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Preface

These linear algebra lecture notes are designed to be presented as twenty five,
fifty minute lectures suitable for sophomores likely to use the material for
applications but still requiring a solid foundation in this fundamental branch
of mathematics. The main idea of the course is to emphasize the concepts
of vector spaces and linear transformations as mathematical structures that
can be used to model the world around us. Once “persuaded” of this truth,
students learn explicit skills such as Gaussian elimination and diagonalization
in order that vectors and linear transformations become calculational tools,
rather than abstract mathematics.

In practical terms, the course aims to produce students who can perform
computations with large linear systems while at the same time understand
the concepts behind these techniques. Often-times when a problem can be re-
duced to one of linear algebra it is “solved”. These notes do not devote much
space to applications (there are already a plethora of textbooks with titles
involving some permutation of the words “linear”, “algebra” and “applica-
tions”). Instead, they attempt to explain the fundamental concepts carefully
enough that students will realize for their own selves when the particular
application they encounter in future studies is ripe for a solution via linear
algebra.

There are relatively few worked examples or illustrations in these notes,
this material is instead covered by a series of “linear algebra how-to videos”.

They can be viewed by clicking on the take one icon . The “scripts”
for these movies are found at the end of the notes if students prefer to read
this material in a traditional format and can be easily reached via the script

icon . Watch an introductory video below:

Introductory Video

The notes are designed to be used in conjunction with a set of online
homework exercises which help the students read the lecture notes and learn
basic linear algebra skills. Interspersed among the lecture notes are links
to simple online problems that test whether students are actively reading
the notes. In addition there are two sets of sample midterm problems with
solutions as well as a sample final exam. There are also a set of ten on-
line assignments which are usually collected weekly. The first assignment
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is designed to ensure familiarity with some basic mathematic notions (sets,
functions, logical quantifiers and basic methods of proof). The remaining
nine assignments are devoted to the usual matrix and vector gymnastics
expected from any sophomore linear algebra class. These exercises are all
available at

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-
Winter-2012/

Webwork is an open source, online homework system which originated at
the University of Rochester. It can e�ciently check whether a student has
answered an explicit, typically computation-based, problem correctly. The
problem sets chosen to accompany these notes could contribute roughly 20%
of a student’s grade, and ensure that basic computational skills are mastered.
Most students rapidly realize that it is best to print out the Webwork assign-
ments and solve them on paper before entering the answers online. Those
who do not tend to fare poorly on midterm examinations. We have found
that there tend to be relatively few questions from students in o�ce hours
about the Webwork assignments. Instead, by assigning 20% of the grade
to written assignments drawn from problems chosen randomly from the re-
view exercises at the end of each lecture, the student’s focus was primarily
on understanding ideas. They range from simple tests of understanding of
the material in the lectures to more di�cult problems, all of them require
thinking, rather than blind application of mathematical “recipes”. O�ce
hour questions reflected this and o↵ered an excellent chance to give students
tips how to present written answers in a way that would convince the person
grading their work that they deserved full credit!

Each lecture concludes with references to the comprehensive online text-
books of Jim He↵eron and Rob Beezer:

http://joshua.smcvt.edu/linearalgebra/

http://linear.ups.edu/index.html

and the notes are also hyperlinked to Wikipedia where students can rapidly
access further details and background material for many of the concepts.
Videos of linear algebra lectures are available online from at least two sources:

• The Khan Academy,
http://www.khanacademy.org/?video#Linear Algebra
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• MIT OpenCourseWare, Professor Gilbert Strang,
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring
-2010/video-lectures/

There are also an array of useful commercially available texts. A non-
exhaustive list includes

• “Introductory Linear Algebra, An Applied First Course”, B. Kolman
and D. Hill, Pearson 2001.

• “Linear Algebra and Its Applications”, David C. Lay, Addison–Weseley
2011.

• “Introduction to Linear Algebra”, Gilbert Strang, Wellesley Cambridge
Press 2009.

• “Linear Algebra Done Right”, S. Axler, Springer 1997.

• “Algebra and Geometry”, D. Holten and J. Lloyd, CBRC, 1978.

• “Schaum’s Outline of Linear Algebra”, S. Lipschutz and M. Lipson,
McGraw-Hill 2008.

A good strategy is to find your favorite among these in the University Library.
There are many, many useful online math resources. A partial list is given

in Appendix I.
Students have also started contributing to these notes. Click here to see

some of their work.
There are many “cartoon” type images for the important theorems and

formalæ . In a classroom with a projector, a useful technique for instructors is
to project these using a computer. They provide a colorful relief for students
from (often illegible) scribbles on a blackboard. These can be downloaded
at:

Lecture Materials

There are still many errors in the notes, as well as awkwardly explained
concepts. An army of 400 students, Fu Liu, Stephen Pon and Gerry Puckett
have already found many of them. Rohit Thomas has spent a great deal of
time editing these notes and the accompanying webworks and has improved
them immeasurably. Katrina Glaeser and Travis Scrimshaw have spent many
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hours shooting and scripting the how-to videos and taken these notes to a
whole new level! Anne Schilling shot a great guest video. We also thank
Captain Conundrum for providing us his solutions to the sample midterm
and final questions. The review exercises would provide a better survey of
what linear algebra really is if there were more “applied” questions. We
welcome your contributions!

Andrew and Tom.

©2009 by the authors. These lecture notes may be reproduced in their
entirety for non-commercial purposes.
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1 What is Linear Algebra?

Video Overview

Three bears go into a cave, two come out. Would you go in?

Brian Butterworth

Numbers are highly useful tools for surviving in the modern world, so much
so that we often introduce abstract pronumerals to represent them:

n bears go into a cave, n� 1 come out. Would you go in?

A single number alone is not su�cient to model more complicated real
world situations. For example, suppose I asked everybody in this room to
rate the likeability of everybody else on a scale from 1 to 10. In a room full
of n people (or bears sic) there would be n2 ratings to keep track of (how
much Jill likes Jill, how much does Jill like Andrew, how much does Andrew
like Jill, how much does Andrew like Andrew, etcetera). We could arrange
these in a square array

0

B

@

9 4 · · ·
10 6
...

. . .

1

C

A

Would it make sense to replace such an array by an abstract symbol M? In
the case of numbers, the pronumeral n was more than a placeholder for a
particular piece of information; there exists a myriad of mathematical oper-
ations (addition, subtraction, multiplication,...) that can be performed with
the symbol n that could provide useful information about the real world sys-
tem at hand. The array M is often called a matrix and is an example of a
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more general abstract structure called a linear transformation on which many
mathematical operations can also be defined. (To understand why having an
abstract theory of linear transformations might be incredibly useful and even
lucrative, try replacing “likeability ratings” with the number of times inter-
net websites link to one another!) In this course, we’ll learn about three main
topics: Linear Systems, Vector Spaces, and Linear Transformations. Along
the way we’ll learn about matrices and how to manipulate them.

For now, we’ll illustrate some of the basic ideas of the course in the case of
two by two matrices. Everything will carefully defined later, we just want to
start with some simple examples to get an idea of the things we’ll be working
with.

Example Suppose I have a bunch of apples and oranges. Let x be the number of
apples I have, and y be the number of oranges I have. As everyone knows, apples and
oranges don’t mix, so if I want to keep track of the number of apples and oranges I
have, I should put them in a list. We’ll call this list a vector, and write it like this:
(x, y). The order here matters! I should remember to always write the number of
apples first and then the number of oranges–otherwise if I see the vector (1, 2), I won’t
know whether I have two apples or two oranges.

This vector (x, y) in the example is just a list of two numbers, so if we
want to, we can represent it with a point in the plane with the corresponding
coordinates, like so:

13





Apples

Oranges

(x, y)

In the plane, we can imagine each point as some combination of apples and
oranges (or parts thereof, for the points that don’t have integer coordinates).
Then each point corresponds to some vector. The collection of all such
vectors—all the points in our apple-orange plane—is an example of a vector
space.

Example There are 27 pieces of fruit in a barrel, and twice as many oranges as apples.
How many apples and oranges are in the barrel?

How to solve this conundrum? We can re-write the question mathematically as
follows:

x+ y = 27

y = 2x

This is an example of a Linear System. It’s a collection of equations in
which variables are multiplied by constants and summed, and no variables
are multiplied together: There are no powers of x or y greater than one, no
fractional or negative powers of x or y, and no places where x and y are
multiplied together.

Reading homework: problem 1.1

Notice that we can solve the system by manipulating the equations in-
volved. First, notice that the second equation is the same as �2x + y = 0.
Then if you subtract the second equation from the first, you get on the left
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side x+ y � (�2x+ y) = 3x, and on the left side you get 27� 0 = 27. Then
3x = 27, so we learn that x = 9. Using the second equation, we then see
that y = 18. Then there are 9 apples and 18 oranges.

Let’s do it again, by working with the list of equations as an object in
itself. First we rewrite the equations tidily:

x+ y = 27

2x� y = 0

We can express this set of equations with a matrix as follows:

✓

1 1
2 �1

◆✓

x
y

◆

=

✓

27
0

◆

The square list of numbers is an example of a matrix. We can multiply
the matrix by the vector to get back the linear system using the following
rule for multiplying matrices by vectors:

✓

a b
c d

◆✓

x
y

◆

=

✓

ax+ by
cx+ dy

◆

(1)

Reading homework: problem 1.2

A 3⇥ 3 matrix example

The matrix is an example of a Linear Transformation, because it takes
one vector and turns it into another in a “linear” way.

Our next task is to solve linear systems. We’ll learn a general method
called Gaussian Elimination.

References

He↵eron, Chapter One, Section 1
Beezer, Chapter SLE, Sections WILA and SSLE
Wikipedia, Systems of Linear Equations
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Review Problems

1. Let M be a matrix and u and v vectors:

M =

✓

a b
c d

◆

, v =

✓

x
y

◆

, u =

✓

w
z

◆

.

(a) Propose a definition for u+ v.

(b) Check that your definition obeys Mv +Mu = M(u+ v).

2. Matrix Multiplication: Let M and N be matrices

M =

✓

a b
c d

◆

and N =

✓

e f
g h

◆

,

and v a vector

v =

✓

x
y

◆

.

Compute the vector Nv using the rule given above. Now multiply this
vector by the matrix M , i.e., compute the vector M(Nv).

Next recall that multiplication of ordinary numbers is associative, namely
the order of brackets does not matter: (xy)z = x(yz). Let us try to
demand the same property for matrices and vectors, that is

M(Nv) = (MN)v .

We need to be careful reading this equation because Nv is a vector and
so is M(Nv). Therefore the right hand side, (MN)v should also be a
vector. This means that MN must be a matrix; in fact it is the matrix
obtained by multiplying the matrices M and N . Use your result for
M(Nv) to find the matrix MN .

3. Pablo is a nutritionist who knows that oranges always have twice as
much sugar as apples. When considering the sugar intake of schoolchil-
dren eating a barrel of fruit, he represents the barrel like so:
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sugar

fruit

(s, f)

Find a linear transformation relating Pablo’s representation to the one
in the lecture. Write your answer as a matrix.

Hint: Let � represent the amount of sugar in each apple.

Hint

4. There are methods for solving linear systems other than Gauss’ method.
One often taught in high school is to solve one of the equations for a
variable, then substitute the resulting expression into other equations.
That step is repeated until there is an equation with only one vari-
able. From that, the first number in the solution is derived, and then
back-substitution can be done. This method takes longer than Gauss’
method, since it involves more arithmetic operations, and is also more
likely to lead to errors. To illustrate how it can lead to wrong conclu-
sions, we will use the system

x+ 3y = 1
2x+ y =�3
2x+ 2y = 0

(a) Solve the first equation for x and substitute that expression into
the second equation. Find the resulting y.

(b) Again solve the first equation for x, but this time substitute that
expression into the third equation. Find this y.
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What extra step must a user of this method take to avoid erroneously
concluding a system has a solution?
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2 Gaussian Elimination

2.1 Notation for Linear Systems

In Lecture 1 we studied the linear system

x + y = 27

2x� y = 0

and found that

x = 9

y = 18 .

We learned to write the linear system using a matrix and two vectors:

✓

1 1
2 �1

◆✓

x
y

◆

=

✓

27
0

◆

Likewise, we can write the solution as:

✓

1 0
0 1

◆✓

x
y

◆

=

✓

9
18

◆

The matrix

I =

✓

1 0
0 1

◆

is called the Identity Matrix . You should check that if v is any vector, then

Iv = v .

A useful shorthand for a linear system is an Augmented Matrix , which
looks like this for the linear system we’ve been dealing with:

✓

1 1 27
2 �1 0

◆

We don’t bother writing the vector

✓

x
y

◆

, since it will show up in any linear

system we deal with. The solution to the linear system looks like this:

✓

1 0 9
0 1 18

◆
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Augmented Matrix Notation

Here’s another example of an augmented matrix, for a linear system with
three equations and four unknowns:

0

@

1 3 2 0 9
6 2 0 �2 0
�1 0 1 1 3

1

A

And finally, here’s the general case. The number of equations in the linear
system is the number of rows r in the augmented matrix, and the number of
columns k in the matrix left of the vertical line is the number of unknowns.

0

B

B

B

@

a1
1

a1
2

· · · a1
k

b1

a2
1

a2
2

· · · a2
k

b2
...

...
...

...
ar
1

ar
2

· · · ar
k

br

1

C

C

C

A

Reading homework: problem 2.1

Here’s the idea: Gaussian Elimination is a set of rules for taking a gen-
eral augmented matrix and turning it into a very simple augmented matrix
consisting of the identity matrix on the left and a bunch of numbers (the
solution) on the right.

Equivalence Relations for Linear Systems

Equivalence Example

It often happens that two mathematical objects will appear to be di↵er-
ent but in fact are exactly the same. The best-known example of this are
fractions. For example, the fractions 1

2

and 6

12

describe the same number.
We could certainly call the two fractions equivalent.

In our running example, we’ve noticed that the two augmented matrices
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✓

1 1 27
2 �1 0

◆

,

✓

1 0 9
0 1 18

◆

both contain the same information: x = 9, y = 18.
Two augmented matrices corresponding to linear systems that actually

have solutions are said to be (row) equivalent if they have the same solutions.
To denote this, we write:

✓

1 1 27
2 �1 0

◆

⇠
✓

1 0 9
0 1 18

◆

The symbol ⇠ is read “is equivalent to”.
A small excursion into the philosophy of mathematical notation: Suppose

I have a large pile of equivalent fractions, such as 2

4

, 27

54

, 100

200

, and so on. Most
people will agree that their favorite way to write the number represented by
all these di↵erent factors is 1

2

, in which the numerator and denominator are
relatively prime. We usually call this a reduced fraction. This is an example
of a canonical form, which is an extremely impressive way of saying “favorite
way of writing it down”. There’s a theorem telling us that every rational
number can be specified by a unique fraction whose numerator and denom-
inator are relatively prime. To say that again, but slower, every rational
number has a reduced fraction, and furthermore, that reduced fraction is
unique.

A 3⇥ 3 example

2.2 Reduced Row Echelon Form

Since there are many di↵erent augmented matrices that have the same set
of solutions, we should find a canonical form for writing our augmented
matrices. This canonical form is called Reduced Row Echelon Form, or RREF
for short. RREF looks like this in general:
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0

B

B

B

B

B

B

B

B

B

B

B

@

1 ⇤ 0 ⇤ 0 · · · 0 b1

0 1 ⇤ 0 · · · 0 b2

0 0 1 · · · 0 b3
...

...
... 0

...
1 bk

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

The first non-zero entry in each row is called the pivot . The asterisks
denote arbitrary content which could be several columns long. The following
properties describe the RREF.

1. In RREF, the pivot of any row is always 1.

2. The pivot of any given row is always to the right of the pivot of the
row above it.

3. The pivot is the only non-zero entry in its column.

Example

0

B

B

@

1 0 7 0
0 1 3 0
0 0 0 1
0 0 0 0

1

C

C

A

Here is a NON-Example, which breaks all three of the rules:

0

B

B

@

1 0 3 0
0 0 2 0
0 1 0 1
0 0 0 1

1

C

C

A

The RREF is a very useful way to write linear systems: it makes it very easy
to write down the solutions to the system.

Example
0

B

B

@

1 0 7 0 4
0 1 3 0 1
0 0 0 1 2
0 0 0 0 0

1

C

C

A
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When we write this augmented matrix as a system of linear equations, we get the
following:

x + 7z = 4

y + 3z = 1

w = 2

Solving from the bottom variables up, we see that w = 2 immediately. z is not a
pivot, so it is still undetermined. Set z = �. Then y = 1� 3� and x = 4� 7�. More
concisely:

0

B

B

@

x

y

z

w

1

C

C

A

=

0

B

B

@

4
1
0
2

1

C

C

A

+ �

0

B

B

@

�7
�3
1
0

1

C

C

A

So we can read o↵ the solution set directly from the RREF. (Notice that we use the
word “set” because there is not just one solution, but one for every choice of �.)

Reading homework: problem 2.2

You need to become very adept at reading o↵ solutions of linear systems
from the RREF of their augmented matrix. The general method is to work
from the bottom up and set any non-pivot variables to unknowns. Here is
another example.

Example
0

B

B

@

1 1 0 1 0 1
0 0 1 2 0 2
0 0 0 0 1 3
0 0 0 0 0 0

1

C

C

A

.

Here we were not told the names of the variables, so lets just call them x

1

, x

2

, x

3

, x

4

, x

5

.
(There are always as many of these as there are columns in the matrix before the ver-
tical line; the number of rows, on the other hand is the number of linear equations.)

To begin with we immediately notice that there are no pivots in the second and
fourth columns so x

2

and x

4

are undetermined and we set them to

x

2

= �

1

, x

4

= �

2

.

(Note that you get to be creative here, we could have used � and µ or any other names
we like for a pair of unknowns.)

23

http://webwork.math.ucdavis.edu/webwork2/MAT22A-Waldron-Winter-2012/ReadingHomework2/2/


Working from the bottom up we see that the last row just says 0 = 0, a well
known fact! Note that a row of zeros save for a non-zero entry after the vertical
line would be mathematically inconsistent and indicates that the system has NO
solutions at all.

Next we see from the second last row that x

5

= 3. The second row says x

3

=
2� 2x

4

= 2� 2�
2

. The top row then gives x
1

= 1� x

2

� x

4

= 1� �

1

� �

2

. Again
we can write this solution as a vector

0

B

B

B

B

@

1
0
2
0
3

1

C

C

C

C

A

+ �

1

0

B

B

B

B

@

�1
1
0
0
0

1

C

C

C

C

A

+ �

2

0

B

B

B

B

@

�1
0
�2
1
0

1

C

C

C

C

A

.

Observe, that since no variables were given at the beginning, we do not really need to
state them in our solution. As a challenge, look carefully at this solution and make sure
you can see how every part of it comes from the original augmented matrix without
every having to reintroduce variables and equations.

Perhaps unsurprisingly in light of the previous discussions of RREF, we
have a theorem:

Theorem 2.1. Every augmented matrix is row-equivalent to a unique aug-
mented matrix in reduced row echelon form.

In Lecture ??, we will see why this is true.

References

He↵eron, Chapter One, Section 1
Beezer, Chapter SLE, Section RREF
Wikipedia, Row Echelon Form
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Review Problems

1. State whether the following augmented matrices are in RREF and com-
pute their solution sets.

0

B

B

@

1 0 0 0 3 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 2 0

1

C

C

A

,

0

B

B

@

1 1 0 1 0 1 0
0 0 1 2 0 2 0
0 0 0 0 1 3 0
0 0 0 0 0 0 0

1

C

C

A

,

0

B

B

B

B

@

1 1 0 1 0 1 0 1
0 0 1 2 0 2 0 �1
0 0 0 0 1 3 0 1
0 0 0 0 0 2 0 �2
0 0 0 0 0 0 1 1

1

C

C

C

C

A

.

2. Show that this pair of augmented matrices are row equivalent, assuming
ad� bc 6= 0:

✓

a b e
c d f

◆

⇠
✓

1 0 de�bf

ad�bc

0 1 af�ce

ad�bc

◆

3. Consider the augmented matrix:

✓

2 �1 3
�6 3 1

◆

Give a geometric reason why the associated system of equations has
no solution. (Hint, plot the three vectors given by the columns of this
augmented matrix in the plane.) Given a general augmented matrix

✓

a b e
c d f

◆

,

can you find a condition on the numbers a, b, c and d that create the
geometric condition you found?
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4. List as many operations on augmented matrices that preserve row
equivalence as you can. Explain your answers. Give examples of oper-
ations that break row equivalence.

5. Row equivalence of matrices is an example of an equivalence relation.
Recall that a relation ⇠ on a set of objects U is an equivalence relation
if the following three properties are satisfied:

• Reflexive: For any x 2 U , we have x ⇠ x.

• Symmetric: For any x, y 2 U , if x ⇠ y then y ⇠ x.

• Transitive: For any x, y and z 2 U , if x ⇠ y and y ⇠ z then x ⇠ z.

(For a fuller discussion of equivalence relations, see Homework 0, Prob-
lem 4)

Show that row equivalence of augmented matrices is an equivalence
relation.

Hints for Questions 4 and 5
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3 Elementary Row Operations

Our goal is to begin with an arbitrary matrix and apply operations that
respect row equivalence until we have a matrix in Reduced Row Echelon
Form (RREF). The three elementary row operations are:

• (Row Swap) Exchange any two rows.

• (Scalar Multiplication) Multiply any row by a non-zero constant.

• (Row Sum) Add a multiple of one row to another row.

Example

Why do these preserve the linear system in question? Swapping rows is
just changing the order of the equations begin considered, which certainly
should not alter the solutions. Scalar multiplication is just multiplying the
equation by the same number on both sides, which does not change the solu-
tion(s) of the equation. Likewise, if two equations share a common solution,
adding one to the other preserves the solution. Therefore we can define aug-
mented matrices to be row equivalent if the are related by a sequence of
elementary row operations. This definition can also be applied to augmented
matrices corresponding to linear systems with no solutions at all!

