
Contents

1 Linear Systems 3
1.1 A Simple Linear System . . . . . . . . . . . . . . . . . . . . . 3

2 Gaussian Elimination 6
2.1 Notation for Linear Systems . . . . . . . . . . . . . . . . . . . 6
2.2 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . 8

3 Elementary Row Operations 12

4 Solution Sets for Systems of Linear Equations 17
4.1 Non-Leading Variables . . . . . . . . . . . . . . . . . . . . . . 18

5 Scripts 35
5.1 What is Linear Algebra: 3× 3 Matrix Example . . . . . . . . 35
5.2 What is Linear Algebra: Hint . . . . . . . . . . . . . . . . . . 36
5.3 Gaussian Elimination: Augmented Matrix Notation . . . . . . 37
5.4 Gaussian Elimination: Equivalence of Augmented Matrices . . 38
5.5 Gaussian Elimination: Hints for Review Questions 4 and 5 . . 39
5.6 Gaussian Elimination: 3× 3 Example . . . . . . . . . . . . . . 41
5.7 Elementary Row Operations: Example . . . . . . . . . . . . . 42
5.8 Elementary Row Operations: Worked Examples . . . . . . . . 45
5.9 Elementary Row Operations: Explanation of Proof for Theo-

rem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.10 Elementary Row Operations: Hint for Review Question 3 . . 49
5.11 Solution Sets for Systems of Linear Equations: Planes . . . . . 50
5.12 Solution Sets for Systems of Linear Equations: Pictures and

Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.13 Solution Sets for Systems of Linear Equations: Example . . . 53
5.14 Solution Sets for Systems of Linear Equations: Hint . . . . . . 55



Gaussian Elimination

Objectives:

1. Given a multivariable problem, write it as a linear system of equations
(when this is possible).

2. Express a linear system of equations as a single equation involving
matrices and vectors.

3. Write matrix equations in the shorthand augmented matrix notation.

4. Understand that different augmented matrices can correspond to the
same solution(s).

5. Know which row operations leave the solutions of an augmented matrix
unchanged.

6. Understand the reduced row echelon form of an augmented matrix and
how to extract solutions from it.

7. Gaussian elimination: systematically apply row operations to an aug-
mented matrix to obtain reduced row echelon form.



1 Linear Systems

1.1 A Simple Linear System

Reading Guide

Example Suppose I have a bunch of apples and oranges. Let x be the number of
apples and y be the number of oranges. As everyone knows, apples and oranges don’t
mix, so if I want to keep track of the number of apples and oranges I have, I should
put them in a list. We’ll call this list a vector, and write it like this: (x, y). The order
here matters! I should remember to always write the number of apples first and then
the number of oranges–otherwise if I see the vector (1, 2), I won’t know whether I have
two apples or two oranges.

The vector (x, y) in the example is just a list of two numbers, so if we
want to, we can represent it as a point in the plane with the corresponding
coordinates, like so:

http://math.ucdavis.edu/~linear/videos/Lecture_01_WhatIsLinearAlgebra.mp4


Apples

Oranges

(x, y)

In the plane, we can imagine each point as some combination of apples and
oranges (or parts thereof, for the points that don’t have integer coordinates).
So each point corresponds to some vector. The collection of all such vectors—
all the points in our apple-orange plane—is an example of a vector space.

Example There are 27 pieces of fruit in a barrel, and twice as many oranges as apples.
How many apples and oranges are in the barrel?

How to solve this conundrum? We can re-write the question mathematically as
follows:

x+ y = 27

y = 2x

This is an example of a Linear System. It’s a collection of equations in
which variables are multiplied by constants and summed, and no variables
are multiplied together: There are no powers of x or y greater than one, no
fractional or negative powers of x or y, and no places where x and y are
multiplied together.

Reading homework: problem 1.1

Notice that we can solve the system by manipulating the equations in-
volved. First, notice that the second equation is the same as −2x + y = 0.
Then if you subtract the second equation from the first, you get on the left
side x+ y − (−2x+ y) = 3x, and on the left side you get 27− 0 = 27. Then

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework1/1/


3x = 27, so we learn that x = 9. Using the second equation, we then see
that y = 18. Then there are 9 apples and 18 oranges.

Let’s do it again, by working with the list of equations as an object in
itself. First we rewrite the equations tidily:

x+ y = 27

2x− y = 0

We can express this set of equations with a matrix as follows:(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
The square list of numbers is an example of a matrix. We can multiply

the matrix by the vector to get back the linear system using the following
rule for multiplying matrices by vectors:(

a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
(1)

Reading homework: problem 1.2

The matrix is an example of a Linear Transformation, because it takes one
vector and turns it into another in a “linear” way. Of course, we can have
much larger matrices if our system has more variables:

A 3× 3 matrix example

Our next task is to solve linear systems. We’ll learn a general method
called Gaussian Elimination.

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework1/2/
http://math.ucdavis.edu/~linear/videos/what_is_linear_algebra_3_3_matrix.mp4


2 Gaussian Elimination

2.1 Notation for Linear Systems

We just—thanks to the oranges and apples—studied the linear system

x + y = 27

2x− y = 0

and found that

x = 9

y = 18 .

We learned to write the linear system using a matrix and two vectors:(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
Likewise, we can write the solution as:(

1 0
0 1

)(
x
y

)
=

(
9
18

)
The matrix

I =

(
1 0
0 1

)
is called the Identity Matrix . You should check that if v is any vector, then

Iv = v .

A useful shorthand for a linear system is an Augmented Matrix , which
looks like this for the linear system we’ve been dealing with:(

1 1 27
2 −1 0

)
We don’t bother writing the vector

(
x
y

)
, since it will show up in any linear

system we deal with. The solution to the linear system looks like this:(
1 0 9
0 1 18

)



Augmented Matrix Notation

Here’s another example of an augmented matrix, for a linear system with
three equations and four unknowns: 1 3 2 0 9

6 2 0 −2 0
−1 0 1 1 3


And finally, here’s the general case. The number of equations in the linear

system is the number of rows r in the augmented matrix, and the number of
columns k in the matrix left of the vertical line is the number of unknowns.

a11 a12 · · · a1k b1

a21 a22 · · · a2k b2

...
...

