that in the new
coordinates z, the system can be described in the form

ż = Az − β(y).

Let us choose A and β to be

A =

[
b1 1

b2 − 1 1

]
, β(y) =

[
b1y +

y3

3

b2y +
y3

3

]
,

where b1, b2 are constants such that 1 + b1 < 0, b1 − b2 + 1 > 0. Clearly, A is stable
since trace(A) = 1 + b1 < 0 and det(A) = b1 − b2 + 1 > 0. Moreover A = F + BH
with B = [b1, b2]

′. The solution of (1.3) in this case is given by

θ(x) =

[
x1

x2 +
x3
1

3

]
.

Note that θ is polynomial and globally invertible on R2. This is because we chose a
nonlinear β. The resulting observer is again globally convergent with exponentially
stable linear error dynamics in z̃ coordinates despite the nonlinearities of the Van der
Pol oscillator. See Figure 1.

0 5 10 15
−3

−2

−1

0

1

2

3

4
Observation of the state of van der Pol equation, x1

time t

so
lu

tio
n 

x1

actual state
estimated   

0 5 10 15
−10

−8

−6

−4

−2

0

2

4
Observation of the state of van der Pol equation, x2

time t

so
lu

tio
n 

x2

actual state
estimated   

Fig. 1. Observation of Van der Pol oscillator.

Both these examples could be treated by the method of Krener and Respondek [8].
In particular, they showed that any observable two-dimensional system of the form

y = x1,

ẋ1 = x2,

ẋ2 = f2(x) = a(x1) + b(x1)x2 + c(x1)x
2
2,
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where a(x1), b(x1), c(x1) are smooth functions, admits a local observer with linear
error dynamics in transformed coordinates. But their method is not applicable to
more general f2. The above method is applicable to any observable system with
arbitrary f2. The conditions of Krener and Respondek become more restrictive as the
dimension of the system is increased, while there are no additional conditions for the
above method.

The next example cannot be treated by the method of Krener and Respondek:

y = x1,

ẋ1 = 2x2,

ẋ2 = 2x1 − 3x2
1 − x2(x

3
1 − x2

1 + x2
2).

There is a saddle at (0, 0) and an unstable source at (2/3, 0). The stable and unstable
manifolds of the saddle form a homoclinic orbit given by x3

1−x2
1+x2

2 = 0 which wraps
around the unstable source.

The system is linearly observable around x = 0 with

F =

[
0 2
2 0

]
, H =

[
1 0

]
.

The spectrum of F is λ = (2,−2). We choose a linear output injection based on a
long time Kalman filter for the linear part of the system corrupted by standard white
noises, and this leads to

A =

[ −√
17 2
−2 0

]
, B =

[ −√
17
−4

]
.

The spectrum of A is

−√
17± 1

2
,

and clearly these are not resonant with the spectrum of F because they are not even
integers.

First we compute θ for up to degree 3 with β[2] = 0, β[3] = 0:

θ[1](x) =

[
1 0
0 1

] [
x1

x2

]
,

θ[2](x) =

[
1.2188 −0.7731 −0.2812
1.7394 0.2812 −1.3529

] x2
1

x1x2

x2
2


 ,

θ[3](x) =

[ −20.4026 19.1878 20.8159 −20.1972
−21.7136 20.8245 20.6972 −20.8216

]
x3

1

x2
1x2

x1x
2
2

x3
2


 .

Figure 2 shows the system starting at x1 = 0.5, x2 = 0 and the observer starting
at x̂1 = 0, x̂2 = 0. Clearly this observer does not converge; in particular, the observer
seems to stall around (0.3, 0.4). The problem appears to be caused by the large sizes
of θ[2] and θ[3].
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x and xhat for deg 3 observer with be2=0, be3=0

Fig. 2. Solid line: state trajectory. Dashed line: observer trajectory.