There is a very simple process for row-reducing a matrix, working col-
umn by column. This process is called Gauss–Jordan elimination or simply
Gaussian elimination.

1. If all entries in a given column are zero, then the associated variable is
undetermined; make a note of the undetermined variable(s) and then
ignore all such columns.

2. Swap rows so that the first entry in the first column is non-zero.

3. Multiply the first row by � so that this pivot entry is 1.

4. Add multiples of the first row to each other row so that the first entry
of every other row is zero.
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5. Before moving on to step 6, add multiples of the first row any rows
above that you have ignored to ensure there are zeros in the column
above the current pivot entry.

6. Now ignore the first row and first column and repeat steps 2-5 until
the matrix is in RREF.

Reading homework: problem 3.1

Example
3x

3

= 9

x

1

+5x
2

�2x
3

= 2
1

3

x

1

+2x
2

= 3

First we write the system as an augmented matrix:
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0

@

0 0 3 9
1 5 �2 2
1

3

2 0 3

1

A

R1$R3⇠

0

@

1

3

2 0 3
1 5 �2 2
0 0 3 9

1

A

3R1⇠

0

@

1 6 0 9
1 5 �2 2
0 0 3 9

1

A

R2=R2�R1⇠

0

@

1 6 0 9
0 �1 �2 �7
0 0 3 9

1

A

�R2⇠

0

@

1 6 0 9
0 1 2 7
0 0 3 9

1

A

R1=R1�6R2⇠

0

@

1 0 �12 �33
0 1 2 7
0 0 3 9

1

A

1
3R3⇠

0

@

1 0 �12 �33
0 1 2 7
0 0 1 3

1

A

R1=R1+12R3⇠

0

@

1 0 0 3
0 1 2 7
0 0 1 3

1

A

R2=R2�2R3⇠

0

@

1 0 0 3
0 1 0 1
0 0 1 3

1

A

Now we’re in RREF and can see that the solution to the system is given by x

1

= 3,
x

2

= 1, and x

3

= 3; it happens to be a unique solution. Notice that we kept track of
the steps we were taking; this is important for checking your work!
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Example

0

B

B

@

1 0 �1 2 �1
1 1 1 �1 2
0 �1 �2 3 �3
5 2 �1 4 1

1

C

C

A

R2�R1;R4�5R1⇠

0

B

B

@

1 0 �1 2 �1
0 1 2 �3 3
0 �1 �2 3 �3
0 2 4 �6 6

1

C

C

A

R3+R2;R4�2R3⇠

0

B

B

@

1 0 �1 2 �1
0 1 2 �3 3
0 0 0 0 0
0 0 0 0 0

1

C

C

A

Here the variables x
3

and x

4

are undetermined; the solution is not unique. Set x
3

= �

and x

4

= µ where � and µ are arbitrary real numbers. Then we can write x

1

and x

2

in terms of � and µ as follows:

x

1

= �� 2µ� 1

x

2

= �2�+ 3µ+ 3

We can write the solution set with vectors like so:

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

�1
3
0
0

1

C

C

A

+ �

0

B

B

@

1
�2
1
0

1

C

C

A

+ µ

0

B

B

@

�2
3
0
1

1

C

C

A

This is (almost) our preferred form for writing the set of solutions for a linear system
with many solutions.

Worked examples of Gaussian elimination

Uniqueness of Gauss-Jordan Elimination

Theorem 3.1. Gauss-Jordan Elimination produces a unique augmented ma-
trix in RREF.
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Proof. Suppose Alice and Bob compute the RREF for a linear system but
get di↵erent results, A and B. Working from the left, discard all columns
except for the pivots and the first column in which A and B di↵er. By
Review Problem 1b, removing columns does not a↵ect row equivalence. Call
the new, smaller, matrices Â and B̂. The new matrices should look this:

Â =

✓

I
N

a
0 0

◆

and B̂ =

✓

I
N

b
0 0

◆

,

where I
N

is an N ⇥N identity matrix and a and b are vectors.
Now if Â and B̂ have the same solution, then we must have a = b. But

this is a contradiction! Then A = B.

Explanation of the proof

References

He↵eron, Chapter One, Section 1.1 and 1.2
Beezer, Chapter SLE, Section RREF
Wikipedia, Row Echelon Form
Wikipedia, Elementary Matrix Operations

Review Problems

1. (Row Equivalence)

(a) Solve the following linear system using Gauss-Jordan elimination:

2x
1

+ 5x
2

� 8x
3

+ 2x
4

+ 2x
5

= 0

6x
1

+ 2x
2

�10x
3

+ 6x
4

+ 8x
5

= 6

3x
1

+ 6x
2

+ 2x
3

+ 3x
4

+ 5x
5

= 6

3x
1

+ 1x
2

� 5x
3

+ 3x
4

+ 4x
5

= 3

6x
1

+ 7x
2

� 3x
3

+ 6x
4

+ 9x
5

= 9

Be sure to set your work out carefully with equivalence signs ⇠
between each step, labeled by the row operations you performed.
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(b) Check that the following two matrices are row-equivalent:
✓

1 4 7 10
2 9 6 0

◆

and

✓

0 �1 8 20
4 18 12 0

◆

Now remove the third column from each matrix, and show that
the resulting two matrices (shown below) are row-equivalent:

✓

1 4 10
2 9 0

◆

and

✓

0 �1 20
4 18 0

◆

Now remove the fourth column from each of the original two ma-
trices, and show that the resulting two matrices, viewed as aug-
mented matrices (shown below) are row-equivalent:

✓

1 4 7
2 9 6

◆

and

✓

0 �1 8
4 18 12

◆

Explain why row-equivalence is never a↵ected by removing columns.

(c) Check that the matrix

0

@

1 4 10
3 13 9
4 17 20

1

A has no solutions. If you

remove one of the rows of this matrix, does the new matrix have
any solutions? In general, can row equivalence be a↵ected by
removing rows? Explain why or why not.

2. (Gaussian Elimination) Another method for solving linear systems is
to use row operations to bring the augmented matrix to row echelon
form. In row echelon form, the pivots are not necessarily set to one,
and we only require that all entries left of the pivots are zero, not
necessarily entries above a pivot. Provide a counterexample to show
that row echelon form is not unique.

Once a system is in row echelon form, it can be solved by “back substi-
tution.” Write the following row echelon matrix as a system of equa-
tions, then solve the system using back-substitution.

0

@

2 3 1 6
0 1 1 2
0 0 3 3

1

A
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3. Explain why the linear system has no solutions:

0

@

1 0 3 1
0 1 2 4
0 0 0 6

1

A

For which values of k does the system below have a solution?

x � 3y = 6
x + 3 z =� 3
2x + ky + (3� k)z = 1

Hint for question 3
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4 Solution Sets for Systems of Linear Equa-
tions

For a system of equations with r equations and k unknowns, one can have a
number of di↵erent outcomes. For example, consider the case of r equations
in three variables. Each of these equations is the equation of a plane in three-
dimensional space. To find solutions to the system of equations, we look for
the common intersection of the planes (if an intersection exists). Here we
have five di↵erent possibilities:

1. No solutions. Some of the equations are contradictory, so no solutions
exist.

2. Unique Solution. The planes have a unique point of intersection.

3. Line. The planes intersect in a common line; any point on that line
then gives a solution to the system of equations.

4. Plane. Perhaps you only had one equation to begin with, or else all
of the equations coincide geometrically. In this case, you have a plane
of solutions, with two free parameters.

Planes

5. All of R3. If you start with no information, then any point in R3 is a
solution. There are three free parameters.

In general, for systems of equations with k unknowns, there are k + 2
possible outcomes, corresponding to the number of free parameters in the
solutions set, plus the possibility of no solutions. These types of “solution
sets” are hard to visualize, but luckily “hyperplanes” behave like planes in
R3 in many ways.

Pictures and Explanation

Reading homework: problem 4.1
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4.1 Non-Leading Variables

Variables that are not a pivot in the reduced row echelon form of a linear
system are free. We set them equal to arbitrary parameters µ

1

, µ
2

, . . .

Example

0

@

1 0 1 �1 1
0 1 �1 1 1
0 0 0 0 0

1

A

Here, x
1

and x

2

are the pivot variables and x

3

and x

4

are non-leading variables,
and thus free. The solutions are then of the form x

3

= µ

1

, x
4

= µ

2

, x
2

= 1+µ

1

�µ

2

,
x

1

= 1� µ

1

+ µ

2

.
The preferred way to write a solution set is with set notation. Let S be the set of

solutions to the system. Then:

S =

8

>

>

<

>

>

:

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

1
1
0
0

1

C

C

A

+ µ

1

0

B

B

@

�1
1
1
0

1

C

C

A

+ µ

2

0

B

B

@

1
�1
0
1

1

C

C

A

9

>

>

=

>

>

;

Example

We have already seen how to write a linear system of two equations in two
unknowns as a matrix multiplying a vector. We can apply exactly the same
idea for the above system of three equations in four unknowns by calling

M =

0

@

1 0 1 �1
0 1 �1 1
0 0 0 0

1

A , X =

0

B

B

@

x
1

x
2

x
3

x
4

1

C

C

A

and V =

0

@

1
1
0

1

A .

Then if we take for the product of the matrix M with the vector X of
unknowns

MX =

0

@

1 0 1 �1
0 1 �1 1
0 0 0 0

1

A

0

B

B

@

x
1

x
2

x
3

x
4

1

C

C

A

=

0

@

x
1

+ x
3

� x
4

x
2

� x
3

+ x
4

0

1

A

our system becomes simply
MX = V .
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Stare carefully at our answer for the product MX above. First you should
notice that each of the three rows corresponds to the left hand side of one of
the equations in the system. Also observe that each entry was obtained by
matching the entries in the corresponding row of M with the column entries
of X. For example, using the second row of M we obtained the second entry
of MX

0 1 � 1 1

x
1

x
2

x
3

x
4

7�! x
2

� x
3

+ x
4

.

In Lecture 8 we will study matrix multiplication in detail, but you can al-
ready try to discover the main rules for yourself by working through Review
Question 3 on multiplying matrices by vectors.

Given two vectors we can add them term-by-term:
0

B

B

B

B

B

@

a1

a2

a3
...
ar

1

C

C

C

C

C

A

+

0

B

B

B

B

B

@

b1

b2

b3
...
br

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

a1 + b1

a2 + b2

a3 + b3
...

ar + br

1

C

C

C

C

C

A

We can also multiply a vector by a scalar, like so:

�

0

B

B

B

B

B

@

a1

a2

a3
...
ar

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

�a1

�a2

�a3
...

�ar

1

C

C

C

C

C

A

Then yet another way to write the solution set for the example is:

X = X
0

+ µ
1

Y
1

+ µ
2

Y
2

where

X
0

=

0

B

B

@

1
1
0
0

1

C

C

A

, Y
1

=

0

B

B

@

�1
1
1
0

1

C

C

A

, Y
2

=

0

B

B

@

1
�1
0
1

1

C

C

A
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Definition Let X and Y be vectors and ↵ and � be scalars. A function f
is linear if

f(↵X + �Y ) = ↵f(X) + �f(Y )

This is called the linearity property for matrix multiplication.

The notion of linearity is a core concept in this course. Make sure you
understand what it means and how to use it in computations!

Example Consider our example system above with

M =

0

@

1 0 1 �1
0 1 �1 1
0 0 0 0

1

A

, X =

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

and Y =

0

B

B

@

y

1

y

2

y

3

y

4

1

C

C

A

,

and take for the function of vectors

f(X) = MX .

Now let us check the linearity property for f . The property needs to hold for any
scalars ↵ and �, so for simplicity let us concentrate first on the case ↵ = � = 1. This
means that we need to compare the following two calculations:

1. First add X + Y , then compute f(X + Y ).

2. First compute f(X) and f(Y ), then compute the sum f(X) + f(Y ).

The second computation is slightly easier:

f(X) = MX =

0

@

x

1

+ x

3

� x

4

x

2

� x

3

+ x

4

0

1

A and f(Y ) = MY =

0

@

y

1

+ y

3

� y

4

y

2

� y

3

+ y

4

0

1

A

,

(using our result above). Adding these gives

f(X) + f(Y ) =

0

B

@

x

1

+ x

3

� x

4

+ y

1

+ y

3

� y

4

x

2

� x

3

+ x

4

+ y

2

� y

3

+ y

4

0

1

C

A

.

Next we perform the first computation beginning with:

X + Y =

0

B

B

@

x

1

+ y

1

x

2

+ y

2

x

3

+ y

3

x

4

+ y

4

1

C

C

A

,
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from which we calculate

f(X + Y ) =

0

B

@

x

1

+ y

2

+ x

3

+ y

3

� (x
4

+ y

4

)

x

2

+ y

2

� (x
3

+ y

3

) + x

4

+ y

4

0

1

C

A

.

Distributing the minus signs and remembering that the order of adding numbers like
x

1

, x

2

, . . . does not matter, we see that the two computations give exactly the same
answer.

Of course, you should complain that we took a special choice of ↵ and �. Actually,
to take care of this we only need to check that f(↵X) = ↵f(X). It is your job to
explain this in Review Question 1

Later we will show that matrix multiplication is always linear. Then we
will know that:

M(↵X + �Y ) = ↵MX + �MY

Then the two equations MX = V and X = X
0

+ µ
1

Y
1

+ µ
2

Y
2

together say
that:

MX
0

+ µ
1

MY
1

+ µ
2

MY
2

= V

for any µ
1

, µ
2

2 R. Choosing µ
1

= µ
2

= 0, we obtain

MX
0

= V .

Here, X
0

is an example of what is called a particular solution to the system.
Given the particular solution to the system, we can then deduce that

µ
1

MY
1

+ µ
2

MY
2

= 0. Setting µ
1

= 1, µ
2

= 0, and recalling the particular
solution MX

0

= V , we obtain

MY
1

= 0 .

Likewise, setting µ
1

= 0, µ
1

= 0, we obtain

MY
2

= 0 .

Here Y
1

and Y
2

are examples of what are called homogeneous solutions to
the system. They do not solve the original equation MX = V , but instead
its associated homogeneous system of equations MY = 0.
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Example Consider the linear system with the augmented matrix we’ve been working
with.

x +z �w = 1

y �z +w = 1

Recall that the system has the following solution set:

S =

8

>

>

<

>

>

:

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

1
1
0
0

1

C

C

A

+ µ

1

0

B

B

@

�1
1
1
0

1

C

C

A

+ µ

2

0

B

B

@

1
�1
0
1

1

C

C

A

9

>

>

=

>

>

;

Then MX

0

= V says that

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

1
1
0
0

1

C

C

A

solves the original system of equations,

which is certainly true, but this is not the only solution.

MY

1

= 0 says that

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

�1
1
1
0

1

C

C

A

solves the homogeneous system.

MY

2

= 0 says that

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

1
�1
0
1

1

C

C

A

solves the homogeneous system.

Notice how adding any multiple of a homogeneous solution to the particular solution
yields another particular solution.

Definition Let M a matrix and V a vector. Given the linear system MX =
V , we call X

0

a particular solution if MX
0

= V . We call Y a homogeneous
solution if MY = 0. The linear system

MX = 0

is called the (associated) homogeneous system.

If X
0

is a particular solution, then the general solution to the system is1:

1The notation S = {X0 + Y : MY = 0} is read, “S is the set of all X0 + Y such that
MY = 0,” and means exactly that. Sometimes a pipe | is used instead of a colon.
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S = {X
0

+ Y : MY = 0}
In other words, the general solution = particular + homogeneous.

Reading homework: problem 4.2

References

He↵eron, Chapter One, Section I.2
Beezer, Chapter SLE, Section TSS
Wikipedia, Systems of Linear Equations

Review Problems

1. Let f(X) = MX where

M =

0

@

1 0 1 �1
0 1 �1 1
0 0 0 0

1

A and X =

0

B

B

@

x
1

x
2

x
3

x
4

1

C

C

A

.

Suppose that ↵ is any number. Compute the following four quantities:

↵X , f(X) , ↵f(X) and f(↵X) .

Check your work by verifying that

↵f(X) = f(↵X) .

Now explain why the result checked in the Lecture, namely

f(X + Y ) = f(X) + f(Y ) ,

and your result f(↵X) = ↵f(X) together imply

f(↵X + �Y ) = ↵f(X) + �f(Y ) .

2. Write down examples of augmented matrices corresponding to each
of the five types of solution sets for systems of equations with three
unknowns.
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3. Let

M =

0

B

B

B

@

a1
1

a1
2

· · · a1
k

a2
1

a2
2

· · · a2
k

...
...

...
ar
1

ar
2

· · · ar
k

1

C

C

C

A

, X =

0

B

B

B

@

x1

x2

...
xk

1

C

C

C

A

Propose a rule for MX so that MX = 0 is equivalent to the linear
system:

a1
1

x1 +a1
2

x2 · · ·+a1
k

xk = 0

a2
1

x1 +a2
2

x2 · · ·+a2
k

xk = 0
...

...
...

...

ar
1

x1 +ar
2

x2 · · ·+ar
k

xk = 0

Show that your rule for multiplying a matrix by a vector obeys the
linearity property.

Note that in this problem, x2 does not denote the square of x. Instead
x1, x2, x3, etc... denote di↵erent variables. Although confusing at
first, this notation was invented by Albert Einstein who noticed that
quantities like a2

1

x1 + a2
2

x2 · · · + a2
k

xk could be written in summation
notation as

P

k

j=1

a2
j

xj. Here j is called a summation index. Einstein
observed that you could even drop the summation sign

P

and simply
write a2

j

xj.

Problem 3 hint

4. Use the rule you developed in the problem 3 to compute the following
products

0

B

B

@

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1

C

C

A

0

B

B

@

1
2
3
4

1

C

C

A

0

B

B

B

B

@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

C

C

C

C

A

0

B

B

B

B

@

14
14
21
35
62

1

C

C

C

C

A
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0

B

B

B

B

@

1 42 97 2 �23 46
0 1 3 1 0 33
11 ⇡ 1 0 46 29
�98 12 0 33 99 98
log 2 0

p
2 0 e 23

1

C

C

C

C

A

0

B

B

B

B

B

B

@

0
0
0
0
0
0

1

C

C

C

C

C

C

A

0

@

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

1

A

0

B

B

B

B

B

B

@

0
0
1
0
0
0

1

C

C

C

C

C

C

A

Now that you are good at multiplying a matrix with a column vector,
try your hand at a product of two matrices

0

@

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

1

A

0

B

B

B

B

B

B

@

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

1

C

C

C

C

C

C

A

Hint, to do this problem view the matrix on the right as three column
vectors next to one another.

5. The standard basis vector e
i

is a column vector with a one in the ith
row, and zeroes everywhere else. Using the rule for multiplying a matrix
times a vector in problem 3, find a simple rule for multiplying Me

i

,
where M is the general matrix defined there.
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5 Vectors in Space, n-Vectors

In vector calculus classes, you encountered three-dimensional vectors. Now
we will develop the notion of n-vectors and learn some of their properties.

Overview

We begin by looking at the space Rn, which we can think of as the space
of points with n coordinates. We then specify an origin O, a favorite point
in Rn. Now given any other point P , we can draw a vector v from O to P .
Just as in R3, a vector has a magnitude and a direction.

If O has coordinates (o1, . . . , on) and p has coordinates (p1, . . . , pn), then

the components of the vector v are

0

B

B

B

@

p1 � o1

p2 � o2
...

pn � on

1

C

C

C

A

. This construction allows us

to put the origin anywhere that seems most convenient in Rn, not just at the
point with zero coordinates:

Remark A quick note on points versus vectors. We might sometimes interpret a point
and a vector as the same object, but they are slightly di↵erent concepts and should
be treated as such. For more details, see Appendix D

Do not be confused by our use of a superscript to label components of a vector.
Here v2 denotes the second component of a vector v, rather than a number v
squared!
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Most importantly, we can add vectors and multiply vectors by a scalar:

Definition Given two vectors a and b whose components are given by

a =

0

B

@

a1
...
an

1

C

A

and b =

0

B

@

b1
...
bn

1

C

A

their sum is

a+ b =

0

B

@

a1 + b1
...

an + bn

1

C

A

.

Given a scalar �, the scalar multiple

�a =

0

B

@

�a1
...

�an

1

C

A

.

Example Let

a =

0

B

B

@

1
2
3
4

1

C

C

A

and b =

0

B

B

@

4
3
2
1

1

C

C

A

.

Then, for example

a+ b =

0

B

B

@

5
5
5
5

1

C

C

A

and 3a� 2b =

0

B

B

@

�5
0
5
10

1

C

C

A

.

Notice that these are the same rules we saw in Lecture 4! In Lectures 1-4,
we thought of a vector as being a list of numbers which captured information
about a linear system. Now we are thinking of a vector as a magnitude and
a direction in Rn, and luckily the same rules apply.

A special vector is the zero vector connecting the origin to itself. All
of its components are zero. Notice that with respect to the usual notions
of Euclidean geometry, it is the only vector with zero magnitude, and the
only one which points in no particular direction. Thus, any single vector
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determines a line, except the zero-vector. Any scalar multiple of a non-zero
vector lies in the line determined by that vector.

The line determined by a non-zero vector v through a point P can be

written as {P + tv|t 2 R}. For example,

8

>

>

<

>

>

:

0

B

B

@

1
2
3
4

1

C

C

A

+ t

0

B

B

@

1
0
0
0

1

C

C

A

?

?

?

?

?

?

?

?

t 2 R

9

>

>

=

>

>

;

describes

a line in 4-dimensional space parallel to the x-axis.
Given two non-zero vectors u, v, they will usually determine a plane,

unless both vectors are in the same line. In this case, one of the vectors can
be realized as a scalar multiple of the other. The sum of u and v corresponds
to laying the two vectors head-to-tail and drawing the connecting vector. If u
and v determine a plane, then their sum lies in plane determined by u and v.

The plane determined by two vectors u and v can be written as

{P + su+ tv|s, t 2 R} .
Example

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

3
1
4
1
5
9

1

C

C

C

C

C

C

A

+ s

0

B

B

B

B

B

B

@

1
0
0
0
0
0

1

C

C

C

C

C

C

A

+ t

0

B

B

B

B

B

B

@

0
1
0
0
0
0

1

C

C

C

C

C

C

A

?