...
...

ar1 ar2 · · · ark br


Reading homework: problem 2.1

Here’s the idea: Gaussian Elimination is a set of rules for taking a gen-
eral augmented matrix and turning it into a very simple augmented matrix
consisting of the identity matrix on the left and a bunch of numbers (the
solution) on the right.

Equivalence Relations for Linear Systems

Equivalence Example

It often happens that two mathematical objects will appear to be differ-
ent but in fact are exactly the same. The best-known example of this are
fractions. For example, the fractions 1

2
and 6

12
describe the same number.

We could certainly call the two fractions equivalent.
In our running example, we’ve noticed that the two augmented matrices(

1 1 27
2 −1 0

)
,

(
1 0 9
0 1 18

)

http://math.ucdavis.edu/~linear/videos/gaussian_elimination_more_background.mp4
http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework2/1/
http://math.ucdavis.edu/~linear/videos/gaussian_elimination_background.mp4


both contain the same information: x = 9, y = 18.
Two augmented matrices corresponding to linear systems that actually

have solutions are said to be (row) equivalent if they have the same solutions.
To denote this, we write:(

1 1 27
2 −1 0

)
∼
(

1 0 9
0 1 18

)
The symbol ∼ is read “is equivalent to”.

A small excursion into the philosophy of mathematical notation: Suppose
I have a large pile of equivalent fractions, such as 2

4
, 27

54
, 100

200
, and so on. Most

people will agree that their favorite way to write the number represented by
all these different factors is 1

2
, in which the numerator and denominator are

relatively prime. We usually call this a reduced fraction. This is an example
of a canonical form, which is an extremely impressive way of saying “favorite
way of writing it down”. There’s a theorem telling us that every rational
number can be specified by a unique fraction whose numerator and denom-
inator are relatively prime. To say that again, but slower, every rational
number has a reduced fraction, and furthermore, that reduced fraction is
unique.

A 3× 3 example

2.2 Reduced Row Echelon Form

Since there are many different augmented matrices that have the same set
of solutions, we should find a canonical form for writing our augmented
matrices. This canonical form is called Reduced Row Echelon Form, or RREF
for short. RREF looks like this in general:

1 ∗ 0 ∗ 0 · · · 0 b1

0 1 ∗ 0 · · · 0 b2

0 0 1 · · · 0 b3

...
...

... 0
...

1 bk

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0



http://math.ucdavis.edu/~linear/videos/gaussian_elimination_3_3_example.mp4


The first non-zero entry in each row is called the pivot . The asterisks
denote arbitrary content which could be several columns long. The following
properties describe the RREF.

1. In RREF, the pivot of any row is always 1.

2. The pivot of any given row is always to the right of the pivot of the
row above it.

3. The pivot is the only non-zero entry in its column.

Example


1 0 7 0
0 1 3 0
0 0 0 1
0 0 0 0


Here is a NON-Example, which breaks all three of the rules:

1 0 3 0
0 0 2 0
0 1 0 1
0 0 0 1


The RREF is a very useful way to write linear systems: it makes it very easy
to write down the solutions to the system.

Example 
1 0 7 0 4
0 1 3 0 1
0 0 0 1 2
0 0 0 0 0


When we write this augmented matrix as a system of linear equations, we get the
following:

x + 7z = 4

y + 3z = 1

w = 2

Solving from the bottom variables up, we see that w = 2 immediately. z is not a
pivot, so it is still undetermined. Set z = λ. Then y = 1− 3λ and x = 4− 7λ. More
concisely:




x
y
z
w

 =


4
1
0
2

+ λ


−7
−3
1
0


So we can read off the solution set directly from the RREF. (Notice that we use the
word “set” because there is not just one solution, but one for every choice of λ.)

Reading homework: problem 2.2

You need to become very adept at reading off solutions of linear systems
from the RREF of their augmented matrix. The general method is to work
from the bottom up and set any non-pivot variables to unknowns. Here is
another example.

Example 
1 1 0 1 0 1
0 0 1 2 0 2
0 0 0 0 1 3
0 0 0 0 0 0

 .

Here we were not told the names of the variables, so lets just call them x1, x2, x3, x4, x5.
(There are always as many of these as there are columns in the matrix before the ver-
tical line; the number of rows, on the other hand is the number of linear equations.)

To begin with we immediately notice that there are no pivots in the second and
fourth columns so x2 and x4 are undetermined and we set them to

x2 = λ1 , x4 = λ2 .

(Note that you get to be creative here, we could have used λ and µ or any other names
we like for a pair of unknowns.)

Working from the bottom up we see that the last row just says 0 = 0, a well
known fact! Note that a row of zeros save for a non-zero entry after the vertical
line would be mathematically inconsistent and indicates that the system has NO
solutions at all.

Next we see from the second last row that x5 = 3. The second row says x3 =
2− 2x4 = 2− 2λ2. The top row then gives x1 = 1− x2 − x4 = 1− λ1 − λ2. Again
we can write this solution as a vector

1
0
2
0
3

+ λ1


−1
1
0
0
0

+ λ2


−1
0
−2
1
0

 .

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework2/2/


Observe, that since no variables were given at the beginning, we do not really need to
state them in our solution. As a challenge, look carefully at this solution and make sure
you can see how every part of it comes from the original augmented matrix without
every having to reintroduce variables and equations.

Perhaps unsurprisingly in light of the previous discussions of RREF, we
have a theorem:

Theorem 2.1. Every augmented matrix is row-equivalent to a unique aug-
mented matrix in reduced row echelon form.

Later you will explore why this is true.



3 Elementary Row Operations

Reading Guide

Our goal is to begin with an arbitrary matrix and apply operations that
respect row equivalence until we have a matrix in Reduced Row Echelon
Form (RREF). The three elementary row operations are:

• (Row Swap) Exchange any two rows.

• (Scalar Multiplication) Multiply any row by a non-zero constant.

• (Row Sum) Add a multiple of one row to another row.

Example

Why do these preserve the linear system in question? Swapping rows is
just changing the order of the equations begin considered, which certainly
should not alter the solutions. Scalar multiplication is just multiplying the
equation by the same number on both sides, which does not change the solu-
tion(s) of the equation. Likewise, if two equations share a common solution,
adding one to the other preserves the solution. Therefore we can define aug-
mented matrices to be row equivalent if the are related by a sequence of
elementary row operations. This definition can also be applied to augmented
matrices corresponding to linear systems with no solutions at all!