Next we choose β[2] to minimize the Euclidean norm of the coefficients of θ[2], and
then we choose β[3] to minimize the Euclidean norm of the coefficients of θ[3]. The
result is

θ[1](x) =

[
1 0
0 1

] [
x1

x2

]
,

θ[2](x) =

[
0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000

] x2
1

x1x2

x2
2


 ,

θ[3](x) =

[
0.0330 0.0938 −0.2219 0.1925

−0.4030 −0.1514 0.3075 0.1749

]
x3

1

x2
1x2

x1x
2
2

x3
2


 ,

β(y) =

[ −4.1231 0.0000 −1.1296
−4.0000 3.0000 0.2368

] y
y2

y3


 .

Notice how much smaller θ[2] and θ[3] are. The resulting observer performs much
better, as can be seen from Figure 3.

4. Nonlinear observer design with inputs. We now consider a nonlinear
system with inputs:

ẋ = f(x, u),(4.1)

y = h(x, u),(4.2)

where f : Rn × Rm → Rn and h : Rn × Rm → Rp are continuous. We assume
here that

f(x, u) = f0(x) + f1(x, u), h(x, u) = h0(x) + h1(x, u)
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Fig. 3. Solid line: state trajectory. Dashed line: observer trajectory.

with f1(x, 0) ≡ 0, h1(x, 0) ≡ 0, and f0 : R
n → Rn and h0 : R

n → Rp are real analytic
functions with f0(0) = 0, h0(0) = 0. Let β : Rp → Rn be a real analytic function and
F = ∂f0

∂x (0), H = ∂h0

∂x (0), and B = ∂β
∂x (0). We further assume that

1. for a given n× n matrix A, there exists an invertible n× n matrix T so that
TFT−1 = A−BH;

2. there exists a C > 0, ν > 0 such that all the eigenvalues of A are of type
(C, ν) with respect to σ(F ).

Then according to the main result of this paper, we know that the first-order PDE

∂φ

∂x
(x)f0(x) = Aφ(x)− β(h0(x))(4.3)

has a unique analytic solution z = φ, which is a diffeomorphism in some neighborhood
U of the origin with ∂φ

∂x (0) = T .

Now we let the estimate of the true state obey the equation

˙̂x = f(x̂, u)−
[
∂φ

∂x̂

]−1

(β(y)− β(h(x̂, u))).(4.4)

Let e denote

e = φ(x̂)− φ(x).

Then e satisfies the differential equation

ė =
∂φ

∂x̂
f(x̂, u)− (β(y)− β(h(x̂, u)))− ∂φ

∂x
f(x, u)

=
∂φ

∂x̂
(f0(x̂) + f1)(x̂, u)− (β(y)− β(h(x̂, u)))− ∂φ

∂x
(f0(x) + f1(x, u)).
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Since

∂φ

∂x̂
f0(x̂) = Aφ(x̂)− β(h0(x̂)),

∂φ

∂x
f0(x) = Aφ(x)− β(h0(x)),

this yields

ė = Ae+N(x̂, u)−N(x, u),(4.5)

where the nonlinear function N is defined to be

N(x, u) :=
∂φ

∂x
(x)f1(x, u) + β(h(x, u))− β(h0(x)).(4.6)

We further assume that f1(·, u) is locally Lipschitz about the origin; then there exists
a positive constant L(u) such that

‖N(x1, u)−N(x2, u)‖ ≤ L(u)‖x1 − x2‖
for all x1, x2 in some open neighborhood U containing the origin. If we choose A
to be Hurwitz, then for any given positive-definite Q ∈ Rn×n there exists a unique
positive-definite P ∈ Rn×n such that

ATP + PA = −2Q.

Now we consider the Lyapunov function

V (e) = eTPe.

The derivative of V (e) evaluated along the solution of the error dynamics is given by

V̇ (e) = ėTPe+ eTP ė = −2eTQe+ 2eTP [N(x+ e, u)−N(x, u)].

Therefore we have

V̇ (e) ≤ −2eTQe+ 2L(u)‖Pe‖‖e‖
≤ (−2λmin(Q) + 2L(u)λmax(P ))‖e‖,

where λmin(Q) is the minimum eigenvalue of Q and λmax(P ) is the maximum eigen-
value of P . Hence if

λmin(Q)/λmax(P ) > L(u),

then e = 0 is local asymptotically stable.
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