?

?

?

?

?

?

?

?

?

?

?

s, t 2 R

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;
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describes a plane in 6-dimensional space parallel to the xy-plane.

Parametric Notation

We can generalize the notion of a plane:

Definition A set of k vectors v
1

, . . . , v
k

in Rn with k  n determines a
k-dimensional hyperplane, unless any of the vectors v

i

lives in the same hy-
perplane determined by the other vectors. If the vectors do determine a
k-dimensional hyperplane, then any point in the hyperplane can be written
as:

{P +
k

X

i=1

�
i

v
i

|�
i

2 R}

When the dimension k is not specified, one usually assumes that k = n � 1
for a hyperplane inside Rn.

5.1 Directions and Magnitudes

Consider the Euclidean length of a vector:

kvk =
p

(v1)2 + (v2)2 + · · · (vn)2 =

v

u

u

t

n

X

i=1

(vi)2 .

Using the Law of Cosines, we can then figure out the angle between two
vectors. Given two vectors v and u that span a plane in Rn, we can then
connect the ends of v and u with the vector v � u.
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Then the Law of Cosines states that:

kv � uk2 = kuk2 + kvk2 � 2kuk kvk cos ✓
Then isolate cos ✓:

kv � uk2 � kuk2 � kvk2 = (v1 � u1)2 + · · ·+ (vn � un)2

�((u1)2 + · · ·+ (un)2)

�((v1)2 + · · ·+ (vn)2)

= �2u1v1 � · · ·� 2unvn

Thus,
kuk kvk cos ✓ = u1v1 + · · ·+ unvn .

Note that in the above discussion, we have assumed (correctly) that Eu-
clidean lengths in Rn give the usual notion of lengths of vectors in the plane.
This now motivates the definition of the dot product.

Definition The dot product of two vectors u =

0

B

@

u1

...
un

1

C

A

and v =

0

B

@

v1
...
vn

1

C

A

is

u v = u1v1 + · · ·+ unvn .

The length or norm or magnitude of a vector

kvk =
p
v v .

The angle ✓ between two vectors is determined by the formula

u v = kukkvk cos ✓ .

The dot product has some important properties:

1. The dot product is symmetric, so

u v = v u ,

2. Distributive so
u (v + w) = u v + u w ,
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3. Bilinear, which is to say, linear in both u and v. Thus

u (cv + dw) = c u v + d u w ,

and
(cu+ dw) v = c u v + dw v .

4. Positive Definite:
u u � 0 ,

and u u = 0 only when u itself is the 0-vector.

There are, in fact, many di↵erent useful ways to define lengths of vectors.
Notice in the definition above that we first defined the dot product, and then
defined everything else in terms of the dot product. So if we change our idea
of the dot product, we change our notion of length and angle as well. The
dot product determines the Euclidean length and angle between two vectors.

Other definitions of length and angle arise from inner products, which
have all of the properties listed above (except that in some contexts the
positive definite requirement is relaxed). Instead of writing for other inner
products, we usually write hu, vi to avoid confusion.

Reading homework: problem 5.1

Example Consider a four-dimensional space, with a special direction which we will
call “time”. The Lorentzian inner product on R4 is given by hu, vi = u

1

v

1 + u

2

v

2 +
u

3

v

3�u

4

v

4. This is of central importance in Einstein’s theory of special relativity, but
note that it is not positive definite.

As a result, the “squared-length” of a vector with coordinates x, y, z and t is
kvk2 = x

2 + y

2 + z

2 � t

2. Notice that it is possible for kvk2  0 for non-vanishing v!

Theorem 5.1 (Cauchy-Schwarz Inequality). For non-zero vectors u and v
with an inner-product h , i,

|hu, vi|
kuk kvk  1

Proof. The easiest proof would use the definition of the angle between two
vectors and the fact that cos ✓  1. However, strictly speaking speaking we
did not check our assumption that we could apply the Law of Cosines to the
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Euclidean length in Rn. There is, however a simple algebraic proof. Let ↵ be
any real number and consider the following positive, quadratic polynomial
in ↵

0  hu+ ↵v, u+ ↵vi = hu, ui+ 2↵hu, vi+ ↵2hv, vi .
You should carefully check for yourself exactly which properties of an inner
product were used to write down the above inequality!

Next, a tiny calculus computation shows that any quadratic a↵2+2b↵+c
takes its minimal value c � b

2

a

when ↵ = � b

a

. Applying this to the above
quadratic gives

0  hu, ui � hu, vi
2

hv, vi .

Now it is easy to rearrange this inequality to reach the Cauchy–Schwarz one
above.

Theorem 5.2 (Triangle Inequality). Given vectors u and v, we have:

ku+ vk  kuk+ kvk

Proof.

ku+ vk2 = (u+ v) (u+ v)

= u u+ 2u v + v v

= kuk2 + kvk2 + 2 kuk kvk cos ✓
= (kuk+ kvk)2 + 2 kuk kvk(cos ✓ � 1)

 (kuk+ kvk)2

Then the square of the left-hand side of the triangle inequality is  the
right-hand side, and both sides are positive, so the result is true.

The triangle inequality is also “self-evident” examining a sketch of u, v
and u+ v
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Example Let

a =

0

B

B

@

1
2
3
4

1

C

C

A

and b =

0

B

B

@

4
3
2
1

1

C

C

A

,

so that
a a = b b = 1 + 22 + 32 + 42 = 30

) kak =
p
30 = kbk and

�

kak+ kbk
�

2

= (2
p
30)2 = 120 .

Since

a+ b =

0

B

B

@

5
5
5
5

1

C

C

A

,

we have
ka+ bk2 = 52 + 52 + 52 + 52 = 100 < 120 =

�

kak+ kbk
�

2

as predicted by the triangle inequality.
Notice also that a b = 1.4+ 2.3+ 3.2+ 4.1 = 20 <

p
30.
p
30 = 30 = kak kbk in

accordance with the Cauchy–Schwarz inequality.

Reading homework: problem 5.2

References

He↵eron: Chapter One.II
Beezer: Chapter V, Section VO, Subsection VEASM
Beezer: Chapter V, Section O, Subsections IP-N
Relevant Wikipedia Articles:

• Dot Product

• Inner Product Space

• Minkowski Metric
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Review Problems

1. When he was young, Captain Conundrum mowed lawns on weekends to
help pay his college tuition bills. He charged his customers according to
the size of their lawns at a rate of 5¢ per square foot and meticulously
kept a record of the areas of their lawns in an ordered list:

A = (200, 300, 50, 50, 100, 100, 200, 500, 1000, 100) .

He also listed the number of times he mowed each lawn in a given year,
for the year 1988 that ordered list was

f = (20, 1, 2, 4, 1, 5, 2, 1, 10, 6) .

(a) Pretend that A and f are vectors and compute A f .

(b) What quantity does the dot product A f measure?

(c) How much did Captain Conundrum earn from mowing lawns in
1988? Write an expression for this amount in terms of the vectors
A and f .

(d) Suppose Captain Conundrum charged di↵erent customers di↵er-
ent rates. How could you modify the expression in part 1c to
compute the Captain’s earnings?

2. (2) Find the angle between the diagonal of the unit square in R2 and
one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and
one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in
Rn and one of the coordinate axes.

(1) What is the limit as n!1 of the angle between the diagonal of
the unit (hyper)-cube in Rn and one of the coordinate axes?

3. Consider the matrix M =

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

and the vector X =

✓

x
y

◆

.

(a) Sketch X and MX in R2 for several values of X and ✓.

(b) Compute ||MX||
||X|| for arbitrary values of X and ✓.
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(c) Explain your result for (b) and describe the action of M geomet-
rically.

4. Suppose in R2 I measure the x direction in inches and the y direction in
miles. Approximately what is the real-world angle between the vectors
✓

0
1

◆

and

✓

1
1

◆

? What is the angle between these two vectors according

to the dot-product? Give a definition for an inner product so that the
angles produced by the inner product are the actual angles between
vectors.

5. (Lorentzian Strangeness). For this problem, consider Rn with the
Lorentzian inner product and metric defined above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time
with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional
Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional
Lorentzian space-time with zero length.

The Story of Your Life
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6 Vector Spaces

Thus far we have thought of vectors as lists of numbers in Rn. As it turns
out, the notion of a vector applies to a much more general class of structures
than this. The main idea is to define vectors based on their most important
properties. Once complete, our new definition of vectors will include vectors
in Rn, but will also cover many other extremely useful notions of vectors.
We do this in the hope of creating a mathematical structure applicable to a
wide range of real-world problems.

The two key properties of vectors are that they can be added together
and multiplied by scalars. So we make the following definition.

Definition A vector space (over R) is a set V with two operations + and ·
satisfying the following properties for all u, v 2 V and c, d 2 R:

(+i) (Additive Closure) u+ v 2 V . (Adding two vectors gives a vector.)

(+ii) (Additive Commutativity) u + v = v + u. (Order of addition doesn’t
matter.)

(+iii) (Additive Associativity) (u + v) + w = u + (v + w) (Order of adding
many vectors doesn’t matter.)

(+iv) (Zero) There is a special vector 0
V

2 V such that u+ 0
V

= u for all u
in V .

(+v) (Additive Inverse) For every u 2 V there exists w 2 V such that
u+ w = 0

V

.

(· i) (Multiplicative Closure) c · v 2 V . (Scalar times a vector is a vector.)

(· ii) (Distributivity) (c+d)·v = c·v+d·v. (Scalar multiplication distributes
over addition of scalars.)

(· iii) (Distributivity) c·(u+v) = c·u+c·v. (Scalar multiplication distributes
over addition of vectors.)

(· iv) (Associativity) (cd) · v = c · (d · v).

(· v) (Unity) 1 · v = v for all v 2 V .
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Examples of each rule

Remark Don’t confuse the scalar product · with the dot product . The scalar product
is a function that takes a vector and a number and returns a vector. (In notation, this
can be written · : R⇥V ! V .) On the other hand, the dot product takes two vectors
and returns a number. (In notation: : V ⇥ V ! R.)

Once the properties of a vector space have been verified, we’ll just write scalar
multiplication with juxtaposition cv = c · v, though, to avoid confusing the notation.

Remark It isn’t hard to devise strange rules for addition or scalar multiplication that
break some or all of the rules listed above.

Example of a vector space

One can also find many interesting vector spaces, such as the following.

Example
V = {f | f : N! R}

Here the vector space is the set of functions that take in a natural number n and return
a real number. The addition is just addition of functions: (f

1

+f

2

)(n) = f

1

(n)+f

2

(n).
Scalar multiplication is just as simple: c · f(n) = cf(n).

We can think of these functions as infinite sequences: f(0) is the first term, f(1)
is the second term, and so on. Then for example the function f(n) = n

3 would look
like this:

f = {0, 1, 8, 27, . . . , n3

, . . .}.

Thinking this way, V is the space of all infinite sequences.
Let’s check some axioms.

(+i) (Additive Closure) f
1

(n) + f

2

(n) is indeed a function N! R, since the sum of
two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function g(n) = 0
works because then f(n) + g(n) = f(n) + 0 = f(n).

The other axioms that should be checked come down to properties of the real
numbers.
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Reading homework: problem 6.1

Example Another very important example of a vector space is the space of all di↵er-
entiable functions:

⇢

f | f : R! R, d

dx

f exists

�

.

The addition is point-wise

(f + g)(x) = f(x) + g(x) ,

as is scalar multiplication
c · f(x) = cf(x) .

From calculus, we know that the sum of any two di↵erentiable functions is dif-
ferentiable, since the derivative distributes over addition. A scalar multiple of a func-
tion is also di↵erentiable, since the derivative commutes with scalar multiplication
( d

dx

(cf) = c

d

dx

f). The zero function is just the function such that 0(x) = 0 for ev-
ery x. The rest of the vector space properties are inherited from addition and scalar
multiplication in R.

In fact, the set of functions with at least k derivatives is always a vector space, as
is the space of functions with infinitely many derivatives.

Vector Spaces Over Other Fields Above, we defined vector spaces over the real
numbers. One can actually define vector spaces over any field. A field is a collection
of “numbers” satisfying a number of properties.

One other example of a field is the complex numbers,

C =
�

x+ iy | i2 = �1, x, y 2 R
 

.

In quantum physics, vector spaces over C describe all possible states a system of
particles can have.

For example,

V =

⇢✓

�

µ

◆

| �, µ 2 C
�

describes states of an electron, where

✓

1
0

◆

describes spin “up” and

✓

0
1

◆

describes spin

“down”. Other states, like

✓

i

�i

◆

are permissible, since the base field is the complex

numbers.
Complex numbers are extremely useful because of a special property that they

enjoy: every polynomial over the complex numbers factors into a product of linear
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polynomials. For example, the polynomial x2+1 doesn’t factor over the real numbers,
but over the complex numbers it factors into (x+i)(x�i). This property ends up having
very far-reaching consequences: often in mathematics problems that are very di�cult
when working over the real numbers become relatively simple when working over
the complex numbers. One example of this phenomenon occurs when diagonalizing
matrices, which we will learn about later in the course.

Another useful field is the rational numbers Q. This is field is important in com-
puter algebra: a real number given by an infinite string of numbers after the decimal
point can’t be stored by a computer. So instead rational approximations are used.
Since the rationals are a field, the mathematics of vector spaces still apply to this
special case.

In this class, we will work mainly over the real numbers and the complex numbers,
and occasionally work over Z

2

= {0, 1} where 1 + 1 = 0. For more on fields in
general, see Appendix E.3; however the full story of fields is typically covered in a class
on abstract algebra or Galois theory.

References

He↵eron, Chapter One, Section I.1
Beezer, Chapter VS, Section VS
Wikipedia:

• Vector Space

• Field

• Spin 1

2

• Galois Theory

Review Problems

1. Check that V =

⇢✓

x
y

◆

| x, y 2 R
�

= R2 with the usual addition and

scalar multiplication is a vector space.

2. Check that the complex numbers C = {x + iy | x, y 2 R} form a
vector space over C. Make sure you state carefully what your rules for
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vector addition and scalar multiplication are. Also, explain what would
happen if you used R as the base field (try comparing to problem 1).

3. (a) Consider the set of convergent sequences, with the same addi-
tion and scalar multiplication that we defined for the space of
sequences:

V =
n

f | f : N! R, lim
n!1

f 2 R
o

Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addi-
tion and scalar multiplication as before:

V =
n

f | f : N! R, lim
n!1

f does not exist or is ±1
o

Is this a vector space? Explain why or why not.

4. Consider the set of 2⇥ 4 matrices:

V =

⇢✓

a b c d
e f g h

◆

| a, b, c, d, e, f, g, h 2 C
�

Propose definitions for addition and scalar multiplication in V . Identify
the zero vector in V , and check that every matrix has an additive
inverse.

5. Let PR
3

be the set of polynomials with real coe�cients of degree three
or less.

• Propose a definition of addition and scalar multiplication to make
PR
3

a vector space.

• Identify the zero vector, and find the additive inverse for the vector
�3� 2x+ x2.

• Show that PR
3

is not a vector space over C. Propose a small change
to the definition of PR

3

to make it a vector space over C.

Problem 5 hint
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7 Linear Transformations

Recall that the key properties of vector spaces are vector addition and scalar
multiplication. Now suppose we have two vector spaces V and W and a map
L between them:

L : V ! W

Now, both V andW have notions of vector addition and scalar multiplication.
It would be ideal if the map L preserved these operations. In other words,
if adding vectors and then applying L were the same as applying L to two
vectors and then adding them. Likewise, it would be nice if, when multiplying
by a scalar, it didn’t matter whether we multiplied before or after applying L.
In formulas, this means that for any u, v 2 V and c 2 R:

L(u+ v) = L(u) + L(v)

L(cv) = cL(v)

Combining these two requirements into one equation, we get the definition
of a linear function or linear transformation.

Definition A function L : V ! W is linear if for all u, v 2 V and r, s 2 R
we have

L(ru+ sv) = rL(u) + sL(v)

Notice that on the left the addition and scalar multiplication occur in V ,
while on the right the operations occur inW . This is often called the linearity
property of a linear transformation.

Reading homework: problem 7.1

Example Take L : R3 ! R3 defined by:

L

0

@

x

y

z

1

A =

0

@

x+ y

y + z

0

1

A

Call u =

0

@

x

y

z

1

A

, v =

0

@

a

b

c

1

A. Now check linearity.
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L(ru+ sv) = L

0

@

r

0

@

x

y

z

1

A+ s

0

@

a

b

c

1

A

1

A

= L

0

@

0

@

rx

ry

rz

1

A+

0

@

sa

sb

sc

1

A

1

A

= L

0

@

rx+ sa

ry + sb

rz + sx

1

A

=

0

@

rx+ sa+ ry + sb

ry + sb+ rz + sx

0

1

A

On the other hand,

rL(u) + sL(v) = rL

0

@

x

y

z

1

A+ sL

0

@

a

b

c

1

A

= r

0

@

x+ y

y + z

0

1

A+ s

0

@

a+ b

b+ c

0

1

A

=

0

@

rx+ ry

ry + rz

0

1

A+

0

@

sa+ sb

sb+ sc

0

1

A

=

0

@

rx+ sa+ ry + sb

ry + sb+ rz + sx

0

1

A

Then the two sides of the linearity requirement are equal, so L is a linear transforma-
tion.

Remark We can write the linear transformation L in the previous example using a
matrix like so:

L

0

@

x

y

z

1

A =

0

@

x+ y

y + z

0

1

A =

0

@

1 1 0
0 1 1
0 0 0

1

A

0

@

x

y

z

1

A

Reading homework: problem 7.2
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We previously checked that matrix multiplication on vectors obeyed the ruleM(ru+
sv) = rMu + sMv, so matrix multiplication is linear. As such, our check on L was
guaranteed to work. In fact, matrix multiplication on vectors is a linear transformation.

A linear and non-linear example

Example Let V be the vector space of polynomials of finite degree with standard
addition and scalar multiplication.

V = {a
0

+ a

1

x+ · · ·+ a

n

x

n|n 2 N, a
i

2 R}
Let L : V ! V be the derivative d

dx

. For p
1

and p

2

polynomials, the rules of di↵eren-
tiation tell us that

d

dx

(rp
1

+ sp

2

) = r

dp

1

dx

+ s

dp

2

dx

Thus, the derivative is a linear function from the set of polynomials to itself.
We can represent a polynomial as a “semi-infinite vector”, like so:

a

0

+ a

1

x+ · · ·+ a

n

x

n  !

0

B

B

B

B

B

B

B

B

B

B

@

a

0

a

1

...
a

n

0
0
...

1

C

C

C

C

C

C

C

C

C

C

A

Then we have:

d

dx

(a
0

+ a

1

x+ · · ·+ a

n

x

n) = a

1

+ 2a
2

x+ · · ·+ na

n

x

n�1  !

0

B

B

B

B

B

B

B

B

B

B

@

a

1

2a
2

...
na

n

0
0
...

1

C

C

C

C

C

C

C

C

C

C

A

One could then write the derivative as an “infinite matrix”:

d

dx

 !

0

B

B

B

@

0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...

1

C

C

C

A
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Foreshadowing Dimension. You probably have some intuitive notion of what dimen-
sion means, though we haven’t actually defined the idea of dimension mathematically
yet. Some of the examples of vector spaces we have worked with have been finite
dimensional. (For example, Rn will turn out to have dimension n.) The polynomial
example above is an example of an infinite dimensional vector space.

Roughly speaking, dimension is the number of independent directions available.
To figure out dimension, I stand at the origin, and pick a direction. If there are any
vectors in my vector space that aren’t in that direction, then I choose another direction
that isn’t in the line determined by the direction I chose. If there are any vectors in
my vector space not in the plane determined by the first two directions, then I choose
one of them as my next direction. In other words, I choose a collection of independent
vectors in the vector space. The size of a minimal set of independent vectors is the
dimension of the vector space.

For finite dimensional vector spaces, linear transformations can always be repre-
sented by matrices. For that reason, we will start studying matrices intensively in the
next few lectures.

References

He↵eron, Chapter Three, Section II. (Note that He↵eron uses the term ho-
momorphism for a linear map. ‘Homomorphism’ is a very general term which
in mathematics means ‘Structure-preserving map.’ A linear map preserves
the linear structure of a vector space, and is thus a type of homomorphism.)

Beezer, Chapter LT, Section LT, Subsections LT, LTC, and MLT.
Wikipedia:

• Linear Transformation

• Dimension

Review Problems

1. Show that the pair of conditions:

(i) L(u+ v) = L(u) + L(v)

(ii) L(cv) = cL(v)

is equivalent to the single condition:
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(iii) L(ru+ sv) = rL(u) + sL(v) .

Your answer should have two parts. Show that (i,ii))(iii), and then
show that (iii))(i,ii).

2. Let P
n

be the space of polynomials of degree n or less in the variable t.
Suppose L is a linear transformation from P

2

! P
3

such that L(1) =
4, L(t) = t3, and L(t2) = t� 1.

• Find L(1 + t+ 2t2).

• Find L(a+ bt+ ct2).

• Find all values a, b, c such that L(a+ bt+ ct2) = 1 + 3t+ 2t3.

Hint

3. Show that integration is a linear transformation on the vector space of
polynomials. What would a matrix for integration look like? Be sure
to think about what to do with the constant of integration.

Finite degree example

4. Let z 2 C. Recall that we can express z = a+bi where a, b 2 R, and we
can form the complex conjugate of z by taking z = a�bi (note that this
is unique since z = z). So we can define a function from c : R2 ! R2

which sends (a, b) 7! (a,�b), and it is clear that c agrees with complex
conjugation.

(a) Show that c is a linear map over R (i.e. scalars in R).
(b) Show that z is not linear over C.
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8 Matrices

Definition An r ⇥ k matrix M = (mi

j

) for i = 1, . . . , r; j = 1, . . . , k is a
rectangular array of real (or complex) numbers:

M =

0

B

B

B

@

m1

1

m1

2

· · · m1

k

m2

1

m2

2

· · · m2

k

...
...