There is a very simple process for row-reducing a matrix, working col-
umn by column. This process is called Gauss–Jordan elimination or simply
Gaussian elimination.

1. If all entries in a given column are zero, then the associated variable is
undetermined; make a note of the undetermined variable(s) and then
ignore all such columns.

2. Swap rows so that the first entry in the first column is non-zero.

3. Multiply the first row by λ so that this pivot entry is 1.

http://math.ucdavis.edu/~linear/videos/Lecture_03_RowOperations.mp4
http://math.ucdavis.edu/~linear/videos/elementary_row_operations_example.mp4


4. Add multiples of the first row to each other row so that the first entry
of every other row is zero.

5. Before moving on to step 6, add multiples of the first row any rows
above that you have ignored to ensure there are zeros in the column
above the current pivot entry.

6. Now ignore the first row and first column and repeat steps 2-5 until
the matrix is in RREF.

Reading homework: problem 3.1

Reading Guide

Example
3x3 = 9

x1 +5x2 −2x3 = 2
1
3x1 +2x2 = 3

First we write the system as an augmented matrix:

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework3/1/
http://math.ucdavis.edu/~linear/videos/Lecture_03_GaussianElimination.mp4


0 0 3 9
1 5 −2 2
1
3 2 0 3

 R1↔R3∼

1
3 2 0 3
1 5 −2 2
0 0 3 9


3R1∼

1 6 0 9
1 5 −2 2
0 0 3 9


R2=R2−R1∼

1 6 0 9
0 −1 −2 −7
0 0 3 9


−R2∼

1 6 0 9
0 1 2 7
0 0 3 9


R1=R1−6R2∼

1 0 −12 −33
0 1 2 7
0 0 3 9


1
3
R3∼

1 0 −12 −33
0 1 2 7
0 0 1 3


R1=R1+12R3∼

1 0 0 3
0 1 2 7
0 0 1 3


R2=R2−2R3∼

1 0 0 3
0 1 0 1
0 0 1 3


Now we’re in RREF and can see that the solution to the system is given by x1 = 3,
x2 = 1, and x3 = 3; it happens to be a unique solution. Notice that we kept track of
the steps we were taking; this is important for checking your work!



Example 
1 0 −1 2 −1
1 1 1 −1 2
0 −1 −2 3 −3
5 2 −1 4 1


R2−R1;R4−5R1∼


1 0 −1 2 −1
0 1 2 −3 3
0 −1 −2 3 −3
0 2 4 −6 6


R3+R2;R4−2R3∼


1 0 −1 2 −1
0 1 2 −3 3
0 0 0 0 0
0 0 0 0 0


Here the variables x3 and x4 are undetermined; the solution is not unique. Set x3 = λ
and x4 = µ where λ and µ are arbitrary real numbers. Then we can write x1 and x2
in terms of λ and µ as follows:

x1 = λ− 2µ− 1

x2 = −2λ+ 3µ+ 3

We can write the solution set with vectors like so:
x1
x2
x3
x4

 =


−1
3
0
0

+ λ


1
−2
1
0

+ µ


−2
3
0
1


This is (almost) our preferred form for writing the set of solutions for a linear system
with many solutions.

Worked examples of Gaussian elimination

Uniqueness of Gauss-Jordan Elimination

Theorem 3.1. Gauss-Jordan Elimination produces a unique augmented ma-
trix in RREF.

http://math.ucdavis.edu/~linear/videos/elementary_row_operations_worked_examples.mp4


Proof. Suppose Alice and Bob compute the RREF for a linear system but
get different results, A and B. Working from the left, discard all columns
except for the pivots and the first column in which A and B differ. By
Review Problem 1b, removing columns does not affect row equivalence. Call
the new, smaller, matrices Â and B̂. The new matrices should look this:

Â =

(
IN a
0 0

)
and B̂ =

(
IN b
0 0

)
,

where IN is an N ×N identity matrix and a and b are vectors.
Now if Â and B̂ have the same solution, then we must have a = b. But

this is a contradiction! Then A = B.

Explanation of the proof

http://math.ucdavis.edu/~linear/videos/elementary_row_operations_proof.mp4


4 Solution Sets for Systems of Linear Equa-

tions

For a system of equations with r equations and k unknowns, one can have a
number of different outcomes. For example, consider the case of r equations
in three variables. Each of these equations is the equation of a plane in three-
dimensional space. To find solutions to the system of equations, we look for
the common intersection of the planes (if an intersection exists). Here we
have five different possibilities:

1. No solutions. Some of the equations are contradictory, so no solutions
exist.

2. Unique Solution. The planes have a unique point of intersection.

3. Line. The planes intersect in a common line; any point on that line
then gives a solution to the system of equations.

4. Plane. Perhaps you only had one equation to begin with, or else all
of the equations coincide geometrically. In this case, you have a plane
of solutions, with two free parameters.

Planes

5. All of R3. If you start with no information, then any point in R3 is a
solution. There are three free parameters.

In general, for systems of equations with k unknowns, there are k + 2
possible outcomes, corresponding to the number of free parameters in the
solutions set, plus the possibility of no solutions. These types of “solution
sets” are hard to visualize, but luckily “hyperplanes” behave like planes in
R3 in many ways.

Pictures and Explanation

Reading homework: problem 4.1

http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_of_linear_equations_planes.mp4
http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_of_linear_equations_overview.mp4
http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework4/1/


4.1 Non-Leading Variables

Variables that are not a pivot in the reduced row echelon form of a linear
system are free. We set them equal to arbitrary parameters µ1, µ2, . . .

Example

1 0 1 −1 1
0 1 −1 1 1
0 0 0 0 0


Here, x1 and x2 are the pivot variables and x3 and x4 are non-leading variables,

and thus free. The solutions are then of the form x3 = µ1, x4 = µ2, x2 = 1+µ1−µ2,
x1 = 1− µ1 + µ2.

The preferred way to write a solution set is with set notation. Let S be the set of
solutions to the system. Then:

S =



x1
x2
x3
x4

 =


1
1
0
0

+ µ1


−1
1
1
0

+ µ2


1
−1
0
1




Example

We have already seen how to write a linear system of two equations in two
unknowns as a matrix multiplying a vector. We can apply exactly the same
idea for the above system of three equations in four unknowns by calling

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 , X =


x1
x2
x3
x4

 and V =

1
1
0

 .

Then if we take for the product of the matrix M with the vector X of
unknowns

MX =

1 0 1 −1
0 1 −1 1
0 0 0 0



x1
x2
x3
x4

 =

x1 + x3 − x4
x2 − x3 + x4

0


our system becomes simply

MX = V .

http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_example.mp4


Stare carefully at our answer for the product MX above. First you should
notice that each of the three rows corresponds to the left hand side of one of
the equations in the system. Also observe that each entry was obtained by
matching the entries in the corresponding row of M with the column entries
of X. For example, using the second row of M we obtained the second entry
of MX

0 1 − 1 1

x1
x2
x3
x4

7−→ x2 − x3 + x4 .

Later we will study matrix multiplication in detail, but you can already try to
discover the main rules for yourself by working through Review Question 3
on multiplying matrices by vectors.

Given two vectors we can add them term-by-term:
a1

a2

a3

...
ar

+


b1

b2

b3

...
br

 =


a1 + b1

a2 + b2

a3 + b3

...
ar + br


We can also multiply a vector by a scalar, like so:

λ


a1

a2

a3

...
ar

 =


λa1

λa2

λa3

...
λar


Then yet another way to write the solution set for the example is:

X = X0 + µ1Y1 + µ2Y2

where

X0 =


1
1
0
0

 , Y1 =


−1
1
1
0

 , Y2 =


1
−1
0
1





Definition Let X and Y be vectors and α and β be scalars. A function f
is linear if

f(αX + βY ) = αf(X) + βf(Y )

This is called the linearity property for matrix multiplication.

The notion of linearity is a core concept in this course. Make sure you
understand what it means and how to use it in computations!

Example Consider our example system above with

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 , X =


x1
x2
x3
x4

 and Y =


y1
y2
y3

y4

 ,

and take for the function of vectors

f(X) =MX .

Now let us check the linearity property for f . The property needs to hold for any
scalars α and β, so for simplicity let us concentrate first on the case α = β = 1. This
means that we need to compare the following two calculations:

1. First add X + Y , then compute f(X + Y ).

2. First compute f(X) and f(Y ), then compute the sum f(X) + f(Y ).

The second computation is slightly easier:

f(X) =MX =

x1 + x3 − x4
x2 − x3 + x4

0

 and f(Y ) =MY =

y1 + y3 − y4
y2 − y3 + y4

0

 ,

(using our result above). Adding these gives

f(X) + f(Y ) =

x1 + x3 − x4 + y1 + y3 − y4
x2 − x3 + x4 + y2 − y3 + y4

0

 .

Next we perform the first computation beginning with:

X + Y =


x1 + y1
x2 + y2
x3 + y3
x4 + y4

 ,



from which we calculate

f(X + Y ) =

x1 + y2 + x3 + y3 − (x4 + y4)

x2 + y2 − (x3 + y3) + x4 + y4

0

 .

Distributing the minus signs and remembering that the order of adding numbers like
x1, x2, . . . does not matter, we see that the two computations give exactly the same
answer.

Of course, you should complain that we took a special choice of α and β. Actually,
to take care of this we only need to check that f(αX) = αf(X). It is your job to
explain this in Review Question 1

Later we will show that matrix multiplication is always linear. Then we
will know that:

M(αX + βY ) = αMX + βMY

Then the two equations MX = V and X = X0 + µ1Y1 + µ2Y2 together say
that:

MX0 + µ1MY1 + µ2MY2 = V

for any µ1, µ2 ∈ R. Choosing µ1 = µ2 = 0, we obtain

MX0 = V .

Here, X0 is an example of what is called a particular solution to the system.
Given the particular solution to the system, we can then deduce that

µ1MY1 + µ2MY2 = 0. Setting µ1 = 1, µ2 = 0, and recalling the particular
solution MX0 = V , we obtain

MY1 = 0 .

Likewise, setting µ1 = 0, µ1 = 0, we obtain

MY2 = 0 .

Here Y1 and Y2 are examples of what are called homogeneous solutions to
the system. They do not solve the original equation MX = V , but instead
its associated homogeneous system of equations MY = 0.



Example Consider the linear system with the augmented matrix we’ve been working
with.

x +z −w = 1

y −z +w = 1

Recall that the system has the following solution set:

S =



x1
x2
x3
x4

 =


1
1
0
0

+ µ1


−1
1
1
0

+ µ2


1
−1
0
1




Then MX0 = V says that


x1
x2
x3
x4

 =


1
1
0
0

 solves the original system of equations,

which is certainly true, but this is not the only solution.

MY1 = 0 says that


x1
x2
x3
x4

 =


−1
1
1
0

 solves the homogeneous system.

MY2 = 0 says that


x1
x2
x3
x4

 =


1
−1
0
1

 solves the homogeneous system.

Notice how adding any multiple of a homogeneous solution to the particular solution
yields another particular solution.

Definition Let M a matrix and V a vector. Given the linear system MX =
V , we call X0 a particular solution if MX0 = V . We call Y a homogeneous
solution if MY = 0. The linear system

MX = 0

is called the (associated) homogeneous system.

If X0 is a particular solution, then the general solution to the system is1:

1The notation S = {X0 + Y : MY = 0} is read, “S is the set of all X0 + Y such that
MY = 0,” and means exactly that. Sometimes a pipe | is used instead of a colon.



S = {X0 + Y : MY = 0}

In other words, the general solution = particular + homogeneous.

Reading homework: problem 4.2

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework4/2/


Wikipedia

• Systems of Linear Equations

• Row Echelon Form

• Row Echelon Form

• Elementary Matrix Operations

http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Row_echelon_form
http://en.wikipedia.org/wiki/Row_echelon_form
http://en.wikipedia.org/wiki/Elementary_matrix_transformations


Review Problems

Linear Systems

1. Let M be a matrix and u and v vectors:

M =

(
a b
c d

)
, v =

(
x
y

)
, u =

(
w
z

)
.

(a) Propose a definition for u+ v.