...
mr

1

mr

2

· · · mr

k

1

C

C

C

A

The numbers mi

j

are called entries . The superscript indexes the row of
the matrix and the subscript indexes the column of the matrix in which mi

j

appears2.

It is often useful to consider matrices whose entries are more general than
the real numbers, so we allow that possibility.

An r ⇥ 1 matrix v = (vr
1

) = (vr) is called a column vector , written

v =

0

B

B

B

@

v1

v2
...
vr

1

C

C

C

A

.

A 1⇥ k matrix v = (v1
k

) = (v
k

) is called a row vector , written

v =
�

v
1

v
2

· · · v
k

�

.

Matrices are a very useful and e�cient way to store information:

Example In computer graphics, you may have encountered image files with a .gif
extension. These files are actually just matrices: at the start of the file the size of the
matrix is given, and then each entry of the matrix is a number indicating the color of
a particular pixel in the image.

The resulting matrix then has its rows shu✏ed a bit: by listing, say, every eighth
row, then a web browser downloading the file can start displaying an incomplete version
of the picture before the download is complete.

Finally, a compression algorithm is applied to the matrix to reduce the size of the
file.

2This notation was first introduced by Albert Einstein.
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Adjacency Matrix Example

Example Graphs occur in many applications, ranging from telephone networks to
airline routes. In the subject of graph theory , a graph is just a collection of vertices
and some edges connecting vertices. A matrix can be used to indicate how many edges
attach one vertex to another.

For example, the graph pictured above would have the following matrix, where m

i

j

indicates the number of edges between the vertices labeled i and j:

M =

0

B

B

@

1 2 1 1
2 0 1 0
1 1 0 1
1 0 1 3

1

C

C

A

This is an example of a symmetric matrix, since m

i

j

= m

j

i

.

The space of r ⇥ k matrices M r

k

is a vector space with the addition and
scalar multiplication defined as follows:

M +N = (mi

j

) + (ni

j

) = (mi

j

+ ni

j

)

rM = r(mi

j

) = (rmi

j

)

In other words, addition just adds corresponding entries in two matrices, and
scalar multiplication multiplies every entry. Notice that Mn

1

= Rn is just the
vector space of column vectors.
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Recall that we can multiply an r⇥ k matrix by a k⇥ 1 column vector to
produce a r ⇥ 1 column vector using the rule

MV =
�

k

X

j=1

mi

j

vj
�

.

This suggests a rule for multiplying an r⇥k matrixM by a k⇥smatrixN :
our k⇥smatrixN consists of s column vectors side-by-side, each of dimension
k⇥1. We can multiply our r⇥k matrix M by each of these s column vectors
using the rule we already know, obtaining s column vectors each of dimension
r ⇥ 1. If we place these s column vectors side-by-side, we obtain an r ⇥ s
matrix MN.

That is, let

N =

0

B

B

B

@

n1

1

n1

2

· · · n1

s

n2

1

n2

2

· · · n2

s

...
...

...
nk

1

nk

2

· · · nk

s

1

C

C

C

A

and call the columns N
1

through N
s

:

N
1

=

0

B

B

B

@

n1

1

n2

1

...
nk

1

1

C

C

C

A

, N
2

=

0

B

B

B

@

n1

2

n2

2

...
nk

2

1

C

C

C

A

, . . . , N
s

=

0

B

B

B

@

n1

s

n2

s

...
nk

s

1

C

C

C

A

.

Then

MN = M

0

@

| | |
N

1

N
2

· · · N
s

| | |

1

A =

0

@

| | |
MN

1

MN
2

· · · MN
s

| | |

1

A

A more concise way to write this rule is: If M = (mi

j

) for i = 1, . . . , r; j =
1, . . . , k and N = (ni

j

) for i = 1, . . . , k; j = 1, . . . , s, then MN = L where
L = (`i

j

) for i = i, . . . , r; j = 1, . . . , s is given by

`i
j

=
k

X

p=1

mi

p

np

j

.

This rule obeys linearity.
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Notice that in order for the multiplication to make sense, the columns
and rows must match. For an r⇥ k matrix M and an s⇥m matrix N , then
to make the product MN we must have k = s. Likewise, for the product
NM , it is required that m = r. A common shorthand for keeping track of
the sizes of the matrices involved in a given product is:

⇣

r ⇥ k
⌘

⇥
⇣

k ⇥m
⌘

=
⇣

r ⇥m
⌘

Example Multiplying a (3⇥ 1) matrix and a (1⇥ 2) matrix yields a (3⇥ 2) matrix.

0

@

1
3
2

1

A

�

2 3
�

=

0

@

1 · 2 1 · 3
3 · 2 3 · 3
2 · 2 2 · 3

1

A =

0

@

2 3
6 9
4 6

1

A

Reading homework: problem 8.1

Recall that r⇥k matrices can be used to represent linear transformations
Rk ! Rr via

MV =
k

X

j=1

mi

j

vj,

which is the same rule we use when we multiply an r ⇥ k matrix by a k ⇥ 1
vector to produce an r ⇥ 1 vector.

Likewise, we can use a matrix N = (ni

j

) to represent a linear transforma-
tion

L : M s

k

N�!M r

k

via

L(M)i
l

=
s

X

j=1

ni

j

mj

l

.

This is the same as the rule we use to multiply matrices. In other words,
L(M) = NM is a linear transformation.

Matrix Terminology The entries mi

i

are called diagonal, and the set {m1

1

,
m2

2

, . . .} is called the diagonal of the matrix .
Any r ⇥ r matrix is called a square matrix . A square matrix that is zero

for all non-diagonal entries is called a diagonal matrix.
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The r ⇥ r diagonal matrix with all diagonal entries equal to 1 is called
the identity matrix , I

r

, or just 1. An identity matrix looks like
0

B

B

B

B

B

@

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1

C

C

C

C

C

A

.

The identity matrix is special because

I
r

M = MI
k

= M

for all M of size r ⇥ k.

In the matrix given by the product of matrices above, the diagonal entries
are 2 and 9. An example of a diagonal matrix is

0

@

2 0 0
0 3 0
0 0 0

1

A .

Definition The transpose of an r⇥ k matrix M = (mi

j

) is the k ⇥ r matrix
with entries

MT = (m̄i

j

)

with m̄i

j

= mj

i

.
A matrix M is symmetric if M = MT .

Example

✓

2 5 6
1 3 4

◆

T

=

0

@

2 1
5 3
6 4

1

A

Reading homework: problem 8.2

Observations

• Only square matrices can be symmetric.

• The transpose of a column vector is a row vector, and vice-versa.

• Taking the transpose of a matrix twice does nothing. i.e., (MT )T = M .
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Theorem 8.1 (Transpose and Multiplication). Let M,N be matrices such
that MN makes sense. Then (MN)T = NTMT .

The proof of this theorem is left to Review Question 2.
Sometimes matrices do not share the properties of regular numbers, watch

this video to see why:

Matrices do not Commute

Many properties of matrices following from the same property for real
numbers. Here is an example.

Example Associativity of matrix multiplication. We know for real numbers x, y
and z that

x(yz) = (xy)z ,

i.e. the order of bracketing does not matter. The same property holds for matrix
multiplication, let us show why. Suppose M =

�

m

i

j

�

, N =
�

n

j

k

�

and R =
�

r

k

l

�

are, respectively, m ⇥ n, n ⇥ r and r ⇥ t matrices. Then from the rule for matrix
multiplication we have

MN =
⇣

n

X

j=1

m

i

j

n

j

k

⌘

and NR =
⇣

r

X

k=1

n

j

k

r

k

l

⌘

.

So first we compute

(MN)R =
⇣

r

X

k=1

h

n

X

j=1

m

i

j

n

j

k

i

r

k

l

⌘

=
⇣

r

X

k=1

n

X

j=1

h

m

i

j

n

j

k

i

r

k

l

⌘

=
⇣

r

X

k=1

n

X

j=1

m

i

j

n

j

k

r

k

l

⌘

.

In the first step we just wrote out the definition for matrix multiplication, in the second
step we moved summation symbol outside the bracket (this is just the distributive
property x(y+z) = xy+xz for numbers) and in the last step we used the associativity
property for real numbers to remove the square brackets. Exactly the same reasoning
shows that

M(NR) =
⇣

n

X

j=1

m

i

j

h

r

X

k=1

n

j

k

r

k

l

i⌘

=
⇣

r

X

k=1

n

X

j=1

m

i

j

h

n

j

k

r

k

l

i⌘

=
⇣

r

X

k=1

n

X

j=1

m

i

j

n

j

k

r

k

l

⌘

.

This is the same as above so we are done. As a fun remark, note that Einstein would
simply have written (MN)R = (mi

j

n

j

k

)rk
l

= m

i

j

n

j

k

r

k

l

= m

i

j

(nj

k

r

k

l

) = M(NR).
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References
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Wikipedia:

• Matrix Multiplication

Review Problems

1. Compute the following matrix products

0

B

@

1 2 1

4 5 2

7 8 2

1

C

A

0

B

@

�2 4

3

�1

3

2 �5

3

2

3

�1 2 �1

1

C

A

,
�

1 2 3 4 5
�

0

B

B

B

B

B

@

1

2

3

4

5

1

C

C

C

C

C

A

,

0

B

B

B

B

B

@

1

2

3

4

5

1

C

C

C

C

C

A

�

1 2 3 4 5
�

,

0

B

@

1 2 1

4 5 2

7 8 2

1

C

A

0

B

@

�2 4

3

�1

3

2 �5

3

2

3

�1 2 �1

1

C

A

0

B

@

1 2 1

4 5 2

7 8 2

1

C

A

,

�

x y z
�

0

@

2 1 1
1 2 1
1 1 2

1

A

0

B

@

x

y

z

1

C

A

,

0

B

B

B

B

B

@

2 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 0 0 0 2

1

C

C

C

C

C

A

0

B

B

B

B

B

@

1 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 0 0 0 1

1

C

C

C

C

C

A

,

0

B

@

�2 4

3

�1

3

2 �5

3

2

3

�1 2 �1

1

C

A

0

B

@

4 2

3

�2

3

6 5

3

�2

3

12 �16

3

10

3

1

C

A

0

B

@

1 2 1

4 5 2

7 8 2

1

C

A

.

2. Let’s prove the theorem (MN)T = NTMT .

Note: the following is a common technique for proving matrix identities.
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(a) Let M = (mi

j

) and let N = (ni

j

). Write out a few of the entries of
each matrix in the form given at the beginning of this chapter.

(b) Multiply out MN and write out a few of its entries in the same
form as in part a. In terms of the entries of M and the entries of
N , what is the entry in row i and column j of MN?

(c) Take the transpose (MN)T and write out a few of its entries in
the same form as in part a. In terms of the entries of M and the
entries of N , what is the entry in row i and column j of (MN)T ?

(d) Take the transposes NT and MT and write out a few of their
entries in the same form as in part a.

(e) Multiply out NTMT and write out a few of its entries in the same
form as in part a. In terms of the entries of M and the entries of
N , what is the entry in row i and column j of NTMT ?

(f) Show that the answers you got in parts c and e are the same.

3. Let M be any m ⇥ n matrix. Show that MTM and MMT are sym-
metric. (Hint: use the result of the previous problem.) What are their
sizes?

4. Let x =

0

B

@

x
1

...
x
n

1

C

A

and y =

0

B

@

y
1

...
y
n

1

C

A

be column vectors. Show that the dot

product x y = xT 1 y.

Hint

5. Above, we showed that left multiplication by an r ⇥ s matrix N was

a linear transformation M s

k

N�! M r

k

. Show that right multiplication

by a k ⇥m matrix R is a linear transformation M s

k

R�! M s

m

. In other
words, show that right matrix multiplication obeys linearity.

Problem hint
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6. Explain what happens to a matrix when:

(a) You multiply it on the left by a diagonal matrix.

(b) You multiply it on the right by a diagonal matrix.

Give a few simple examples before you start explaining.
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9 Properties of Matrices

9.1 Block Matrices

It is often convenient to partition a matrix M into smaller matrices called
blocks, like so:

M =

0

B

B

@

1 2 3 1
4 5 6 0
7 8 9 1
0 1 2 0

1

C

C

A

=

✓

A B
C D

◆

Here A =

0

@

1 2 3
4 5 6
7 8 9

1

A, B =

0

@

1
0
1

1

A, C =
�

0 1 2
�

, D = (0).

• The blocks of a block matrix must fit together to form a rectangle. So
✓

B A
D C

◆

makes sense, but

✓

C B
D A

◆

does not.

Reading homework: problem 9.1

• There are many ways to cut up an n ⇥ n matrix into blocks. Often
context or the entries of the matrix will suggest a useful way to divide
the matrix into blocks. For example, if there are large blocks of zeros
in a matrix, or blocks that look like an identity matrix, it can be useful
to partition the matrix accordingly.

• Matrix operations on block matrices can be carried out by treating the
blocks as matrix entries. In the example above,

M2 =

✓

A B
C D

◆✓

A B
C D

◆

=

✓

A2 +BC AB +BD
CA+DC CB +D2

◆
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Computing the individual blocks, we get:

A2 +BC =

0

@

30 37 44
66 81 96
102 127 152

1

A

AB +BD =

0

@

4
10
16

1

A

CA+DC =

0

@

18
21
24

1

A

CB +D2 = (2)

Assembling these pieces into a block matrix gives:
0

B

B

@

30 37 44 4
66 81 96 10
102 127 152 16
4 10 16 2

1

C

C

A

This is exactly M2.

9.2 The Algebra of Square Matrices

Not every pair of matrices can be multiplied. When multiplying two matrices,
the number of rows in the left matrix must equal the number of columns in
the right. For an r ⇥ k matrix M and an s ⇥ l matrix N , then we must
have k = s.

This is not a problem for square matrices of the same size, though. Two
n⇥nmatrices can be multiplied in either order. For a single matrixM 2Mn

n

,
we can form M2 = MM , M3 = MMM , and so on, and define M0 = I

n

, the
identity matrix.

As a result, any polynomial equation can be evaluated on a matrix.

Example Let f(x) = x� 2x2 + 3x3.

Let M =

✓

1 t

0 1

◆

. Then:

M

2 =

✓

1 2t
0 1

◆

,M

3 =

✓

1 3t
0 1

◆

, . . .
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Hence:

f(M) =

✓

1 t

0 1

◆

� 2

✓

1 2t
0 1

◆

+ 3

✓

1 3t
0 1

◆

=

✓

2 6t
0 2

◆

Suppose f(x) is any function defined by a convergent Taylor Series:

f(x) = f(0) + f 0(0)x+
1

2!
f 00(0)x2 + · · ·

Then we can define the matrix function by just plugging in M :

f(M) = f(0) + f 0(0)M +
1

2!
f 00(0)M2 + · · ·

There are additional techniques to determine the convergence of Taylor Series
of matrices, based on the fact that the convergence problem is simple for
diagonal matrices. It also turns out that exp(M) = 1+M+ 1

2

M2+ 1

3!

M3+· · ·
always converges.

Matrix Exponential Example

Matrix multiplication does not commute. For generic n ⇥ n square matrices M

and N , then MN 6= NM . For example:

✓

1 1
0 1

◆✓

1 0
1 1

◆

=

✓

2 1
1 1

◆

On the other hand:
✓

1 0
1 1

◆✓

1 1
0 1

◆

=

✓

1 1
1 2

◆

Since n ⇥ n matrices are linear transformations Rn ! Rn, we can see that the
order of successive linear transformations matters. For two linear transformations K

and L taking Rn ! Rn, and v 2 Rn, then in general

K(L(v)) 6= L(K(v)) .

Finding matrices such that MN = NM is an important problem in mathematics.
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Here is an example of matrices acting on objects in three dimensions that
also shows matrices not commuting.

Example You learned in a Review Problem that the matrix

M =

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

,

rotates vectors in the plane by an angle ✓. We can generalize this, using block matrices,
to three dimensions. In fact the following matrices built from a 2⇥ 2 rotation matrix,
a 1⇥ 1 identity matrix and zeroes everywhere else

M =

0

@

cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A and N =

0

@

1 0 0
0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A

,

perform rotations by an angle ✓ in the xy and yz planes, respectively. Because, they
rotate single vectors, you can also use them to rotate objects built from a collection of
vectors like pretty colored blocks! Here is a picture of M and then N acting on such
a block, compared with the case of N followed by M . The special case of ✓ = 90� is
shown.

Notice how the end product of MN and NM are di↵erent, so MN 6= NM here.

Trace

Matrices contain a great deal of information, so finding ways to extract es-
sential information is useful. Here we need to assume that n <1 otherwise
there are subtleties with convergence that we’d have to address.
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Definition The trace of a square matrixM = (mi

j

) is the sum of its diagonal
entries.

trM =
n

X

i=1

mi

i

.

Example

tr

0

@

2 7 6
9 5 1
4 3 8

1

A = 2 + 5 + 8 = 15

While matrix multiplication does not commute, the trace of a product of
matrices does not depend on the order of multiplication:

tr(MN) = tr(
X

l

M i

l

N l

j

)

=
X

i

X

l

M i

l

N l

i

=
X

l

X

i

N l

i

M i

l

= tr(
X

i

N l

i

M i

l

)

= tr(NM).

Explanation of this Proof

Thus we have a Theorem:

Theorem 9.1.
tr(MN) = tr(NM)

for any square matrices M and N .

Example Continuing from the previous example,

M =

✓

1 1
0 1

◆

, N =

✓

1 0
1 1

◆

.

so

MN =

✓

2 1
1 1

◆

6= NM =

✓

1 1
1 2

◆

.

However, tr(MN) = 2 + 1 = 3 = 1 + 2 = tr(NM).
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Another useful property of the trace is that:

trM = trMT

This is true because the trace only uses the diagonal entries, which are fixed

by the transpose. For example: tr

✓

1 1
2 3

◆

= 4 = tr

✓

1 2
1 3

◆

= tr

✓

1 2
1 3

◆

T

Finally, trace is a linear transformation from matrices to the real numbers.
This is easy to check.

More on the trace function

Linear Systems Redux Recall that we can view a linear system as a matrix equation

MX = V,

with M an r ⇥ k matrix of coe�cients, X a k ⇥ 1 matrix of unknowns, and V an
r⇥ 1 matrix of constants. If M is a square matrix, then the number of equations r is
the same as the number of unknowns k, so we have hope of finding a single solution.

Above we discussed functions of matrices. An extremely useful function would be
f(M) = 1

M

, where M

1

M

= I. If we could compute 1

M

, then we would multiply both
sides of the equation MX = V by 1

M

to obtain the solution immediately: X = 1

M

V .
Clearly, if the linear system has no solution, then there can be no hope of finding

1

M

, since if it existed we could find a solution. On the other hand, if the system has
more than one solution, it also seems unlikely that 1

M

would exist, since X = 1

M

V

yields only a single solution.
Therefore 1

M

only sometimes exists. It is called the inverse of M , and is usually
written M

�1.

References
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Wikipedia:

• Trace (Linear Algebra)

• Block Matrix
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Review Problems

1. Let A =

✓

1 2 0
3 �1 4

◆

. Find AAT and ATA. What can you say about

matrices MMT and MTM in general? Explain.

2. Compute exp(A) for the following matrices:

• A =

✓

� 0
0 �

◆

• A =

✓

1 �
0 1

◆

• A =

✓

0 �
0 0

◆

Hint

3. Suppose ad� bc 6= 0, and let M =

✓

a b
c d

◆

.

(a) Find a matrix M�1 such that MM�1 = I.

(b) Explain why your result explains what you found in a previous
homework exercise.

(c) Compute M�1M .

4. Let M =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3

1

C

C

C

C

C

C

C

C

C

C

A

. Divide M into named blocks,

and then multiply blocks to compute M2.
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5. A matrix A is called anti-symmetric (or skew-symmetric) if AT = �A.
Show that for every n⇥ n matrix M , we can write M = A + S where
A is an anti-symmetric matrix and S is a symmetric matrix.

Hint: What kind of matrix is M +MT? How about M �MT?

10 Inverse Matrix

Definition A square matrix M is invertible (or nonsingular) if there exists
a matrix M�1 such that

M�1M = I = M�1M.

Inverse of a 2⇥ 2 Matrix Let M and N be the matrices:

M =

✓

a b

c d

◆

, N =

✓

d �b
�c a

◆

Multiplying these matrices gives:

MN =

✓

ad� bc 0
0 ad� bc

◆

= (ad� bc)I

Then M

�1 = 1

ad�bc

✓

d �b
�c a

◆

, so long as ad� bc 6= 0.
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10.1 Three Properties of the Inverse

1. If A is a square matrix and B is the inverse of A, then A is the inverse
of B, since AB = I = BA. Then we have the identity:

(A�1)�1 = A

2. Notice that B�1A�1AB = B�1IB = I = ABB�1A�1. Then:

(AB)�1 = B�1A�1

Then much like the transpose, taking the inverse of a product reverses
the order of the product.

3. Finally, recall that (AB)T = BTAT . Since IT = I, then (A�1A)T =
AT (A�1)T = I. Similarly, (AA�1)T = (A�1)TAT = I. Then:

(A�1)T = (AT )�1
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As such, we could even write A�T for the inverse of the transpose of A
(or equivalently the transpose of the inverse).

Example

10.2 Finding Inverses

Suppose M is a square matrix and MX = V is a linear system with unique
solution X

0

. Since there is a unique solution, M�1V , then the reduced row
echelon form of the linear system has an identity matrix on the left:

�

M V
�

⇠
�

I M�1V
�

Solving the linear system MX = V then tells us what M�1V is.
To solve many linear systems at once, we can consider augmented matrices

with a matrix on the right side instead of a column vector, and then apply
Gaussian row reduction to the left side of the matrix. Once the identity
matrix is on the left side of the augmented matrix, then the solution of each
of the individual linear systems is on the right.