(b) Check that your definition obeys Mv +Mu = M(u+ v).

2. Matrix Multiplication: Let M and N be matrices

M =

(
a b
c d

)
and N =

(
e f
g h

)
,

and v a vector

v =

(
x
y

)
.

Compute the vector Nv using the rule given above. Now multiply this
vector by the matrix M , i.e., compute the vector M(Nv).

Next recall that multiplication of ordinary numbers is associative, namely
the order of brackets does not matter: (xy)z = x(yz). Let us try to
demand the same property for matrices and vectors, that is

M(Nv) = (MN)v .

We need to be careful reading this equation because Nv is a vector and
so is M(Nv). Therefore the right hand side, (MN)v should also be a
vector. This means that MN must be a matrix; in fact it is the matrix
obtained by multiplying the matrices M and N . Use your result for
M(Nv) to find the matrix MN .

3. Pablo is a nutritionist who knows that oranges always have twice as
much sugar as apples. When considering the sugar intake of schoolchil-
dren eating a barrel of fruit, he represents the barrel like so:



sugar

fruit

(s, f)

Find a linear transformation relating Pablo’s representation to the one
in the lecture. Write your answer as a matrix.

Hint: Let λ represent the amount of sugar in each apple.

Hint

4. There are methods for solving linear systems other than Gauss’ method.
One often taught in high school is to solve one of the equations for a
variable, then substitute the resulting expression into other equations.
That step is repeated until there is an equation with only one vari-
able. From that, the first number in the solution is derived, and then
back-substitution can be done. This method takes longer than Gauss’
method, since it involves more arithmetic operations, and is also more
likely to lead to errors. To illustrate how it can lead to wrong conclu-
sions, we will use the system

x+ 3y = 1
2x+ y =−3
2x+ 2y = 0

(a) Solve the first equation for x and substitute that expression into
the second equation. Find the resulting y.

(b) Again solve the first equation for x, but this time substitute that
expression into the third equation. Find this y.

http://math.ucdavis.edu/~linear/videos/what_is_linear_algebra_hint.mp4


What extra step must a user of this method take to avoid erroneously
concluding a system has a solution?



Gaussian Elimination

1. State whether the following augmented matrices are in RREF and com-
pute their solution sets.

1 0 0 0 3 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 2 0

 ,


1 1 0 1 0 1 0
0 0 1 2 0 2 0
0 0 0 0 1 3 0
0 0 0 0 0 0 0

 ,


1 1 0 1 0 1 0 1
0 0 1 2 0 2 0 −1
0 0 0 0 1 3 0 1
0 0 0 0 0 2 0 −2
0 0 0 0 0 0 1 1

 .

2. Show that this pair of augmented matrices are row equivalent, assuming
ad− bc 6= 0: (

a b e
c d f

)
∼
(

1 0 de−bf
ad−bc

0 1 af−ce
ad−bc

)

3. Consider the augmented matrix:

(
2 −1 3
−6 3 1

)
Give a geometric reason why the associated system of equations has
no solution. (Hint, plot the three vectors given by the columns of this
augmented matrix in the plane.) Given a general augmented matrix(

a b e
c d f

)
,

can you find a condition on the numbers a, b, c and d that create the
geometric condition you found?



4. List as many operations on augmented matrices that preserve row
equivalence as you can. Explain your answers. Give examples of oper-
ations that break row equivalence.

5. Row equivalence of matrices is an example of an equivalence relation.
Recall that a relation ∼ on a set of objects U is an equivalence relation
if the following three properties are satisfied:

• Reflexive: For any x ∈ U , we have x ∼ x.

• Symmetric: For any x, y ∈ U , if x ∼ y then y ∼ x.

• Transitive: For any x, y and z ∈ U , if x ∼ y and y ∼ z then x ∼ z.

(For a fuller discussion of equivalence relations, see Homework 0, Prob-
lem 4)

Show that row equivalence of augmented matrices is an equivalence
relation.

Hints for Questions 4 and 5

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/Webwork Homework0-Background/4/
http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/Webwork Homework0-Background/4/
http://math.ucdavis.edu/~linear/videos/gaussian_elimination_hints.mp4


Elementary Row Operations

1. (Row Equivalence)

(a) Solve the following linear system using Gauss-Jordan elimination:

2x1 + 5x2 − 8x3 + 2x4 + 2x5 = 0

6x1 + 2x2 −10x3 + 6x4 + 8x5 = 6

3x1 + 6x2 + 2x3 + 3x4 + 5x5 = 6

3x1 + 1x2 − 5x3 + 3x4 + 4x5 = 3

6x1 + 7x2 − 3x3 + 6x4 + 9x5 = 9

Be sure to set your work out carefully with equivalence signs ∼
between each step, labeled by the row operations you performed.

(b) Check that the following two matrices are row-equivalent:(
1 4 7 10
2 9 6 0

)
and

(
0 −1 8 20
4 18 12 0

)
Now remove the third column from each matrix, and show that
the resulting two matrices (shown below) are row-equivalent:(

1 4 10
2 9 0

)
and

(
0 −1 20
4 18 0

)
Now remove the fourth column from each of the original two ma-
trices, and show that the resulting two matrices, viewed as aug-
mented matrices (shown below) are row-equivalent:(

1 4 7
2 9 6

)
and

(
0 −1 8
4 18 12

)
Explain why row-equivalence is never affected by removing columns.

(c) Check that the matrix

1 4 10
3 13 9
4 17 20

 has no solutions. If you

remove one of the rows of this matrix, does the new matrix have
any solutions? In general, can row equivalence be affected by
removing rows? Explain why or why not.



2. (Gaussian Elimination) Another method for solving linear systems is
to use row operations to bring the augmented matrix to row echelon
form. In row echelon form, the pivots are not necessarily set to one,
and we only require that all entries left of the pivots are zero, not
necessarily entries above a pivot. Provide a counterexample to show
that row echelon form is not unique.

Once a system is in row echelon form, it can be solved by “back substi-
tution.” Write the following row echelon matrix as a system of equa-
tions, then solve the system using back-substitution.2 3 1 6

0 1 1 2
0 0 3 3


3. Explain why the linear system has no solutions:1 0 3 1

0 1 2 4
0 0 0 6


For which values of k does the system below have a solution?

x − 3y = 6
x + 3 z =− 3

2x + ky + (3− k)z = 1

Hint for question 3

http://math.ucdavis.edu/~linear/videos/elementary_row_operations_hint.mp4


Solution Sets for Systems of Linear Equations

1. Let f(X) = MX where

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 and X =


x1
x2
x3
x4

 .