To compute M�1, we would like M�1, rather than M�1V to appear on
the right side of our augmented matrix. This is achieved by solving the
collection of systems MX = e

k

, where e
k

is the column vector of zeroes with
a 1 in the kth entry. I.e., the n⇥n identity matrix can be viewed as a bunch
of column vectors I

n

= (e
1

e
2

· · · e
n

). So, putting the e
k

’s together into an
identity matrix, we get:

�

M I
�

⇠
�

I M�1I
�

=
�

I M�1

�

Example Find

0

@

�1 2 �3
2 1 0
4 �2 5

1

A

�1

. Start by writing the augmented matrix, then

apply row reduction to the left side.
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0

B

@

�1 2 �3 1 0 0

2 1 0 0 1 0

4 �2 5 0 0 1

1

C

A

⇠

0

B

@

1 �2 3 1 0 0

0 5 �6 2 1 0

0 6 �7 4 0 1

1

C

A

⇠

0

B

@

1 0 3

5

�1

4

2

5

0

0 1 �6

5

2

5

1

5

0

0 0 1

5

4

5

�6

5

1

1

C

A

⇠

0

B

@

1 0 0 �5 4 �3
0 1 0 10 �7 6

0 0 1 8 �6 5

1

C

A

At this point, we know M

�1 assuming we didn’t goof up. However, row reduction
is a lengthy and arithmetically involved process, so we should check our answer, by
confirming that MM

�1 = I (or if you prefer M�1

M = I):

MM

�1 =

0

@

�1 2 �3
2 1 0
4 �2 5

1

A

0

@

�5 4 �3
10 �7 6
8 �6 5

1

A =

0

@

1 0 0
0 1 0
0 0 1

1

A

The product of the two matrices is indeed the identity matrix, so we’re done.

Reading homework: problem 10.1

10.3 Linear Systems and Inverses

If M�1 exists and is known, then we can immediately solve linear systems
associated to M .

Example Consider the linear system:

�x+2y �3z = 1

2x + y = 2

4x�2y +5z = 0

The associated matrix equation is MX =

0

@

1
2
0

1

A

, where M is the same as in the

previous section. Then:
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0

@

x

y

z

1

A =

0

@

�1 2 �3
2 1 0
4 �2 5

1

A

�1

0

@

1
2
0

1

A =

0

@

�5 4 �3
10 �7 6
8 �6 5

1

A

0

@

1
2
0

1

A =

0

@

3
�4
�4

1

A

Then

0

@

x

y

z

1

A =

0

@

3
�4
�4

1

A. In summary, when M

�1 exists, then

MX = V ) X = M

�1

V .

Reading homework: problem 10.2

10.4 Homogeneous Systems

Theorem 10.1. A square matrix M is invertible if and only if the homoge-
neous system

MX = 0

has no non-zero solutions.

Proof. First, suppose that M�1 exists. Then MX = 0 ) X = M�10 = 0.
Thus, if M is invertible, then MX = 0 has no non-zero solutions.

On the other hand, MX = 0 always has the solution X = 0. If no other
solutions exist, then M can be put into reduced row echelon form with every
variable a pivot. In this case, M�1 can be computed using the process in the
previous section.

A great test of your linear algebra knowledge is to make a list of conditions
for a matrix to be singular. You will learn more of these as the course goes
by, but can also skip straight to the list in Section 24.1.
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10.5 Bit Matrices

In computer science, information is recorded using binary strings of data.
For example, the following string contains an English word:

011011000110100101101110011001010110000101110010

A bit is the basic unit of information, keeping track of a single one or zero.
Computers can add and multiply individual bits very quickly.

Consider the set Z
2

= {0, 1} with addition and multiplication given by
the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Notice that �1 = 1, since 1 + 1 = 0.
It turns out that Z

2

is almost as good as the real or complex numbers
(they are all fields), so we can apply all of the linear algebra we have learned
thus far to matrices with Z

2

entries. A matrix with entries in Z
2

is sometimes
called a bit matrix 3.

Example

0

@

1 0 1
0 1 1
1 1 1

1

A is an invertible matrix over Z
2

:

0

@

1 0 1
0 1 1
1 1 1

1

A

�1

=

0

@

0 1 1
1 0 1
1 1 1

1

A

This can be easily verified by multiplying:

0

@

1 0 1
0 1 1
1 1 1

1

A

0

@

0 1 1
1 0 1
1 1 1

1

A =

0

@

1 0 0
0 1 0
0 0 1

1

A

Application: Cryptography A very simple way to hide information is to use a sub-
stitution cipher, in which the alphabet is permuted and each letter in a message is
systematically exchanged for another. For example, the ROT-13 cypher just exchanges
a letter with the letter thirteen places before or after it in the alphabet. For example,
HELLO becomes URYYB. Applying the algorithm again decodes the message, turning

3Note that bits in a bit arithmetic shorthand do not “add” and “multiply” as elements in
Z2 does since these operators corresponding to “bitwise or” and “bitwise and” respectively.
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URYYB back into HELLO. Substitution ciphers are easy to break, but the basic idea
can be extended to create cryptographic systems that are practically uncrackable. For
example, a one-time pad is a system that uses a di↵erent substitution for each letter
in the message. So long as a particular set of substitutions is not used on more than
one message, the one-time pad is unbreakable.

English characters are often stored in computers in the ASCII format. In ASCII,
a single character is represented by a string of eight bits, which we can consider as a
vector in Z8

2

(which is like vectors in R8, where the entries are zeros and ones). One
way to create a substitution cipher, then, is to choose an 8 ⇥ 8 invertible bit matrix
M , and multiply each letter of the message by M . Then to decode the message, each
string of eight characters would be multiplied by M

�1.
To make the message a bit tougher to decode, one could consider pairs (or longer

sequences) of letters as a single vector in Z16

2

(or a higher-dimensional space), and
then use an appropriately-sized invertible matrix.

For more on cryptography, see “The Code Book,” by Simon Singh (1999, Double-
day).

You are now ready to attempt the first sample midterm.

References

He↵eron: Chapter Three, Section IV.2
Beezer: Chapter M, Section MISLE
Wikipedia: Invertible Matrix

Review Problems

1. Find formulas for the inverses of the following matrices, when they are
not singular:
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(a)

0

@

1 a b
0 1 c
0 0 1

1

A

(b)

0

@

a b c
0 d e
0 0 f

1

A

When are these matrices singular?

2. Write down all 2⇥2 bit matrices and decide which of them are singular.
For those which are not singular, pair them with their inverse.

3. Let M be a square matrix. Explain why the following statements are
equivalent:

(a) MX = V has a unique solution for every column vector V .

(b) M is non-singular.

(In general for problems like this, think about the key words:

First, suppose that there is some column vector V such that the equa-
tion MX = V has two distinct solutions. Show that M must be sin-
gular; that is, show that M can have no inverse.

Next, suppose that there is some column vector V such that the equa-
tion MX = V has no solutions. Show that M must be singular.

Finally, suppose that M is non-singular. Show that no matter what
the column vector V is, there is a unique solution to MX = V.)

Hints for Problem 3

4. Left and Right Inverses: So far we have only talked about inverses of
square matrices. This problem will explore the notion of a left and
right inverse for a matrix that is not square. Let

A =

✓

0 1 1
1 1 0

◆

(a) Compute:
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i. AAT ,

ii.
�

AAT

��1

,

iii. B := AT

�

AAT

��1

(b) Show that the matrix B above is a right inverse for A, i.e., verify
that

AB = I .

(c) Does BA make sense? (Why not?)

(d) Let A be an n ⇥m matrix with n > m. Suggest a formula for a
left inverse C such that

CA = I

Hint: you may assume that ATA has an inverse.

(e) Test your proposal for a left inverse for the simple example

A =

✓

1
2

◆

,

(f) True or false: Left and right inverses are unique. If false give a
counterexample.

Left and Right Inverses
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11 LU Decomposition

Certain matrices are easier to work with than others. In this section, we
will see how to write any square4 matrix M as the product of two simpler
matrices. We will write

M = LU ,

where:

• L is lower triangular . This means that all entries above the main
diagonal are zero. In notation, L = (li

j

) with li
j

= 0 for all j > i.

L =

0

B

B

B

@

l1
1

0 0 · · ·
l2
1

l2
2

0 · · ·
l3
1

l3
2

l3
3

· · ·
...

...
...

. . .

1

C

C

C

A

• U is upper triangular . This means that all entries below the main
diagonal are zero. In notation, U = (ui

j

) with ui

j

= 0 for all j < i.

U =

0

B

B

B

@

u1

1

u1

2

u1

3

· · ·
0 u2

2

u2

3

· · ·
0 0 u3

3

· · ·
...

...
...

. . .

1

C

C

C

A

M = LU is called an LU decomposition of M .
This is a useful trick for many computational reasons. It is much easier

to compute the inverse of an upper or lower triangular matrix. Since inverses
are useful for solving linear systems, this makes solving any linear system
associated to the matrix much faster as well. The determinant—a very im-
portant quantity associated with any square matrix—is very easy to compute
for triangular matrices.

Example Linear systems associated to upper triangular matrices are very easy to solve
by back substitution.

✓

a b 1
0 c e

◆

) y =
e

c

, x =
1

a

✓

1� be

c

◆

4The case where M is not square is dealt with at the end of the lecture.
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0

@

1 0 0 d

a 1 0 e

b c 1 f

1

A) x = d , y = e� ad , z = f � bd� c(e� ad)

For lower triangular matrices, back substitution gives a quick solution; for upper tri-
angular matrices, forward substitution gives the solution.

11.1 Using LU Decomposition to Solve Linear Systems

Suppose we have M = LU and want to solve the system

MX = LUX = V.

• Step 1: Set W =

0

@

u
v
w

1

A = UX.

• Step 2: Solve the system LW = V . This should be simple by forward
substitution since L is lower triangular. Suppose the solution to LW =
V is W

0

.

• Step 3: Now solve the system UX = W
0

. This should be easy by
backward substitution, since U is upper triangular. The solution to
this system is the solution to the original system.

We can think of this as using the matrix L to perform row operations on the
matrix U in order to solve the system; this idea also appears in the study of
determinants.

Reading homework: problem 11.1

Example Consider the linear system:

6x+ 18y + 3z = 3

2x+ 12y + z = 19

4x+ 15y + 3z = 0

An LU decomposition for the associated matrix M is:
0

@

6 18 3
2 12 1
4 15 3

1

A =

0

@

3 0 0
1 6 0
2 3 1

1

A

0

@

2 6 1
0 1 0
0 0 1

1

A

.
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• Step 1: Set W =

0

@

u

v

w

1

A = UX.

• Step 2: Solve the system LW = V :

0

@

3 0 0
1 6 0
2 3 1

1

A

0

@

u

v

w

1

A =

0

@

3
19
0

1

A

By substitution, we get u = 1, v = 3, and w = �11. Then

W

0

=

0

@

1
3
�11

1

A

• Step 3: Solve the system UX = W

0

.

0

@

2 6 1
0 1 0
0 0 1

1

A

0

@

x

y

z

1

A =

0

@

1
3
�11

1

A

Back substitution gives z = �11, y = 3, and x = �3.

Then X =

0

@

�3
3
�11

1

A, and we’re done.

Using a LU decomposition

11.2 Finding an LU Decomposition.

For any given matrix, there are actually many di↵erent LU decompositions.
However, there is a unique LU decomposition in which the L matrix has ones
on the diagonal; then L is called a lower unit triangular matrix .

To find the LU decomposition, we’ll create two sequences of matrices
L
0

, L
1

, . . . and U
0

, U
1

, . . . such that at each step, L
i

U
i

= M . Each of the L
i

will be lower triangular, but only the last U
i

will be upper triangular.
Start by setting L

0

= I and U
0

= M , because L
0

U
0

= M . A main concept
of this calculation is captured by the following example:
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Example Consider

E =

✓

1 0
� 1

◆

, M =

✓

a b c · · ·
d e f · · ·

◆

.

Lets compute EM

EM =

✓

a b c · · ·
d+ �a e+ �b f + �c · · ·

◆

, .

Something neat happened here: multiplying M by E performed the row operation
R

2

! R

2

+ �R� 1 on M . Another interesting fact:

E

�1 :=

✓

1 0
�� 1

◆

obeys (check this yourself...)
E

�1

E = 1 .

Hence M = E

�1

EM or, writing this out
✓

a b c · · ·
d e f · · ·

◆

=

✓

1 0
�� 1

◆✓

a b c · · ·
d+ �a e+ �b f + �c · · ·

◆

.

Here the matrix on the left is lower triangular, while the matrix on the right has had
a row operation performed on it.

We would like to use the first row of U
0

to zero out the first entry of every
row below it. For our running example,

U
0

= M =

0

@

6 18 3
2 12 1
4 15 3

1

A ,
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so we would like to perform the row operations R
2

! R
2

� 1

3

R
1

and R
3

!
R

3

� 2

3

R
1

. If we perform these row operations on U
0

to produce

U
1

=

0

@

6 18 3
0 6 0
0 3 1

1

A ,

we need to multiply this on the left by a lower triangular matrix L
1

so that
the product L

1

U
1

= M still. The above example shows how to do this: Set
L
1

to be the lower triangular matrix whose first column is filled with the
minus constants used to zero out the first column of M . Then

L
1

=

0

B

@

1 0 0
1

3

1 0
2

3

0 1

1

C

A

.

By construction L
1

U
1

= M , but you should compute this yourself as a double
check.

Now repeat the process by zeroing the second column of U
1

below the
diagonal using the second row of U

1

using the row operation R
3

! R
3

� 1

2

R
2

to produce

U
2

=

0

@

6 18 3
0 6 0
0 0 1

1

A .

The matrix that undoes this row operation is obtained in the same way we
found L

1

above and is:
0

@

1 0 0
0 1 0
0 1

2

0

1

A .

Thus our answer for L
2

is the product of this matrix with L
1

, namely

L
2

=

0

B

@

1 0 0
1

3

1 0
2

3

0 1

1

C

A

0

@

1 0 0
0 1 0
0 1

2

0

1

A =

0

B

@

1 0 0
1

3

1 0
2

3

1

2

1

1

C

A

.

Notice that it is lower triangular because

THE PRODUCT OF LOWER TRIANGULAR MATRICES IS ALWAYS
LOWER TRIANGULAR!

92



Moreover it is obtained by recording minus the constants used for all our
row operations in the appropriate columns (this always works this way).
Moreover, U

2

is upper triangular and M = L
2

U
2

, we are done! Putting this
all together we have

M =

0

@

6 18 3
2 12 1
4 15 3

1

A =

0

B

@

1 0 0
1

3

1 0
2

3

1

2

1

1

C

A

0

@

6 18 3
0 6 0
0 0 1

1

A .

If the matrix you’re working with has more than three rows, just continue
this process by zeroing out the next column below the diagonal, and repeat
until there’s nothing left to do.

Another LU decomposition example

The fractions in the L matrix are admittedly ugly. For two matrices
LU , we can multiply one entire column of L by a constant � and divide the
corresponding row of U by the same constant without changing the product
of the two matrices. Then:

LU =

0

B

@

1 0 0
1

3

1 0
2

3

1

2

1

1

C

A

I

0

@

6 18 3
0 6 0
0 0 1

1

A

=

0

B

@

1 0 0
1

3

1 0
2

3

1

2

1

1

C

A

0

@

3 0 0
0 6 0
0 0 1

1

A

0

B

@

1

3

0 0

0 1

6

0

0 0 1

1

C

A

0

@

6 18 3
0 6 0
0 0 1

1

A

=

0

@

3 0 0
1 6 0
2 3 1

1

A

0

@

2 6 1
0 1 0
0 0 1

1

A .

The resulting matrix looks nicer, but isn’t in standard form.

Reading homework: problem 11.2
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For matrices that are not square, LU decomposition still makes sense.
Given an m ⇥ n matrix M , for example we could write M = LU with L
a square lower unit triangular matrix, and U a rectangular matrix. Then
L will be an m ⇥ m matrix, and U will be an m ⇥ n matrix (of the same
shape as M). From here, the process is exactly the same as for a square
matrix. We create a sequence of matrices L

i

and U
i

that is eventually the
LU decomposition. Again, we start with L

0

= I and U
0

= M .

Example Let’s find the LU decomposition of M = U

0

=

✓

�2 1 3
�4 4 1

◆

. Since M is

a 2 ⇥ 3 matrix, our decomposition will consist of a 2 ⇥ 2 matrix and a 2 ⇥ 3 matrix.

Then we start with L

0

= I

2

=

✓

1 0
0 1

◆

.

The next step is to zero-out the first column of M below the diagonal. There is
only one row to cancel, then, and it can be removed by subtracting 2 times the first
row of M to the second row of M . Then:

L

1

=

✓

1 0
2 1

◆

, U

1

=

✓

�2 1 3
0 2 �5

◆

Since U
1

is upper triangular, we’re done. With a larger matrix, we would just continue
the process.

11.3 Block LDU Decomposition

Let M be a square block matrix with square blocks X, Y, Z,W such that X�1

exists. Then M can be decomposed as a block LDU decomposition, where
D is block diagonal, as follows:

M =

✓

X Y
Z W

◆

Then:

M =

✓

I 0
ZX�1 I

◆✓

X 0
0 W � ZX�1Y

◆✓

I X�1Y
0 I

◆

.

This can be checked explicitly simply by block-multiplying these three ma-
trices.

Block LDU Explanation
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Example For a 2⇥ 2 matrix, we can regard each entry as a block.
✓

1 2
3 4

◆

=

✓

1 0
3 1

◆✓

1 0
0 �2

◆✓

1 2
0 1

◆

By multiplying the diagonal matrix by the upper triangular matrix, we get the standard
LU decomposition of the matrix.

References

Wikipedia:

• LU Decomposition

• Block LU Decomposition

Review Problems

1. Consider the linear system:

x1 = v1

l2
1

x1 +x2 = v2

...
...

ln
1

x1 +ln
2

x2 + · · ·+ xn = vn

i. Find x1.

ii. Find x2.

iii. Find x3.

k. Try to find a formula for xk. Don’t worry about simplifying your
answer.

2. Let M =

✓

X Y
Z W

◆

be a square n⇥ n block matrix with W invertible.

i. If W has r rows, what size are X, Y , and Z?

ii. Find a UDL decomposition for M . In other words, fill in the stars
in the following equation:

✓

X Y
Z W

◆

=

✓

I ⇤
0 I

◆✓

⇤ 0
0 ⇤

◆✓

I 0
⇤ I

◆
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12 Elementary Matrices and Determinants

Given a square matrix, is there an easy way to know when it is invertible?
Answering this fundamental question is our next goal.

For small cases, we already know the answer. If M is a 1⇥1 matrix, then
M = (m))M�1 = (1/m). Then M is invertible if and only if m 6= 0.

For M a 2⇥ 2 matrix, we showed in Section 10 that if M =

✓

m1

1

m1

2

m2

1

m2

2

◆

,

then M�1 = 1

m

1
1m

2
2�m

1
2m

2
1

✓

m2

2

�m1

2

�m2

1

m1

1

◆

. Thus M is invertible if and only if

m1

1

m2

2

�m1

2

m2

1

6= 0 .

For 2⇥ 2 matrices, this quantity is called the determinant of M .

detM = det

✓

m1

1

m1

2

m2

1

m2

2

◆

= m1

1

m2

2

�m1

2

m2

1

Example For a 3 ⇥ 3 matrix, M =

0

B

@

m

1

1

m

1

2

m

1

3

m

2

1

m

2

2

m

2

3

m

3

1

m

3

2

m

3

3

1

C

A

, then (by the first review

question) M is non-singular if and only if:

detM = m

1

1

m

2

2

m

3

3

�m

1

1

m

2

3

m

3

2

+m

1

2

m

2

3

m

3

1

�m

1

2

m

2

1

m

3

3

+m

1

3

m

2

1

m

3

2

�m

1

3

m

2

2

m

3

1

6= 0.

Notice that in the subscripts, each ordering of the numbers 1, 2, and 3 occurs exactly
once. Each of these is a permutation of the set {1, 2, 3}.
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12.1 Permutations

Consider n objects labeled 1 through n and shu✏e them. Each possible
shu✏e is called a permutation �. For example, here is an example of a
permutation of 5:

⇢ =



1 2 3 4 5
4 2 5 1 3

�

We can consider a permutation � as a function from the set of numbers
[n] := {1, 2, . . . , n} to [n], and write ⇢(3) = 5 from the above example. In
general we can write



1 2 3 4 5
�(1) �(2) �(3) �(4) �(5),

�

but since the top line of any permutation is always the same, we can omit
the top line and just write:

� =
⇥

�(1) �(2) �(3) �(4) �(5)
⇤

so we can just write ⇢ = [4, 2, 5, 1, 3]. There is also one more notation called
cycle notation, but we do not discuss it here.

The mathematics of permutations is extensive and interesting; there are
a few properties of permutations that we’ll need.

• There are n! permutations of n distinct objects, since there are n choices
for the first object, n� 1 choices for the second once the first has been
chosen, and so on.

• Every permutation can be built up by successively swapping pairs of
objects. For example, to build up the permutation

⇥

3 1 2
⇤

from the
trivial permutation

⇥

1 2 3
⇤

, you can first swap 2 and 3, and then
swap 1 and 3.

• For any given permutation �, there is some number of swaps it takes to
build up the permutation. (It’s simplest to use the minimum number of
swaps, but you don’t have to: it turns out that any way of building up
the permutation from swaps will have have the same parity of swaps,
either even or odd.) If this number happens to be even, then � is
called an even permutation; if this number is odd, then � is an odd
permutation. In fact, n! is even for all n � 2, and exactly half of the
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permutations are even and the other half are odd. It’s worth noting
that the trivial permutation (which sends i! i for every i) is an even
permutation, since it uses zero swaps.

Definition The sign function is a function sgn(�) that sends permutations
to the set {�1, 1}, defined by:

sgn(�) =

⇢

1 if � is even;
�1 if � is odd.

For more on the swaps (also known as inversions) and the sign function,
see Problem 4.

Permutation Example

Reading homework: problem 12.1

We can use permutations to give a definition of the determinant.

Definition For an n⇥n matrix M , the determinant of M (sometimes writ-
ten |M |) is given by:

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

.

The sum is over all permutations of n. Each summand is a product of a
single entry from each row, but with the column numbers shu✏ed by the
permutation �.

The last statement about the summands yields a nice property of the
determinant:

Theorem 12.1. If M has a row consisting entirely of zeros, then mi

�(i)

= 0
for every �. Then detM = 0.

Example Because there are many permutations of n, writing the determinant this way
for a general matrix gives a very long sum. For n = 4, there are 24 = 4! permutations,
and for n = 5, there are already 120 = 5! permutations.
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For a 4⇥ 4 matrix, M =

0

B

B

@

m

1

1

m

1

2

m

1

3

m

1

4

m

2

1

m

2

2

m

2

3

m

2

4

m

3

1

m

3

2

m

3

3

m

3

4

m

4

1

m

4

2

m

4

3

m

4

4

1

C

C

A

, then detM is:

detM = m

1

1

m

2

2

m

3

3

m

4

4

�m

1

1

m

2

3

m

3

2

m

4

4

�m

1

1

m

2

2

m

3

4

m

4

3

� m

1

2

m

2

1

m

3

3

m

4

4

+m

1

1

m

2

3

m

3

4

m

4

2

+m

1

1

m

2

4

m

3

2

m

4

3

+ m

1

2

m

2

3

m

3

1

m

4

4

+m

1

2

m

2

1

m

3

4

m

4

3

± 16 more terms.

This is very cumbersome.
Luckily, it is very easy to compute the determinants of certain matrices.

For example, if M is diagonal, then M i

j

= 0 whenever i 6= j. Then all
summands of the determinant involving o↵-diagonal entries vanish, so:

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

= m1

1

m2

2

· · ·mn

n

.

Thus, the determinant of a diagonal matrix is just the product of its diagonal
entries.

Since the identity matrix is diagonal with all diagonal entries equal to
one, we have:

det I = 1.

We would like to use the determinant to decide whether a matrix is invert-
ible or not. Previously, we computed the inverse of a matrix by applying row
operations. As such, it makes sense to ask what happens to the determinant
when row operations are applied to a matrix.

Swapping rows Swapping rows i and j (with i < j) in a matrix changes the determi-
nant. For a permutation �, let �̂ be the permutation obtained by swapping positions
i and j. The sign of �̂ is the opposite of the sign of �. Let M be a matrix, and M

0

be the same matrix, but with rows i and j swapped. Then the determinant of M 0 is:

detM 0 =
X

�

sgn(�)m1

�(1)

· · ·mj

�(i)

· · ·mi

�(j)

· · ·mn

�(n)

=
X

�

sgn(�)m1

�(1)

· · ·mi

�(j)

· · ·mj

�(i)

· · ·mn

�(n)

=
X

�

(�sgn(�̂))m1

�̂(1)

· · ·mi

�̂(j)

· · ·mj

�̂(i)

· · ·mn

�̂(n)

= �
X

�̂

sgn(�̂)m1

�̂(1)

· · ·mi

�̂(j)

· · ·mj

�̂(i)

· · ·mn

�̂(n)

= � detM.
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Thus we see that swapping rows changes the sign of the determinant. I.e.

M

0 = � detM .

Reading homework: problem 12.2

Applying this result to M = I (the identity matrix) yields

detEi

j

= �1 ,

where the matrix E

i

j

is the identity matrix with rows i and j swapped. It is our first
example of an elementary matrix and we will meet it again soon.

This implies another nice property of the determinant. If two rows of the matrix
are identical, then swapping the rows changes the sign of the matrix, but leaves the
matrix unchanged. Then we see the following:

Theorem 12.2. If M has two identical rows, then detM = 0.

12.2 Elementary Matrices

Our next goal is to find matrices that emulate the Gaussian row operations
on a matrix. In other words, for any matrix M , and a matrix M 0 equal to M
after a row operation, we wish to find a matrix R such that M 0 = RM .

See Some Ideas Explained

We will first find a matrix that, when it multiplies a matrix M , rows i
and j of M are swapped.
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Let R1 through Rn denote the rows of M , and let M 0 be the matrix M
with rows i and j swapped. Then M and M 0 can be regarded as a block
matrices:

M =

0

B

B

B

B

B

B

@

...
Ri

...
Rj

...

1

C

C

C

C

C

C

A

, and M 0 =

0

B

B

B

B

B

B

@

...
Rj

...
Ri

...

1

C

C

C

C

C

C

A

.

Then notice that:

M 0 =

0

B

B

B

B

B

B

B

B

B

B

@

...
Rj

...
Ri

...

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

@

1
. . .

0 1
. . .

1 0
. . .

1

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

@

...
Ri

...
Rj

...

1

C

C

C

C

C

C

C

C

C

C

A

The matrix
0

B

B

B

B

B

B

B

B

B

B

@

1
. . .

0 1
. . .

1 0
. . .

1

1

C

C

C

C

C

C

C

C

C

C

A

=: Ei

j

is just the identity matrix with rows i and j swapped. This matrix Ei

j

is
called an elementary matrix . Then, symbolically,

M 0 = Ei

j

M .

Because det I = 1 and swapping a pair of rows changes the sign of the
determinant, we have found that

detEi

j

= �1 .
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Moreover, since swapping a pair of rows flips the sign of the determinant,
detEi

j

= �1 and detEi

j

M is the matrix M with rows i and j swapped we
have that

detEi

j

M = detEi

j

detM .

This result hints at an even better one for determinants of products of
determinants. Stare at it again before reading the next Lecture:
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Review Problems

1. Let M =

0

@

m1

1

m1

2

m1

3

m2

1

m2

2

m2

3

m3

1

m3

2

m3

3

1

A. Use row operations to put M into row

echelon form. For simplicity, assume that m1

1

6= 0 6= m1

1

m2

2

�m2

1

m1

2

.

Prove that M is non-singular if and only if:

m1

1

m2

2

m3

3

�m1

1

m2

3

m3

2

+m1

2

m2

3

m3

1

�m1

2

m2

1

m3

3

+m1

3

m2

1

m3

2

�m1

3

m2

2

m3

1

6= 0

2. (a) What does the matrix E1

2

=

✓

0 1
1 0

◆

do to M =

✓

a b
d c

◆

under

left multiplication? What about right multiplication?

(b) Find elementary matrices R1(�) and R2(�) that respectively mul-
tiply rows 1 and 2 of M by � but otherwise leave M the same
under left multiplication.

(c) Find a matrix S1

2

(�) that adds a multiple � of row 2 to row 1
under left multiplication.

3. Let M be a matrix and Si

j

M the same matrix with rows i and j
switched. Explain every line of the series of equations proving that
detM = � det(Si

j

M).

4. This problem is a “hands-on” look at why the property describing the
parity of permutations is true.

The inversion number of a permutation � is the number of pairs i <
j such that �(i) > �(j); it’s the number of “numbers that appear
left of smaller numbers” in the permutation. For example, for the
permutation ⇢ = [4, 2, 3, 1], the inversion number is 5. The number 4
comes before 2, 3, and 1, and 2 and 3 both come before 1.

Given a permutation �, we can make a new permutation ⌧
i,j

� by ex-
changing the ith and jth entries of �.

(a) What is the inversion number of the permutation µ = [1, 2, 4, 3]
that exchanges 4 and 3 and leaves everything else alone? Is it an
even or an odd permutation?
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(b) What is the inversion number of the permutation ⇢ = [4, 2, 3, 1]
that exchanges 1 and 4 and leaves everything else alone? Is it an
even or an odd permutation?

(c) What is the inversion number of the permutation ⌧
1,3

µ? Compare
the parity5 of µ to the parity of ⌧

1,3

µ.

(d) What is the inversion number of the permutation ⌧
2,4

⇢? Compare
the parity of ⇢ to the parity of ⌧

2,4

⇢.

(e) What is the inversion number of the permutation ⌧
3,4

⇢? Compare
the parity of ⇢ to the parity of ⌧

3,4

⇢.

Problem 4 hints

5. (Extra credit) Here we will examine a (very) small set of the general
properties about permutations and their applications. In particular,
we will show that one way to compute the sign of a permutation is by
finding the inversion number N of � and we have

sgn(�) = (�1)N .

For this problem, let µ = [1, 2, 4, 3].

(a) Show that every permutation � can be sorted by only taking sim-
ple (adjacent) transpositions s

i

where s
i

interchanges the numbers
in position i and i + 1 of a permutation � (in our other notation
s
i

= ⌧
i,i+1

). For example s
2

µ = [1, 4, 2, 3], and to sort µ we have
s
3

µ = [1, 2, 3, 4].

(b) We can compose simple transpositions together to represent a per-
mutation (note that the sequence of compositions is not unique),
and these are associative, we have an identity (the trivial permu-
tation where the list is in order or we do nothing on our list), and
we have an inverse since it is clear that s

i

s
i

� = �. Thus permuta-
tions of [n] under composition are an example of a group. However

5The parity of an integer refers to whether the integer is even or odd. Here the parity
of a permutation µ refers to the parity of its inversion number.
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note that not all simple transpositions commute with each other
since

s
1

s
2

[1, 2, 3] = s
1

[1, 3, 2] = [3, 1, 2]

s
2

s
1

[1, 2, 3] = s
2

[2, 1, 3] = [2, 3, 1]

(you will prove here when simple transpositions commute). When
we consider our initial permutation to be the trivial permutation
e = [1, 2, . . . , n], we do not write it; for example s

i

⌘ s
i

e and
µ = s

3

⌘ s
3

e. This is analogous to not writing 1 when multiplying.
Show that s

i

s
i

= e (in shorthand s2
i

= e), s
i+1

s
i

s
i+1

= s
i

s
i+1

s
i

for
all i, and s

i

and s
j

commute for all |i� j| � 2.

(c) Show that every way of expressing � can be obtained from using
the relations proved in part 5b. In other words, show that for
any expression w of simple transpositions representing the trivial
permutation e, using the proved relations.

Hint: Use induction on n. For the induction step, follow the path
of the (n + 1)-th strand by looking at s

n

s
n�1

· · · s
k

s
k±1

· · · s
n

and
argue why you can write this as a subexpression for any expression
of e. Consider using diagrams of these paths to help.

(d) The simple transpositions acts on an n-dimensional vector space
V by s

i

v = Ei

i+1

v (where Ei

j

is an elementary matrix) for all
vectors v 2 V . Therefore we can just represent a permutation
� as the matrix M

�

6, and we have det(M
si) = det(Ei

i+1

) = �1.
Thus prove that det(M

�

) = (�1)N where N is a number of simple
transpositions needed to represent � as a permutation. You can
assume that M

sisj = M
siMsj (it is not hard to prove) and that

det(AB) = det(A) det(B) from Chapter 13.

Hint: You to make sure det(M
�

) is well-defined since there are
infinite ways to represent � as simple transpositions.

(e) Show that s
i+1

s
i

s
i+1

= ⌧
i,i+2

, and so give one way of writing ⌧
i,j

in terms of simple transpositions? Is ⌧
i,j

an even or an odd per-
mutation? What is det(M

⌧i,j)? What is the inversion number of
⌧
i,j

?

(f) The minimal number of simple transpositions needed to express
� is called the length of �; for example the length of µ is 1 since

6Often people will just use � for the matrix when the context is clear.
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µ = s
3

. Show that the length of � is equal to the inversion number
of �.

Hint: Find an procedure which gives you a new permutation �0

where � = s
i

�0 for some i and the inversion number for �0 is 1
less than the inversion number for �.

(g) Show that (�1)N = sgn(�) = det(M
�

), where � is a permuta-
tion with N inversions. Note that this immediately implies that
sgn(�⇢) = sgn(�) sgn(⇢) for any permutations � and ⇢.
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13 Elementary Matrices and Determinants II

In Lecture 12, we saw the definition of the determinant and derived an ele-
mentary matrix that exchanges two rows of a matrix. Next, we need to find
elementary matrices corresponding to the other two row operations; multi-
plying a row by a scalar, and adding a multiple of one row to another. As a
consequence, we will derive some important properties of the determinant.

Consider M =

0

B

@

R1

...
Rn

1

C

A

, where Ri are row vectors. Let Ri(�) be the

identity matrix, with the ith diagonal entry replaced by �, not to be confused
with the row vectors. I.e.

Ri(�) =

0

B

B

B

B

B

@

1
. . .

�
. . .

1

1

C

C

C

C

C

A

.

Then:

M 0 = Ri(�)M =

0

B

B

B

B

B

@

R1

...
�Ri

...
Rn

1

C

C

C

C

C

A

What e↵ect does multiplication by Ri(�) have on the determinant?

detM 0 =
X

�

sgn(�)m1

�(1)

· · ·�mi

�(i)

· · ·mn

�(n)

= �
X

�

sgn(�)m1

�(1)

· · ·mi

�(i)

· · ·mn

�(n)

= � detM

Thus, multiplying a row by � multiplies the determinant by �. I.e.,

detRi(�)M = � detM .
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Since Ri(�) is just the identity matrix with a single row multiplied by �,
then by the above rule, the determinant of Ri(�) is �. Thus:

detRi(�) = det

0

B

B

B

B

B

@

1
. . .

�
. . .

1

1

C

C

C

C

C

A

= �

The final row operation is adding �Rj to Ri. This is done with the
matrix Si

j

(�), which is an identity matrix but with a � in the i, j position.

Si

j

(�) =

0

B

B

B

B

B

B

B

B

B

B

@

1
. . .

1 �
. . .

1
. . .

1

1

C

C

C

C

C

C

C

C

C

C

A

Then multiplying Si

j

(�) by M gives the following:
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0

B

B

B

B

B

B

B

B

B

B

@

1
. . .

1 �
. . .

1
. . .

1

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

@

...
Ri

...
Rj

...

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

@

...
Ri + �Rj

...
Rj

...

1

C

C

C

C

C

C

C

C

C

C

A

What is the e↵ect of multiplying by Si

j

(�) on the determinant? Let M 0 =
Si

j

(�)M , and let M 00 be the matrix M but with Ri replaced by Rj.

detM 0 =
X

�

sgn(�)m1

�(1)

· · · (mi

�(i)

+ �mj

�(j)

) · · ·mn

�(n)

=
X

�

sgn(�)m1

�(1)

· · ·mi

�(i)

· · ·mn

�(n)

+
X

�

sgn(�)m1

�(1)

· · ·�mj

�(j)

· · ·mj

�(j)

· · ·mn

�(n)

= detM + � detM 00

Since M 00 has two identical rows, its determinant is 0. Then

detSi

j

(�)M = detM .

Notice that if M is the identity matrix, then we have

detSi

j

(�) = det(Si

j

(�)I) = det I = 1 .

We now have elementary matrices associated to each of the row opera-
tions.

Ei

j

= I with rows i, j swapped; detEi

j

= �1

Ri(�) = I with � in position i, i; detRi(�) = �

Si

j

(�) = I with � in position i, j; detSi

j

(�) = 1

Elementary Determinants
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We have also proved the following theorem along the way:

Theorem 13.1. If E is any of the elementary matrices Ei

j

, Ri(�), Si

j

(�),
then det(EM) = detE detM .

Reading homework: problem 13.1

We have seen that any matrix M can be put into reduced row echelon
form via a sequence of row operations, and we have seen that any row op-
eration can be emulated with left matrix multiplication by an elementary
matrix. Suppose that RREF(M) is the reduced row echelon form of M .
Then RREF(M) = E

1

E
2

· · ·E
k

M where each E
i

is an elementary matrix.
What is the determinant of a square matrix in reduced row echelon form?
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• If M is not invertible, then some row of RREF(M) contains only zeros.
Then we can multiply the zero row by any constant � without chang-
ing M ; by our previous observation, this scales the determinant of M
by �. Thus, if M is not invertible, detRREF(M) = � detRREF(M),
and so detRREF(M) = 0.

• Otherwise, every row of RREF(M) has a pivot on the diagonal; since
M is square, this means that RREF(M) is the identity matrix. Then
if M is invertible, detRREF(M) = 1.

• Additionally, notice that detRREF(M) = det(E
1

E
2

· · ·E
k

M). Then
by the theorem above, detRREF(M) = det(E

1

) · · · det(E
k

) detM . Since
each E

i

has non-zero determinant, then detRREF(M) = 0 if and only
if detM = 0.

Then we have shown:

Theorem 13.2. For any square matrix M , detM 6= 0 if and only if M is
invertible.

Since we know the determinants of the elementary matrices, we can im-
mediately obtain the following:

Determinants and Inverses

Corollary 13.3. Any elementary matrix Ei

j

, Ri(�), Si

j

(�) is invertible, except
for Ri(0). In fact, the inverse of an elementary matrix is another elementary
matrix.

To obtain one last important result, suppose that M and N are square
n ⇥ n matrices, with reduced row echelon forms such that, for elementary
matrices E

i

and F
i

,

M = E
1

E
2

· · ·E
k

RREF(M) ,
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and
N = F

1

F
2

· · ·F
l

RREF(N) .

If RREF(M) is the identity matrix (i.e., M is invertible), then:

det(MN) = det(E
1

E
2

· · ·E
k

RREF(M)F
1

F
2

· · ·F
l

RREF(N))

= det(E
1

E
2

· · ·E
k

IF
1

F
2

· · ·F
l

RREF(N))

= det(E
1

) · · · det(E
k

) det(I) det(F
1

) · · · det(F
l

) det(RREF(N)

= det(M) det(N)

Otherwise, M is not invertible, and detM = 0 = detRREF(M). Then there
exists a row of zeros in RREF(M), so Rn(�) RREF(M) = RREF(M). Then:

det(MN) = det(E
1

E
2

· · ·E
k

RREF(M)N)

= det(E
1

E
2

· · ·E
k

RREF(M)N)

= det(E
1

) · · · det(E
k

) det(RREF(M)N)

= det(E
1

) · · · det(E
k

) det(Rn(�) RREF(M)N)

= det(E
1

) · · · det(E
k

)� det(RREF(M)N)

= � det(MN)

Which implies that det(MN) = 0 = detM detN .
Thus we have shown that for any matrices M and N ,

det(MN) = detM detN

This result is extremely important; do not forget it!

Alternative proof

Reading homework: problem 13.2
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Review Problems

1. Let M =

✓

a b
c d

◆

and N =

✓

x y
z w

◆

. Compute the following:

(a) detM .

(b) detN .

(c) det(MN).

(d) detM detN .

(e) det(M�1) assuming ad� bc 6= 0.

(f) det(MT )

(g) det(M +N)� (detM +detN). Is the determinant a linear trans-
formation from square matrices to real numbers? Explain.
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2. Suppose M =

✓

a b
c d

◆

is invertible. Write M as a product of elemen-

tary row matrices times RREF(M).

3. Find the inverses of each of the elementary matrices, Ei

j

, Ri(�), Si

j

(�).
Make sure to show that the elementary matrix times its inverse is ac-
tually the identity.

4. (Extra Credit) Let ei
j

denote the matrix with a 1 in the i-th row and j-th
column and 0’s everywhere else, and let A be an arbitrary 2⇥2 matrix.
Compute det(A + tI

2

), and what is first order term (the coe�cient of
t)? Can you express your results in terms of tr(A)? What about the
first order term in det(A + tI

n

) for any arbitrary n ⇥ n matrix A in
terms of tr(A)?

We note that the result of det(A+ tI
2

) is a polynomial in the variable t
and by taking t = �� is what is known as the characteristic polynomial
from Chapter 18.

5. (Extra Credit: (Directional) Derivative of the Determinant) Notice that
det : M

n

! R where M
n

is the vector space of all n⇥ n matrices, and
so we can take directional derivatives of det. Let A be an arbitrary
n⇥ n matrix, and for all i and j compute the following:

(a)

lim
t!0

det(I
2

+ tei
j

)� det(I
2

)

t

(b)

lim
t!0

det(I
3

+ tei
j

)� det(I
3

)

t

(c)

lim
t!0

det(I
n

+ tei
j

)� det(I
n

)

t

(d)

lim
t!0

det(I
n

+ At)� det(I
n

)

t

114



(Recall that what you are calculating is the directional derivative in
the ei

j

and A directions.) Can you express your results in terms of the
trace function?

Hint: Use the results from Problem 4 and what you know about the
derivatives of polynomials evaluated at 0 (i.e. what is p0(0)?).
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14 Properties of the Determinant

In Lecture 13 we showed that the determinant of a matrix is non-zero if and
only if that matrix is invertible. We also showed that the determinant is a
multiplicative function, in the sense that det(MN) = detM detN . Now we
will devise some methods for calculating the determinant.

Recall that:

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

.

A minor of an n⇥ n matrix M is the determinant of any square matrix
obtained from M by deleting rows and columns. In particular, any entry mi

j

of a square matrix M is associated to a minor obtained by deleting the ith
row and jth column of M .

It is possible to write the determinant of a matrix in terms of its minors
as follows:

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

= m1

1

X

�̂

sgn(�̂)m2

�̂(2)

· · ·mn

�̂(n)

� m1

2

X

�̂

sgn(�̂)m2

�̂(1)

m3

�̂(3)

· · ·mn

�̂(n)

+ m1

3

X

�̂

sgn(�̂)m2

�̂(1)

m3

�̂(2)

m4

�̂(4)

· · ·mn

�̂(n)

± · · ·

Here the symbols �̂ refer to permutations of n�1 objects. What we’re doing
here is collecting up all of the terms of the original sum that contain the
first row entry m1

j

for each column number j. Each term in that collection
is associated to a permutation sending 1 ! j. The remainder of any such
permutation maps the set {2, . . . , n} ! {1, . . . , j � 1, j + 1, . . . , n}. We call
this partial permutation �̂ =

⇥

�(2) · · · �(n)
⇤

.
The last issue is that the permutation �̂ may not have the same sign as �.

From previous homework, we know that a permutation has the same parity
as its inversion number. Removing 1 ! j from a permutation reduces the
inversion number by the number of elements right of j that are less than j.
Since j comes first in the permutation

⇥

j �(2) · · · �(n)
⇤

, the inversion
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number of �̂ is reduced by j � 1. Then the sign of � di↵ers from the sign
of �̂ if � sends 1 to an even number.

In other words, to expand by minors we pick an entry m1

j

of the first
row, then add (�1)j�1 times the determinant of the matrix with row i and
column j deleted.