Suppose that α is any number. Compute the following four quantities:

αX , f(X) , αf(X) and f(αX) .

Check your work by verifying that

αf(X) = f(αX) .

Now explain why the result checked in the Lecture, namely

f(X + Y ) = f(X) + f(Y ) ,

and your result f(αX) = αf(X) together imply

f(αX + βY ) = αf(X) + βf(Y ) .

2. Write down examples of augmented matrices corresponding to each
of the five types of solution sets for systems of equations with three
unknowns.



3. Let

M =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ar1 ar2 · · · ark

 , X =


x1

x2

...
xk


Propose a rule for MX so that MX = 0 is equivalent to the linear
system:

a11x
1 +a12x

2 · · ·+a1kxk = 0

a21x
1 +a22x

2 · · ·+a2kxk = 0
...

...
...

...

ar1x
1 +ar2x

2 · · ·+arkxk = 0

Show that your rule for multiplying a matrix by a vector obeys the
linearity property.

Note that in this problem, x2 does not denote the square of x. Instead
x1, x2, x3, etc... denote different variables. Although confusing at
first, this notation was invented by Albert Einstein who noticed that
quantities like a21x

1 + a22x
2 · · · + a2kx

k could be written in summation

notation as
∑k

j=1 a
2
jx

j. Here j is called a summation index. Einstein
observed that you could even drop the summation sign

∑
and simply

write a2jx
j.

Problem 3 hint

4. Use the rule you developed in the problem 3 to compute the following
products 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




1
2
3
4




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




14
14
21
35
62



http://en.wikipedia.org/wiki/Einstein_notation
http://en.wikipedia.org/wiki/Einstein_notation
http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_of_linear_equations_hint.mp4



1 42 97 2 −23 46
0 1 3 1 0 33
11 π 1 0 46 29
−98 12 0 33 99 98

log 2 0
√

2 0 e 23




0
0
0
0
0
0


 1 2 3 4 5 6

7 8 9 10 11 12
13 14 15 16 17 18




0
0
1
0
0
0


Now that you are good at multiplying a matrix with a column vector,
try your hand at a product of two matrices

 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


Hint, to do this problem view the matrix on the right as three column
vectors next to one another.

5. The standard basis vector ei is a column vector with a one in the ith
row, and zeroes everywhere else. Using the rule for multiplying a matrix
times a vector in problem 3, find a simple rule for multiplying Mei,
where M is the general matrix defined there.



5 Scripts

5.1 What is Linear Algebra: 3× 3 Matrix Example

Your friend places a jar on a table and tells you that there is

65 cents in this jar with 7 coins consisting of quarters, nickels,

and dimes, and that there are twice as many dimes as quarters. Your

friend wants to know how many nickels, dimes, and quarters are in

the jar.

We can translate this into a system of the following linear

equations:

5n+ 10d+ 25q = 65

n+ d+ q = 7

d = 2q

Now we can rewrite the last equation in the form of −d + 2q = 0,
and thus express this problem as the matrix equation5 10 25

1 1 1
0 −1 2

nd
q

 =

65
7
0

 .

or as an augmented matrix (see also this script on the notation).5 10 25 65
1 1 1 7
0 −1 2 0


Now to solve it, using our original set of equations and by sub-

stitution, we have

5n+ 20q + 25q = 5n+ 45q = 65

n+ 2q + q = n+ 3q = 7

and by subtracting 5 times the bottom equation from the top, we

get

45q − 15q = 30q = 65− 35 = 30

and hence q = 1. Clearly d = 2, and hence n = 7−2−1 = 4. Therefore

there are four nickels, two dimes, and one quarter.



5.2 What is Linear Algebra: Hint

Looking at the problem statement we find some important informa-

tion, first that oranges always have twice as much sugar as ap-

ples, and second that the information about the barrel is recorded

as (s, f), where s = units of sugar in the barrel and f = number of

pieces of fruit in the barrel.

We are asked to find a linear transformation relating this new

representation to the one in the lecture, where in the lecture x =
the number of apples and y = the number of oranges. This means we

must create a system of equations relating the variable x and y to

the variables s and f in matrix form. Your answer should be the

matrix that transforms one set of variables into the other.

Hint: Let λ represent the amount of sugar in each apple.

1. To find the first equation find a way to relate f to the

variables x and y.

2. To find the second equation, use the hint to figure out how

much sugar is in x apples, and y oranges in terms of λ. Then

write an equation for s using x, y and λ.



5.3 Gaussian Elimination: Augmented Matrix Nota-
tion

Why is the augmented matrix(
1 1 27
2 −1 0

)
,

equivalent to the system of equations

x+ y = 27

2x− y = 0 ?

Well the augmented matrix is just a new notation for the matrix

equation (
1 1
2 −1

)(
x
y

)
=

(
27
0

)
and if you review your matrix multiplication remember that(

1 1
2 −1

)(
x
y

)
=

(
x+ y
2x− y

)
This means that (

x+ y
2x− y

)
=

(
27
0

)
Which is our original equation.



5.4 Gaussian Elimination: Equivalence of Augmented
Matrices

Lets think about what it means for the two augmented matrices(
1 1 27
2 −1 0

)
,

and (
1 0 9
0 1 18

)
,

to be equivalent?

They are certainly not equal, because they don’t match in each

component, but since these augmented matrices represent a system,

we might want to introduce a new kind of equivalence relation.

Well we could look at the system of linear equations this rep-

resents

x+ y = 27

2x− y = 0 ?

and notice that the solution is x = 9 and y = 18. The other

augmented matrix represents the system

x+ 0 · y = 9

0 · x+ y = 18 ?

This which clearly has the same solution. The first and second

system are related in the sense that their solutions are the same.

Notice that it is really nice to have the augmented matrix in the

second form, because the matrix multiplication can be done in your

head.



5.5 Gaussian Elimination: Hints for Review Questions 4
and 5

The hint for Review Question 4 is simple--just read the lecture on

Elementary Row Operations.