Example Let’s compute the determinant of M =

0

@

1 2 3
4 5 6
7 8 9

1

A using expansion by

minors.

detM = 1det

✓

5 6
8 9

◆

� 2 det

✓

4 6
7 9

◆

+ 3det

✓

4 5
7 8

◆

= 1(5 · 9� 8 · 6)� 2(4 · 9� 7 · 6) + 3(4 · 8� 7 · 5)
= 0

Here, M�1 does not exist because7 detM = 0.

Example Sometimes the entries of a matrix allow us to simplify the calculation of the

determinant. Take N =

0

@

1 2 3
4 0 0
7 8 9

1

A. Notice that the second row has many zeros;

then we can switch the first and second rows of N to get:

det

0

@

1 2 3
4 0 0
7 8 9

1

A = � det

0

@

4 0 0
1 2 3
7 8 9

1

A

= �4 det
✓

2 3
8 9

◆

= 24

Example

7A fun exercise is to compute the determinant of a 4 ⇥ 4 matrix filled in order, from
left to right, with the numbers 1, 2, 3, . . . 16. What do you observe? Try the same for a
5⇥ 5 matrix with 1, 2, 3 . . . 25. Is there a pattern? Can you explain it?
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Theorem 14.1. For any square matrix M , we have:

detMT = detM

Proof. By definition,

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

.

For any permutation �, there is a unique inverse permutation ��1 that
undoes �. If � sends i ! j, then ��1 sends j ! i. In the two-line notation
for a permutation, this corresponds to just flipping the permutation over. For

example, if � =



1 2 3
2 3 1

�

, then we can find ��1 by flipping the permutation

and then putting the columns in order:

��1 =



2 3 1
1 2 3

�

=



1 2 3
3 1 2

�

Since any permutation can be built up by transpositions, one can also find
the inverse of a permutation � by undoing each of the transpositions used to
build up �; this shows that one can use the same number of transpositions
to build � and ��1. In particular, sgn� = sgn ��1.

Reading homework: problem 14.1

Then we can write out the above in formulas as follows:

detM =
X

�

sgn(�)m1

�(1)

m2

�(2)

· · ·mn

�(n)

=
X

�

sgn(�)m�

�1
(1)

1

m�

�1
(2)

2

· · ·m�

�1
(n)

n

=
X

�

sgn(��1)m�

�1
(1)

1

m�

�1
(2)

2

· · ·m�

�1
(n)

n

=
X

�

sgn(�)m�(1)

1

m�(2)

2

· · ·m�(n)

n

= detMT .

The second-to-last equality is due to the existence of a unique inverse permu-
tation: summing over permutations is the same as summing over all inverses
of permutations. The final equality is by the definition of the transpose.
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Example Because of this theorem, we see that expansion by minors also works over

columns. Let M =

0

@

1 2 3
0 5 6
0 8 9

1

A. Then

detM = detMT = 1det

✓

5 8
6 9

◆

= �3 .

14.1 Determinant of the Inverse

Let M and N be n⇥ n matrices. We previously showed that

det(MN) = detM detN , and det I = 1.

Then 1 = det I = det(MM�1) = detM detM�1. As such we have:

Theorem 14.2.

detM�1 =
1

detM

Just so you don’t forget this:
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14.2 Adjoint of a Matrix

Recall that for the 2⇥ 2 matrix

Or in a more careful notation: if M =

✓

m1

1

m1

2

m2

1

m2

2

◆

, then

M�1 =
1

m1

1

m2

2

�m1

2

m2

1

✓

m2

2

�m1

2

�m2

1

m1

1

◆

,

so long as detM = m1

1

m2

2

� m1

2

m2

1

6= 0. The matrix

✓

m2

2

�m1

2

�m2

1

m1

1

◆

that

appears above is a special matrix, called the adjoint of M . Let’s define the
adjoint for an n⇥ n matrix.

A cofactor ofM is obtained choosing any entrymi

j

ofM and then deleting
the ith row and jth column of M , taking the determinant of the resulting
matrix, and multiplying by(�1)i+j. This is written cofactor(mi

j

).

Definition For M = (mi

j

) a square matrix, The adjoint matrix adjM is
given by:

adjM = (cofactor(mi

j

))T

Example

adj

0

@

3 �1 �1
1 2 0
0 1 1

1

A =

0

B

B

B

B

B

B

@

det

✓

2 0
1 1

◆

� det

✓

1 0
0 1

◆

det

✓

1 2
0 1

◆

� det

✓

�1 �1
1 1

◆

det

✓

3 �1
0 1

◆

� det

✓

3 �1
0 1

◆

det

✓

�1 �1
2 0

◆

� det

✓

3 �1
1 0

◆

det

✓

3 �1
1 2

◆

1

C

C

C

C

C

C

A

T

Reading homework: problem 14.2
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Let’s multiply M adjM . For any matrix N , the i, j entry of MN is given
by taking the dot product of the ith row of M and the jth column of N .
Notice that the dot product of the ith row of M and the ith column of adjM
is just the expansion by minors of detM in the ith row. Further, notice that
the dot product of the ith row of M and the jth column of adjM with j 6= i
is the same as expanding M by minors, but with the jth row replaced by the
ith row. Since the determinant of any matrix with a row repeated is zero,
then these dot products are zero as well.

We know that the i, j entry of the product of two matrices is the dot
product of the ith row of the first by the jth column of the second. Then:

M adjM = (detM)I

Thus, when detM 6= 0, the adjoint gives an explicit formula for M�1.

Theorem 14.3. For M a square matrix with detM 6= 0 (equivalently, if M
is invertible), then

M�1 =
1

detM
adjM

The Adjoint Matrix

Example Continuing with the previous example,

adj

0

@

3 �1 �1
1 2 0
0 1 1

1

A =

0

@

2 0 2
�1 3 �1
1 �3 7

1

A

.

Now, multiply:

0

@

3 �1 �1
1 2 0
0 1 1

1

A

0

@

2 0 2
�1 3 �1
1 �3 7

1

A =

0

@

6 0 0
0 6 0
0 0 6

1

A

)

0

@

3 �1 �1
1 2 0
0 1 1

1

A

�1

=
1

6

0

@

2 0 2
�1 3 �1
1 �3 7

1

A
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Figure 1: A parallelepiped.

This process for finding the inverse matrix is sometimes called Cramer’s Rule .

14.3 Application: Volume of a Parallelepiped

Given three vectors u, v, w in R3, the parallelepiped determined by the three
vectors is the “squished” box whose edges are parallel to u, v, and w as
depicted in Figure 1.

From calculus, we know that the volume of this object is |u (v ⇥ w)|.
This is the same as expansion by minors of the matrix whose columns are
u, v, w. Then:

Volume =
�

� det
�

u v w
�

�

�

References

He↵eron, Chapter Four, Section I.1 and I.3
Beezer, Chapter D, Section DM, Subsection DD
Beezer, Chapter D, Section DM, Subsection CD
Wikipedia:
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• Determinant

• Elementary Matrix

• Cramer’s Rule

Review Problems

1. Let M =

✓

a b
c d

◆

. Show:

detM =
1

2
(trM)2 � 1

2
tr(M2)

Suppose M is a 3 ⇥ 3 matrix. Find and verify a similar formula for
detM in terms of tr(M3), tr(M2), and trM .

2. Suppose M = LU is an LU decomposition. Explain how you would
e�ciently compute detM in this case.

3. In computer science, the complexity of an algorithm is (roughly) com-
puted by counting the number of times a given operation is performed.
Suppose adding or subtracting any two numbers takes a seconds, and
multiplying two numbers takes m seconds. Then, for example, com-
puting 2 · 6� 5 would take a+m seconds.

(a) How many additions and multiplications does it take to compute
the determinant of a general 2⇥ 2 matrix?

(b) Write a formula for the number of additions and multiplications
it takes to compute the determinant of a general n ⇥ n matrix
using the definition of the determinant. Assume that finding and
multiplying by the sign of a permutation is free.

(c) How many additions and multiplications does it take to compute
the determinant of a general 3 ⇥ 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?

Problem 3 hint
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15 Subspaces and Spanning Sets

It is time to study vector spaces more carefully and answer some fundamental
questions.

1. Subspaces : When is a subset of a vector space itself a vector space?
(This is the notion of a subspace.)

2. Linear Independence: Given a collection of vectors, is there a way to
tell whether they are independent, or if one is a “linear combination”
of the others?

3. Dimension: Is there a consistent definition of how “big” a vector space
is?

4. Basis : How do we label vectors? Can we write any vector as a sum of
some basic set of vectors? How do we change our point of view from
vectors labeled one way to vectors labeled in another way?

Let’s start at the top!

15.1 Subspaces

Definition We say that a subset U of a vector space V is a subspace of V
if U is a vector space under the inherited addition and scalar multiplication
operations of V .

Example Consider a plane P in R3 through the origin:

ax+ by + cz = 0.
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This equation can be expressed as the homogeneous system
�

a b c

�

0

@

x

y

z

1

A = 0,

or MX = 0 with M the matrix
�

a b c

�

. If X

1

and X

2

are both solutions to
MX = 0, then, by linearity of matrix multiplication, so is µX

1

+ ⌫X

2

:

M(µX
1

+ ⌫X

2

) = µMX

1

+ ⌫MX

2

= 0.

So P is closed under addition and scalar multiplication. Additionally, P contains the
origin (which can be derived from the above by setting µ = ⌫ = 0). All other vector
space requirements hold for P because they hold for all vectors in R3.

Theorem 15.1 (Subspace Theorem). Let U be a non-empty subset of a
vector space V . Then U is a subspace if and only if µu

1

+ ⌫u
2

2 U for
arbitrary u

1

, u
2

in U , and arbitrary constants µ, ⌫.

Proof. One direction of this proof is easy: if U is a subspace, then it is a vector
space, and so by the additive closure and multiplicative closure properties of
vector spaces, it has to be true that µu

1

+ ⌫u
2

2 U for all u
1

, u
2

in U and all
constants constants µ, ⌫.

The other direction is almost as easy: we need to show that if µu
1

+⌫u
2

2
U for all u

1

, u
2

in U and all constants µ, ⌫, then U is a vector space. That
is, we need to show that the ten properties of vector spaces are satisfied.
We know that the additive closure and multiplicative closure properties are
satisfied. Each of the other eight properties is true in U because it is true in
V . The details of this are left as an exercise.

Note that the requirements of the subspace theorem are often referred to as
“closure”.
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From now on, we can use this theorem to check if a set is a vector space.
That is, if we have some set U of vectors that come from some bigger vector
space V , to check if U itself forms a smaller vector space we need check only
two things: if we add any two vectors in U , do we end up with a vector in
U? And, if we multiply any vector in U by any constant, do we end up with
a vector in U? If the answer to both of these questions is yes, then U is a
vector space. If not, U is not a vector space.

Reading homework: problem 15.1

15.2 Building Subspaces

Consider the set

U =

8

<

:

0

@

1
0
0

1

A ,

0

@

0
1
0

1

A

9

=

;

⇢ R3.

Because U consists of only two vectors, it clear that U is not a vector space,
since any constant multiple of these vectors should also be in U . For example,
the 0-vector is not in U , nor is U closed under vector addition.

But we know that any two vectors define a plane:

In this case, the vectors in U define the xy-plane in R3. We can consider the
xy-plane as the set of all vectors that arise as a linear combination of the two
vectors in U . Call this set of all linear combinations the span of U :

span(U) =

8

<

:

x

0

@

1
0
0

1

A+ y

0

@

0
1
0

1

A

�

�

�

�

�

�

x, y 2 R

9

=

;

.
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Notice that any vector in the xy-plane is of the form
0

@

x
y
0

1

A = x

0

@

1
0
0

1

A+ y

0

@

0
1
0

1

A 2 span(U).

Definition Let V be a vector space and S = {s
1

, s
2

, . . .} ⇢ V a subset of V .
Then the span of S is the set:

span(S) = {r1s
1

+ r2s
2

+ · · ·+ rNs
N

|ri 2 R, N 2 N}.
That is, the span of S is the set of all finite linear combinations8 of elements
of S. Any finite sum of the form (a constant times s

1

plus a constant times
s
2

plus a constant times s
3

and so on) is in the span of S.

It is important that we only allow finite linear combinations. In the definition
above, N must be a finite number. It can be any finite number, but it must
be finite.

Example Let V = R3 and X ⇢ V be the x-axis. Let P =

0

@

0
1
0

1

A, and set

S = X [ P .

The elements of span(S) are linear combinations of vectors in the x-axis and the vector
P .

The vector

0

@

2
3
0

1

A is in span(S), because

0

@

2
3
0

1

A =

0

@

2
0
0

1

A + 3

0

@

0
1
0

1

A

. Similarly, the

vector

0

@

�12
17.5
0

1

A is in span(S), because

0

@

�12
17.5
0

1

A =

0

@

�12
0
0

1

A + 17.5

0

@

0
1
0

1

A

. Similarly,

any vector of the form
0

@

x

0
0

1

A+ y

0

@

0
1
0

1

A =

0

@

x

y

0

1

A

is in span(S). On the other hand, any vector in span(S) must have a zero in the
z-coordinate. (Why?)

So span(S) is the xy-plane, which is a vector space. (Try drawing a picture to
verify this!)

8Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over di↵erent base fields such as C or Z2. The coe�cients r

i should come from
whatever our base field is (usually R).
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Reading homework: problem 15.2

Lemma 15.2. For any subset S ⇢ V , span(S) is a subspace of V .

Proof. We need to show that span(S) is a vector space.
It su�ces to show that span(S) is closed under linear combinations. Let

u, v 2 span(S) and �, µ be constants. By the definition of span(S), there are
constants ci and di (some of which could be zero) such that:

u = c1s
1

+ c2s
2

+ · · ·
v = d1s

1

+ d2s
2

+ · · ·
) �u+ µv = �(c1s

1

+ c2s
2

+ · · · ) + µ(d1s
1

+ d2s
2

+ · · · )
= (�c1 + µd1)s

1

+ (�c2 + µd2)s
2

+ · · ·

This last sum is a linear combination of elements of S, and is thus in span(S).
Then span(S) is closed under linear combinations, and is thus a subspace
of V .

Note that this proof, like many proofs, consisted of little more than just
writing out the definitions.

Example For which values of a does

span

8

<

:

0

@

1
0
a

1

A

,

0

@

1
2
�3

1

A

,

0

@

a

1
0

1

A

9

=

;

= R3?

Given an arbitrary vector

0

@

x

y

z

1

A in R3, we need to find constants r1, r2, r3 such that

r

1

0

@

1
0
a

1

A+ r

2

0

@

1
2
�3

1

A+ r

3

0

@

a

1
0

1

A =

0

@

x

y

z

1

A

.

We can write this as a linear system in the unknowns r1, r2, r3 as follows:

0

@

1 1 a

0 2 1
a �3 0

1

A

0

@

r

1

r

2

r

3

1

A =

0

@

x

y

z

1

A

.
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If the matrix M =

0

@

1 1 a

0 2 1
a �3 0

1

A is invertible, then we can find a solution

M

�1

0

@

x

y

z

1

A =

0

@

r

1

r

2

r

3

1

A

for any vector

0

@

x

y

z

1

A 2 R3.

Therefore we should choose a so that M is invertible:

i.e., 0 6= detM = �2a2 + 3 + a = �(2a� 3)(a+ 1).

Then the span is R3 if and only if a 6= �1, 3
2

.

Linear systems as spanning sets

References
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Wikipedia:

• Linear Subspace

• Linear Span

Review Problems

1. (Subspace Theorem) Suppose that V is a vector space and that U ⇢ V
is a subset of V . Show that

µu
1

+ ⌫u
2

2 U for all u
1

, u
2

2 U, µ, ⌫ 2 R

implies that U is a subspace of V . (In other words, check all the vector
space requirements for U .)
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2. Let PR
3

be the vector space of polynomials of degree 3 or less in the
variable x. Check whether

x� x3 2 span{x2, 2x+ x2, x+ x3}

Hint for Problem 2

3. Let U and W be subspaces of V . Are:

(a) U [W

(b) U \W

also subspaces? Explain why or why not. Draw examples in R3.

Hint for Problem 3
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16 Linear Independence

Consider a plane P that includes the origin in R3 and a collection {u, v, w}
of non-zero vectors in P :

If no two of u, v and w are parallel, then P = span{u, v, w}. But any two
vectors determines a plane, so we should be able to span the plane using
only two of the vectors u, v, w. Then we could choose two of the vectors in
{u, v, w} whose span is P , and express the other as a linear combination of
those two. Suppose u and v span P . Then there exist constants d1, d2 (not
both zero) such that w = d1u+ d2v. Since w can be expressed in terms of u
and v we say that it is not independent. More generally, the relationship

c1u+ c2v + c3w = 0 ci 2 R, some ci 6= 0

expresses the fact that u, v, w are not all independent.

Definition We say that the vectors v
1

, v
2

, . . . , v
n

are linearly dependent if
there exist constants9 c1, c2, . . . , cn not all zero such that

c1v
1

+ c2v
2

+ · · ·+ cnv
n

= 0.

Otherwise, the vectors v
1

, v
2

, . . . , v
n

are linearly independent.

9Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over di↵erent base fields such as C or Z2. The coe�cients c

i should come from
whatever our base field is (usually R).
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Example Consider the following vectors in R3:

v

1

=

0

@

4
�1
3

1

A

, v

2

=

0

@

�3
7
4

1

A

, v

3

=

0

@

5
12
17

1

A

, v

4

=

0

@

�1
1
0

1

A

.

Are these vectors linearly independent?
No, since 3v

1

+ 2v
2

� v

3

+ v

4

= 0, the vectors are linearly dependent.

Worked Example

In the above example we were given the linear combination 3v
1

+ 2v
2

�
v
3

+ v
4

seemingly by magic. The next example shows how to find such a
linear combination, if it exists.

Example Consider the following vectors in R3:

v

1

=

0

@

0
0
1

1

A

, v

2

=

0

@

1
2
1

1

A

, v

3

=

0

@

1
2
3

1

A

.

Are they linearly independent?
We need to see whether the system

c

1

v

1

+ c

2

v

2

+ c

3

v

3

= 0

has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

�

v

1

v

2

v

3

�

0

@

c

1

c

2

c

3

1

A = 0.

This system has solutions if and only if the matrix M =
�

v

1

v

2

v

3

�

is singular, so
we should find the determinant of M :

detM = det

0

@

0 1 1
0 2 2
1 1 3

1

A = det

✓

1 1
2 2

◆

= 0.

Therefore nontrivial solutions exist. At this point we know that the vectors are
linearly dependent. If we need to, we can find coe�cients that demonstrate linear
dependence by solving the system of equations:

0

@

0 1 1 0
0 2 2 0
1 1 3 0

1

A ⇠

0

@

1 1 3 0
0 1 1 0
0 0 0 0

1

A ⇠

0

@

1 0 2 0
0 1 1 0
0 0 0 0

1

A

.
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Then c

3 = µ, c2 = �µ, and c

1 = �2µ. Now any choice of µ will produce coe�cients
c

1

, c

2

, c

3 that satisfy the linear equation. So we can set µ = 1 and obtain:

c

1

v

1

+ c

2

v

2

+ c

3

v

3

= 0) �2v
1

� v

2

+ v

3

= 0.

Reading homework: problem 16.1

Theorem 16.1 (Linear Dependence). A set of non-zero vectors {v
1

, . . . , v
n

}
is linearly dependent if and only if one of the vectors v

k

is expressible as a
linear combination of the preceding vectors.

Proof. The theorem is an if and only if statement, so there are two things to
show.

i. First, we show that if v
k

= c1v
1

+ · · · ck�1v
k�1

then the set is linearly
dependent.

This is easy. We just rewrite the assumption:

c1v
1

+ · · ·+ ck�1v
k�1

� v
k

+ 0v
k+1

+ · · ·+ 0v
n

= 0.

This is a vanishing linear combination of the vectors {v
1

, . . . , v
n

} with
not all coe�cients equal to zero, so {v

1

, . . . , v
n

} is a linearly dependent
set.

ii. Now, we show that linear dependence implies that there exists k for
which v

k

is a linear combination of the vectors {v
1

, . . . , v
k�1

}.
The assumption says that

c1v
1

+ c2v
2

+ · · ·+ cnv
n

= 0.

Take k to be the largest number for which c
k

is not equal to zero. So:

c1v
1

+ c2v
2

+ · · ·+ ck�1v
k�1

+ ckv
k

= 0.

(Note that k > 1, since otherwise we would have c1v
1

= 0 ) v
1

= 0,
contradicting the assumption that none of the v

i

are the zero vector.)

As such, we can rearrange the equation:

c1v
1

+ c2v
2

+ · · ·+ ck�1v
k�1

= �ckv
k

) �c1

ck
v
1

� c2

ck
v
2

� · · ·� ck�1

ck
v
k�1

= v
k

.
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Therefore we have expressed v
k

as a linear combination of the previous
vectors, and we are done.

Worked proof

Example Consider the vector space P

2

(t) of polynomials of degree less than or equal
to 2. Set:

v

1

= 1 + t

v

2

= 1 + t

2

v

3

= t+ t

2

v

4

= 2 + t+ t

2

v

5

= 1 + t+ t

2

.

The set {v
1

, . . . , v

5

} is linearly dependent, because v

4

= v

1

+ v

2

.

We have seen two di↵erent ways to show a set of vectors is linearly depen-
dent: we can either find a linear combination of the vectors which is equal
to zero, or we can express one of the vectors as a linear combination of the
other vectors. On the other hand, to check that a set of vectors is linearly
independent, we must check that every linear combination of our vectors with
non-vanishing coe�cients gives something other than the zero vector. Equiv-
alently, to show that the set v

1

, v
2

, . . . , v
n

is linearly independent, we must
show that the equation c

1

v
1

+ c
2

v
2

+ · · · + c
n

v
n

= 0 has no solutions other
than c

1

= c
2

= · · · = c
n

= 0.