Question 5 looks harder than it actually is:

Row equivalence of matrices is an example of an equivalence

relation. Recall that a relation ∼ on a set of objects U
is an equivalence relation if the following three properties

are satisfied:

• Reflexive: For any x ∈ U, we have x ∼ x.
• Symmetric: For any x, y ∈ U, if x ∼ y then y ∼ x.
• Transitive: For any x, y and z ∈ U, if x ∼ y and y ∼ z

then x ∼ z.

(For a more complete discussion of equivalence relations, see

Webwork Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence

relation.

Firstly remember that an equivalence relation is just a more

general version of ‘‘equals’’. Here we defined row equivalence

for augmented matrices whose linear systems have solutions by the

property that their solutions are the same.

So this question is really about the word same. Lets do a silly

example: Lets replace the set of augmented matrices by the set of

people who have hair. We will call two people equivalent if they

have the same hair color. There are three properties to check:

• Reflexive: This just requires that you have the same hair

color as yourself so obviously holds.

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/Homework0-Background/4/


• Symmetric: If the first person, Bob (say) has the same hair

color as a second person Betty(say), then Bob has the same

hair color as Betty, so this holds too.

• Transitive: If Bob has the same hair color as Betty (say) and

Betty has the same color as Brenda (say), then it follows that

Bob and Brenda have the same hair color, so the transitive

property holds too and we are done.



5.6 Gaussian Elimination: 3× 3 Example

We’ll start with the matrix from the What is Linear Algebra: 3× 3
Matrix Example which was5 10 25 65

1 1 1 7
0 −1 2 0

 ,

and recall the solution to the problem was n = 4, d = 2, and q = 1.
So as a matrix equation we have1 0 0

0 1 0
0 0 1

nd
q

 =

4
2
1


or as an augmented matrix1 4

1 2
1 1


Note that often in diagonal matrices people will either omit

the zeros or write in a single large zero. Now the first matrix is

equivalent to the second matrix and is written as5 10 25 65
1 1 1 7
0 −1 2 0

 ,∼

1 4
1 2

1 1


since they have the same solutions.



5.7 Elementary Row Operations: Example

We have three basic rules

1. Row Swap

2. Scalar Multiplication

3. Row Sum

Lets look at an example. The system

3x+ y = 7

x+ 2y = 4

is something we learned to solve in high school algebra. Now we

can write it in augmented matrix for this way(
3 1 7
1 2 4

)
.

We can see what these operations allow us to do:

1. Row swap allows us to switch the order of rows. In this exam-

ple there are only two equations, so I will switch them. This

will work with a larger system as well, but you have to decide

which equations to switch. So we get

x+ 2y = 4

3x+ y = 7

The augmented matrix looks like(
1 2 4
3 1 7

)
.

Notice that this won’t change the solution of the system, but

the augmented matrix will look different. This is where we

can say that the original augmented matrix is equivalent to

the one with the rows swapped. This will work with a larger

system as well, but you have to decide which equations, or

rows to switch. Make sure that you don’t forget to switch the

entries in the right-most column.



2. Scalar multiplication allows us to multiply both sides of an

equation by a non-zero constant. So if we are starting with

x+ 2y = 4

3x+ y = 7

Then we can multiply the first equation by −3 which is a non-

zero scalar. This operation will give us

−3x+−6y = −12

3x+ y = 7

which has a corresponding augmented matrix(
−3 −6 −12
3 1 7

)
.

Notice that we have multiplied the entire first row by −3,
and this changes the augmented matrix, but not the solution

of the system. We are not allowed to multiply by zero because

it would be like replacing one of the equations with 0 =
0, effectively destroying the information contained in the

equation.

3. Row summing allows us to add one equation to another. In our

example we could start with

−3x+−6y = −12

3x+ y = 7

and replace the first equation with the sum of both equations.

So we get

−3x+ 3x+−6y + y = −12 + 7

3x+ y = 7,

which after some simplification is translates to(
0 −5 −5
3 1 7

)
.



When using this row operation make sure that you end up with

as many equations as you started with. Here we replaced the

first equation with a sum, but the second equation remained

untouched.

In the example, notice that the x-terms in the first equation

disappeared, which makes it much easier to solve for y. Think

about what the next steps for solving this system would be

using the language of elementary row operations.



5.8 Elementary Row Operations: Worked Examples

Let us consider that we are given two systems of equations that

give rise to the following two (augmented) matrices:2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

 5 2 9
0 5 10
0 3 6


and we want to find the solution to those systems. We will do so

by doing Gaussian elimination.

For the first matrix we have2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

 R1↔R2∼

1 1 1 0 1
2 5 2 0 2
1 4 1 0 1


R2−2R1;R3−R1∼

1 1 1 0 1
0 3 0 0 0
0 3 0 0 0


1
3
R2∼

1 1 1 0 1
0 1 0 0 0
0 3 0 0 0


R1−R2;R3−3R2∼

1 0 1 0 1
0 1 0 0 0
0 0 0 0 0


1. We begin by interchanging the first two rows in order to get

a 1 in the upper-left hand corner and avoiding dealing with

fractions.

2. Next we subtract row 1 from row 3 and twice from row 2 to get

zeros in the left-most column.

3. Then we scale row 2 to have a 1 in the eventual pivot.

4. Finally we subtract row 2 from row 1 and three times from row 2

to get it into Row-Reduced Echelon Form.



Therefore we can write x = 1 − λ, y = 0, z = λ and w = µ, or in

vector form 
x
y
z
w

 =


1
0
0
0

+ λ


−1
0
1
0

+ µ


0
0
0
1

 .

Now for the second system we have5 2 9
0 5 10
0 3 6

 1
5
R2∼

5 2 9
0 1 2
0 3 6


R3−3R2∼

5 2 9
0 1 2
0 0 0


R1−2R2∼

5 0 5
0 1 2
0 0 0


1
5
R1∼

1 0 1
0 1 2
0 0 0


We scale the second and third rows appropriately in order to avoid

fractions, then subtract the corresponding rows as before. Fi-

nally scale the first row and hence we have x = 1 and y = 2 as a

unique solution.



5.9 Elementary Row Operations: Explanation of Proof
for Theorem 3.1

The first thing to realize is that there are choices in the Gaus-

sian elimination recipe, so maybe that could lead to two different

RREF’s and in turn two different solution sets for the same linear

system. But that would be weird, in fact this Theorem says that

this can never happen!

Because this proof comes at the end of the section it is often

glossed over, but it is a very important result. Here’s a sketch

of what happens in the video:

In words: we start with a linear system and convert it to an aug-

mented matrix. Then, because we are studying a uniqueness state-

ment, we try a proof by contradiction. That is the method where

to show that a statement is true, you try to demonstrate that the

opposite of the statement leads to a contradiction. Here, the

opposite statement to the theorem would be to find two different

RREFs for the same system.

Suppose, therefore, that Alice and Bob do find different RREF

augmented matrices called A and B. Then remove all the non-pivot



columns from A and B until you hit the first column that differs.

Record that in the last column and call the results Â and B̂.
Removing columns does change the solution sets, but it does not

ruin row equivalence, so Â and B̂ have the same solution sets.

Now, because we left only the pivot columns (plus the first

column that differs) we have

Â =

(
IN a
0 0

)
and B̂ =

(
IN b
0 0

)
,

where IN is an identity matrix and a and b are column vectors.

Importantly, by assumption,

a 6= b .

So if we try to wrote down the solution sets for Â and B̂ they

would be different. But at all stages, we only performed opera-

tions that kept Alice’s solution set the same as Bob’s. This is a

contradiction so the proof is complete.



5.10 Elementary Row Operations: Hint for Review
Question 3

The first part for Review Question 3 is simple--just write out the

associated linear system and you will find the equation 0 = 6 which

is inconsistent. Therefore we learn that we must avoid a row of

zeros preceding a non-vanishing entry after the vertical bar.

Turning to the system of equations, we first write out the aug-

mented matrix and then perform two row operations 1 −3 0 6
1 0 3 −3
2 k 3− k 1


R2−R1;R3−2R1∼

 1 −3 0 6
0 3 3 −9
0 k + 6 3− k −11

 .

Next we would like to subtract some amount of R2 from R3 to achieve

a zero in the third entry of the second column. But if

k + 6 = 3− k ⇒ k = −3

2
,

this would produce zeros in the third row before the vertical line.

You should also check that this does not make the whole third

line zero. You now have enough information to write a complete

solution.



5.11 Solution Sets for Systems of Linear Equations:
Planes

Here we want to describe the mathematics of planes in space. The

video is summarised by the following picture:

A plane is often called R2 because it is spanned by two coordi-

nates, and space is called R3 and has three coordinates, usually

called (x, y, z). The equation for a plane is

ax+ by + cz = d .

Lets simplify this by calling V = (x, y, z) the vector of unknowns

and N = (a, b, c). Using the dot product in R3 we have

N V = d .

Remember that when vectors are perpendicular their dot products

vanish. I.e. U V = 0 ⇔ U ⊥ V . This means that if a vector V0
solves our equation N V = d, then so too does V0 + C whenever C
is perpendicular to N. This is because

N (V0 + C) = N V0 +N C = d+ 0 = d .

But C is ANY vector perpendicular to N, so all the possibilities

for C span a plane whose normal vector is N. Hence we have shown

that solutions to the equation ax + by + cz = 0 are a plane with

normal vector N = (a, b, c).



5.12 Solution Sets for Systems of Linear Equations:
Pictures and Explanation

This video considers solutions sets for linear systems with three

unknowns. These are often called (x, y, z) and label points in R3.

Lets work case by case:

• If you have no equations at all, then any (x, y, z) is a solu-

tion, so the solution set is all of R3. The picture looks a

little silly:

• For a single equation, the solution is a plane. This is ex-

plained in this video or the accompanying script. The picture

looks like this:

• For two equations, we must look at two planes. These usu-

ally intersect along a line, so the solution set will also

(usually) be a line:

http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_of_linear_equations_planes.mp4


• For three equations, most often their intersection will be a

single point so the solution will then be unique:

• Of course stuff can go wrong. Two different looking equations

could determine the same plane, or worse equations could be

inconsistent. If the equations are inconsistent, there will

be no solutions at all. For example, if you had four equations

determining four parallel planes the solution set would be

empty. This looks like this:



5.13 Solution Sets for Systems of Linear Equations:
Example

Here is an augmented matrix, let’s think about what the solution

set looks like (
1 0 3 2
0 1 0 1

)
This looks like the system

x1 + 3x3 = 2

x2 = 1

Notice that when the system is written this way the copy of the

2 × 2 identity matrix

(
1 0
0 1

)
makes it easy to write a solution

in terms of the variables x1 and x2. We will call x1 and x2 the

pivot variables. The third column

(
3
0

)
does not look like part of

an identity matrix, and there is no 3× 3 identity in the augmented

matrix. Notice there are more variables than equations and that

this means we will have to write the solutions for the system in

terms of the variable x3. We’ll call x3 the free variable.

Let x3 = µ. Then we can rewrite the first equation in our system

x1 + 3x3 = 2

x1 + 3µ = 2

x1 = 2− 3µ.

Then since the second equation doesn’t depend on µ we can keep the

equation

x2 = 1,

and for a third equation we can write

x3 = µ



so that we get systemx1x2
x3

 =

2− 3µ
1
µ


=

2
1
0

+

−3µ
0
µ


=

2
1
0

+ µ

−3
0
1

 .

So for any value of µ will give a solution of the system, and

any system can be written in this form for some value of µ. Since

there are multiple solutions, we can also express them as a set:
x1x2
x3

 =

2
1
0

+ µ

−3
0
1

 µ ∈ R

 .



5.14 Solution Sets for Systems of Linear Equations:
Hint

For the first part of this problem, the key is to consider the

vector as a n× 1 matrix. For the second part, all you need to show

is that

M(α ·X + β · Y ) = α · (MX) + β · (MY )

where α, β ∈ R (or whatever field we are using) and

Y =


y1

y2

...

yk

 .

Note that this will be somewhat tedious, and many people use sum-

mation notation or Einstein’s summation convention with the added

notation of Mj denoting the j-th row of the matrix. For example,

for any j we have

(MX)j =
k∑

i=1

ajix
i = ajix

i.

You can see a concrete example after the definition of the lin-

earity property.
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