Example Consider the following vectors in R3:

v

1

=

0

@

0
0
2

1

A

, v

2

=

0

@

2
2
1

1

A

, v

3

=

0

@

1
4
3

1

A

.

Are they linearly independent?
We need to see whether the system

c

1

v

1

+ c

2

v

2

+ c

3

v

3

= 0
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has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

�

v

1

v

2

v

3

�

0

@

c

1

c

2

c

3

1

A = 0.

This system has solutions if and only if the matrix M =
�

v

1

v

2

v

3

�

is singular, so
we should find the determinant of M :

detM = det

0

@

0 2 1
0 2 4
2 1 3

1

A = 2det

✓

2 1
2 4

◆

= 12.

Since the matrix M has non-zero determinant, the only solution to the system of
equations

�

v

1

v

2

v

3

�

0

@

c

1

c

2

c

3

1

A = 0

is c
1

= c

2

= c

3

= 0. (Why?) So the vectors v
1

, v

2

, v

3

are linearly independent.

Reading homework: problem 16.2

Now suppose vectors v
1

, . . . , v
n

are linearly dependent,

c1v
1

+ c2v
2

+ · · ·+ cnv
n

= 0

with c1 6= 0. Then:

span{v
1

, . . . , v
n

} = span{v
2

, . . . , v
n

}

because any x 2 span{v
1

, . . . , v
n

} is given by

x = a1v
1

+ · · · anv
n

= a1
✓

�c2

c
1

v
2

� · · ·� cn

c
1

v
n

◆

+ a2v
2

+ · · ·+ anv
n

=

✓

a2 � a1
c2

c
1

◆

v
2

+ · · ·+
✓

an � a1
cn

c
1

◆

v
n

.

Then x is in span{v
2

, . . . , v
n

}.
When we write a vector space as the span of a list of vectors, we would

like that list to be as short as possible (we will explore this idea further in
lecture 17). This can be achieved by iterating the above procedure.
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Example In the above example, we found that v

4

= v

1

+ v

2

. In this case, any
expression for a vector as a linear combination involving v

4

can be turned into a
combination without v

4

by making the substitution v

4

= v

1

+ v

2

.
Then:

S = span{1 + t, 1 + t

2

, t+ t

2

, 2 + t+ t

2

, 1 + t+ t

2}
= span{1 + t, 1 + t

2

, t+ t

2

, 1 + t+ t

2}.
Now we notice that 1 + t + t

2 = 1

2

(1 + t) + 1

2

(1 + t

2) + 1

2

(t + t

2). So the vector
1+ t+ t

2 = v

5

is also extraneous, since it can be expressed as a linear combination of
the remaining three vectors, v

1

, v

2

, v

3

. Therefore

S = span{1 + t, 1 + t

2

, t+ t

2}.
In fact, you can check that there are no (non-zero) solutions to the linear system

c

1(1 + t) + c

2(1 + t

2) + c

3(t+ t

2) = 0.

Therefore the remaining vectors {1 + t, 1 + t

2

, t + t

2} are linearly independent, and
span the vector space S. Then these vectors are a minimal spanning set, in the sense
that no more vectors can be removed since the vectors are linearly independent. Such
a set is called a basis for S.

Example Let B3 be the space of 3⇥ 1 bit-valued matrices (i.e., column vectors). Is
the following subset linearly independent?

8

<

:

0

@

1
1
0

1

A

,

0

@

1
0
1

1

A

,

0

@

0
1
1

1

A

9

=

;

If the set is linearly dependent, then we can find non-zero solutions to the system:

c

1

0

@

1
1
0

1

A+ c

2

0

@

1
0
1

1

A+ c

3

0

@

0
1
1

1

A = 0,

which becomes the linear system
0

@

1 1 0
1 0 1
0 1 1

1

A

0

@

c

1

c

2

c

3

1

A = 0.

Solutions exist if and only if the determinant of the matrix is non-zero. But:

det

0

@

1 1 0
1 0 1
0 1 1

1

A = 1det

✓

0 1
1 1

◆

� 1 det

✓

1 1
0 1

◆

= �1� 1 = 1 + 1 = 0

Therefore non-trivial solutions exist, and the set is not linearly independent.
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To summarize, the key definition in this lecture was:

Perhaps the most useful Theorem was:
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137

http://en.wikipedia.org/wiki/Linear_independence
http://en.wikipedia.org/wiki/Basis_(linear_algebra)


Review Problems

1. Let Bn be the space of n⇥ 1 bit-valued matrices (i.e., column vectors)
over the field Z

2

:= Z/2Z. Remember that this means that the co-
e�cients in any linear combination can be only 0 or 1, with rules for
adding and multiplying coe�cients given here.

(a) How many di↵erent vectors are there in Bn?

(b) Find a collection S of vectors that span B3 and are linearly inde-
pendent. In other words, find a basis of B3.

(c) Write each other vector inB3 as a linear combination of the vectors
in the set S that you chose.

(d) Would it be possible to span B3 with only two vectors?

Hint for Problem 1

2. Let e
i

be the vector in Rn with a 1 in the ith position and 0’s in every
other position. Let v be an arbitrary vector in Rn.

(a) Show that the collection {e
1

, . . . , e
n

} is linearly independent.

(b) Demonstrate that v =
P

n

i=1

(v e
i

)e
i

.

(c) The span{e
1

, . . . , e
n

} is the same as what vector space?
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17 Basis and Dimension

In Lecture 16, we established the notion of a linearly independent set of
vectors in a vector space V , and of a set of vectors that span V . We saw that
any set of vectors that span V can be reduced to some minimal collection of
linearly independent vectors; such a set is called a basis of the subspace V .

Definition Let V be a vector space. Then a set S is a basis for V if S is
linearly independent and V = spanS.

If S is a basis of V and S has only finitely many elements, then we say
that V is finite-dimensional. The number of vectors in S is the dimension
of V .

Suppose V is a finite-dimensional vector space, and S and T are two
di↵erent bases for V . One might worry that S and T have a di↵erent number
of vectors; then we would have to talk about the dimension of V in terms
of the basis S or in terms of the basis T . Luckily this isn’t what happens.
Later in this section, we will show that S and T must have the same number
of vectors. This means that the dimension of a vector space does not depend
on the basis. In fact, dimension is a very important way to characterize of
any vector space V .

Example P

n

(t) has a basis {1, t, . . . , tn}, since every polynomial of degree less than
or equal to n is a sum

a

0 1 + a

1

t+ · · ·+ a

n

t

n

, a

i 2 R

so P

n

(t) = span{1, t, . . . , tn}. This set of vectors is linearly independent: If the
polynomial p(t) = c

01 + c

1

t+ · · ·+ c

n

t

n = 0, then c

0 = c

1 = · · · = c

n = 0, so p(t) is
the zero polynomial.

Then P

n

(t) is finite dimensional, and dimP

n

(t) = n+ 1.

Theorem 17.1. Let S = {v
1

, . . . , v
n

} be a basis for a vector space V . Then
every vector w 2 V can be written uniquely as a linear combination of vectors
in the basis S:

w = c1v
1

+ · · ·+ cnv
n

.

Proof. Since S is a basis for V , then spanS = V , and so there exist con-
stants ci such that w = c1v

1

+ · · ·+ cnv
n

.
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Suppose there exists a second set of constants di such that

w = d1v
1

+ · · ·+ dnv
n

.

Then:

0
V

= w � w

= c1v
1

+ · · ·+ cnv
n

� d1v
1

+ · · ·+ dnv
n

= (c1 � d1)v
1

+ · · ·+ (cn � dn)v
n

.

If it occurs exactly once that ci 6= di, then the equation reduces to 0 =
(ci � di)v

i

, which is a contradiction since the vectors v
i

are assumed to be
non-zero.

If we have more than one i for which ci 6= di, we can use this last equation
to write one of the vectors in S as a linear combination of other vectors in S,
which contradicts the assumption that S is linearly independent. Then for
every i, ci = di.

Proof of Theorem

Next, we would like to establish a method for determining whether a
collection of vectors forms a basis for Rn. But first, we need to show that
any two bases for a finite-dimensional vector space has the same number of
vectors.

Lemma 17.2. If S = {v
1

, . . . , v
n

} is a basis for a vector space V and T =
{w

1

, . . . , w
m

} is a linearly independent set of vectors in V , then m  n.

The idea of the proof is to start with the set S and replace vectors in S
one at a time with vectors from T , such that after each replacement we still
have a basis for V .

Reading homework: problem 17.1

Proof. Since S spans V , then the set {w
1

, v
1

, . . . , v
n

} is linearly dependent.
Then we can write w

1

as a linear combination of the v
i

; using that equation,
we can express one of the v

i

in terms of w
1

and the remaining v
j

with j 6=
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i. Then we can discard one of the v
i

from this set to obtain a linearly
independent set that still spans V . Now we need to prove that S

1

is a basis;
we need to show that S

1

is linearly independent and that S
1

spans V .
The set S

1

= {w
1

, v
1

, . . . , v
i�1

, v
i+1

, . . . , v
n

} is linearly independent: By
the previous theorem, there was a unique way to express w

1

in terms of
the set S. Now, to obtain a contradiction, suppose there is some k and
constants ci such that

v
k

= c0w
1

+ c1v
1

+ · · ·+ ci�1v
i�1

+ ci+1v
i+1

+ · · ·+ cnv
n

.

Then replacing w
1

with its expression in terms of the collection S gives a way
to express the vector v

k

as a linear combination of the vectors in S, which
contradicts the linear independence of S. On the other hand, we cannot
express w

1

as a linear combination of the vectors in {v
j

|j 6= i}, since the
expression of w

1

in terms of S was unique, and had a non-zero coe�cient on
the vector v

i

. Then no vector in S
1

can be expressed as a combination of
other vectors in S

1

, which demonstrates that S
1

is linearly independent.
The set S

1

spans V : For any u 2 V , we can express u as a linear com-
bination of vectors in S. But we can express v

i

as a linear combination of
vectors in the collection S

1

; rewriting v
i

as such allows us to express u as a
linear combination of the vectors in S

1

.
Then S

1

is a basis of V with n vectors.
We can now iterate this process, replacing one of the v

i

in S
1

with w
2

,
and so on. If m  n, this process ends with the set S

m

= {w
1

, . . . , w
m

,
v
i1 , . . . , vin�m}, which is fine.
Otherwise, we have m > n, and the set S

n

= {w
1

, . . . , w
n

} is a basis
for V . But we still have some vector w

n+1

in T that is not in S
n

. Since S
n

is a basis, we can write w
n+1

as a combination of the vectors in S
n

, which
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contradicts the linear independence of the set T . Then it must be the case
that m  n, as desired.

Worked Example

Corollary 17.3. For a finite-dimensional vector space V , any two bases
for V have the same number of vectors.

Proof. Let S and T be two bases for V . Then both are linearly independent
sets that span V . Suppose S has n vectors and T has m vectors. Then by
the previous lemma, we have that m  n. But (exchanging the roles of S
and T in application of the lemma) we also see that n  m. Then m = n,
as desired.

Reading homework: problem 17.2

17.1 Bases in Rn.

From one of the review questions, we know that

Rn = span

8

>

>

>

<

>

>

>

:

0

B

B

B

@

1
0
...
0

1

C

C

C

A

,

0

B

B

B

@

0
1
...
0

1

C

C

C

A

, . . . ,

0

B

B

B

@

0
0
...
1

1

C

C

C

A

9

>

>

>

=

>

>

>

;

,

and that this set of vectors is linearly independent. So this set of vectors is
a basis for Rn, and dimRn = n. This basis is often called the standard or
canonical basis for Rn. The vector with a one in the ith position and zeros
everywhere else is written e

i

. It points in the direction of the ith coordinate
axis, and has unit length. In multivariable calculus classes, this basis is often
written {i, j, k} for R3.

Note that it is often convenient to order basis elements, so rather than
writing a set of vectors, we would write a list. This is called an ordered
basis. For example, the canonical ordered basis for Rn is (e

1

, e
2

, . . . , e
n

). The
possibility to reorder basis vectors is not the only way in which bases are
non-unique:
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Bases are not unique. While there exists a unique way to express a vector in terms
of any particular basis, bases themselves are far from unique. For example, both of
the sets:

⇢✓

1
0

◆

,

✓

0
1

◆�

and

⇢✓

1
1

◆

,

✓

1
�1

◆�

are bases for R2. Rescaling any vector in one of these sets is already enough to show
that R2 has infinitely many bases. But even if we require that all of the basis vectors
have unit length, it turns out that there are still infinitely many bases for R2. (See
Review Question 3.)

To see whether a collection of vectors S = {v
1

, . . . , v
m

} is a basis for Rn,
we have to check that they are linearly independent and that they span Rn.
From the previous discussion, we also know thatmmust equal n, so assume S
has n vectors.

If S is linearly independent, then there is no non-trivial solution of the
equation

0 = x1v
1

+ · · ·+ xnv
n

.

Let M be a matrix whose columns are the vectors v
i

. Then the above equa-
tion is equivalent to requiring that there is a unique solution to

MX = 0 .

To see if S spans Rn, we take an arbitrary vector w and solve the linear
system

w = x1v
1

+ · · ·+ xnv
n
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in the unknowns ci. For this, we need to find a unique solution for the linear
system MX = w.

Thus, we need to show that M�1 exists, so that

X = M�1w

is the unique solution we desire. Then we see that S is a basis for V if and
only if detM 6= 0.

Theorem 17.4. Let S = {v
1

, . . . , v
m

} be a collection of vectors in Rn. Let M
be the matrix whose columns are the vectors in S. Then S is a basis for V if
and only if m is the dimension of V and

detM 6= 0.

Example Let

S =

⇢✓

1
0

◆

,

✓

0
1

◆�

and T =

⇢✓

1
1

◆

,

✓

1
�1

◆�

.

Then set M
S

=

✓

1 0
0 1

◆

. Since detM
S

= 1 6= 0, then S is a basis for R2.

Likewise, set M
T

=

✓

1 1
1 �1

◆

. Since detM
T

= �2 6= 0, then T is a basis for R2.
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Review Problems

1. (a) Draw the collection of all unit vectors in R2.
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(b) Let S
x

=

⇢✓

1
0

◆

, x

�

, where x is a unit vector in R2. For which x

is S
x

a basis of R2?

2. Let Bn be the vector space of column vectors with bit entries 0, 1. Write
down every basis for B1 and B2. How many bases are there for B3?
B4? Can you make a conjecture for the number of bases for Bn?

(Hint: You can build up a basis for Bn by choosing one vector at a
time, such that the vector you choose is not in the span of the previous
vectors you’ve chosen. How many vectors are in the span of any one
vector? Any two vectors? How many vectors are in the span of any k
vectors, for k  n?)

Hint for Problem 2

3. Suppose that V is an n-dimensional vector space.

(a) Show that any n linearly independent vectors in V form a basis.

(Hint: Let {w
1

, . . . , w
m

} be a collection of n linearly independent
vectors in V , and let {v

1

, . . . , v
n

} be a basis for V . Apply the
method of Lemma 17.2 to these two sets of vectors.)

(b) Show that any set of n vectors in V which span V forms a basis
for V .

(Hint: Suppose that you have a set of n vectors which span V
but do not form a basis. What must be true about them? How
could you get a basis from this set? Use Corollary 17.3 to derive
a contradiction.)

4. Let S be a collection of vectors {v
1

, . . . , v
n

} in a vector space V . Show
that if every vector w in V can be expressed uniquely as a linear combi-
nation of vectors in S, then S is a basis of V . In other words: suppose
that for every vector w in V , there is exactly one set of constants
c1, . . . , cn so that c1v

1

+ · · ·+ cnv
n

= w. Show that this means that the
set S is linearly independent and spans V . (This is the converse to the
theorem in the lecture.)
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5. Vectors are objects that you can add together; show that the set of all
linear transformations mapping R3 ! R is itself a vector space. Find a
basis for this vector space. Do you think your proof could be modified
to work for linear transformations Rn ! R?
Hint: Represent R3 as column vectors, and argue that a linear trans-
formation T : R3 ! R is just a row vector. If you are stuck or just
curious, see dual space.
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18 Eigenvalues and Eigenvectors

Before discussing eigenvalues and eigenvectors, we need to have a better un-
derstanding of the relationship between linear transformations and matrices.
Consider, as an example the plane R2

The information of the vector v can be transmitted in many ways. In the
basis {e

1

, e
2

} it is the ordered pair (x, y) = (2, 2) while in the basis {f
1

, f
2

}
is corresponds to (s, t) = (2, 1). This can be confusing, the idea to keep
firm in your mind is that the vector space and its elements—vectors—are
what really “exist”. Typically they will correspond to configurations of the
real world system you are trying to describe. On the other hand, things like
coordinate axes and “components of a vector” (x, y) are just mathematical
tools used to label vectors.

18.1 Matrix of a Linear Transformation

Let V and W be vector spaces, with bases S = {e
1

, . . . , e
n

} and T =
{f

1

, . . . , f
m

} respectively. Since these are bases, there exist constants vi and
wj such that any vectors v 2 V and w 2 W can be written as:

v = v1e
1

+ v2e
2

+ · · ·+ vne
n

w = w1f
1

+ w2f
2

+ · · ·+ wmf
m
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We call the coe�cients v1, . . . , vn the components of v in the basis10 {e
1

, . . . , e
n

}.
It is often convenient to arrange the components vi in a column vector and
the basis vector in a row vector by writing

v =
�

e
1

e
2

· · · e
n

�

0

B

B

B

@

v1

v2
...
vn

1

C

C

C

A

.

Worked Example

Example Consider the basis S = {1� t, 1+ t} for the vector space P
1

(t). The vector
v = 2t has components v1 = �1, v2 = 1, because

v = �1(1� t) + 1(1 + t) =
�

1� t 1 + t

�

 

�1
1

!

.

We may consider these components as vectors in Rn and Rm:
0

B

@

v1
...
vn

1

C

A

2 Rn,

0

B

@

w1

...
wm

1

C

A

2 Rm.

Now suppose we have a linear transformation L : V ! W . Then we can
expect to write L as an m ⇥ n matrix, turning an n-dimensional vector of
coe�cients corresponding to v into an m-dimensional vector of coe�cients
for w.

Using linearity, we write:

L(v) = L(v1e
1

+ v2e
2

+ · · ·+ vne
n

)

= v1L(e
1

) + v2L(e
2

) + · · ·+ vnL(e
n

)

=
�

L(e
1

) L(e
2

) · · · L(e
n

)
�

0

B

B

B

@

v1

v2
...
vn

1

C

C

C

A

.

10To avoid confusion, it helps to notice that components of a vector are almost always
labeled by a superscript, while basis vectors are labeled by subscripts in the conventions
of these lecture notes.
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This is a vector in W . Let’s compute its components in W .
We know that for each e

j

, L(e
j

) is a vector in W , and can thus be written
uniquely as a linear combination of vectors in the basis T . Then we can find
coe�cients M i

j

such that:

L(e
j

) = f
1

M1

j

+ · · ·+ f
m

Mm

j

=
m

X

i=1

f
i

M i

j

=
�

f
1

f
2

· · · f
m

�

0

B

B

B

B

@

M1

j

M2

j

...

Mm

j

1

C

C

C

C

A

.

We’ve written the M i

j

on the right side of the f ’s to agree with our previous
notation for matrix multiplication. We have an “up-hill rule” where the
matching indices for the multiplied objects run up and to the right, like
so: f

i

M i

j

.
Now M i

j

is the ith component of L(e
j

). Regarding the coe�cients M i

j

as
a matrix, we can see that the jth column of M is the coe�cients of L(e

j

) in
the basis T .

Then we can write:

L(v) = L(v1e
1

+ v2e
2

+ · · ·+ vne
n

)

= v1L(e
1

) + v2L(e
2

) + · · ·+ vnL(e
n

)

=
m

X

i=1

L(e
j

)vj

=
m

X

i=1

(M1

j

f
1

+ · · ·+Mm

j

f
m

)vj

=
m

X

i=1

f
i

"

n

X

j=1

M i

j

vj
#

=
�

f
1

f
2

· · · f
m

�

0

B

B

B

@

M1

1

M1

2

· · · M1

n

M2

1

M2

2

...
...

Mm

1

· · · Mm

n

1

C

C

C

A

0

B

B

B

@

v1

v2
...
vn

1

C

C

C

A
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The second last equality is the definition of matrix multiplication which is
obvious from the last line. Thus:

0

B

@

v1
...
vn

1

C

A

L7!

0

B

@

M1

1

. . . M1

n

...
...

Mm

1

. . . Mm

n

1

C

A

0

B

@

v1
...
vn

1

C

A

,

and M = (M i

j

) is called the matrix of L. Notice that this matrix depends
on a choice of bases for both V and W . Also observe that the columns of M
are computed by examining L acting on each basis vector in V expanded in
the basis vectors of W .

Example Let L : P
1

(t) 7! P

1

(t), such that L(a+ bt) = (a+ b)t. Since V = P

1

(t) =
W , let’s choose the same basis for V and W . We’ll choose the basis {1� t, 1+ t} for
this example.

Thus:

L(1� t) = (1� 1)t = 0 = (1� t) · 0 + (1 + t) · 0 =
�

(1� t) (1 + t)
�

✓

0
0

◆

L(1 + t) = (1 + 1)t = 2t = (1� t) ·�1 + (1 + t) · 1 =
�

(1� t) (1 + t)
�

✓

�1
1

◆

)M =

✓

0 �1
0 1

◆

To obtain the last line we used that fact that the columns of M are just the coe�cients
of L on each of the basis vectors; this always makes it easy to write down M in terms
of the basis we have chosen.

Reading homework: problem 20.1

Example Consider a linear transformation

L : R2 ! R2

.

Suppose we know that L

✓

1
0

◆

=

✓

a

c

◆

and L

✓

0
1

◆

=

✓

b

d

◆

. Then, because of linearity,

we can determine what L does to any vector

✓

x

y

◆

:

L

✓

x

y

◆

= L(x

✓

1
0

◆

+y

✓

0
1

◆

) = xL

✓

1
0

◆

+yL

✓

0
1

◆

= x

✓

a

c

◆

+y

✓

b

d

◆

=

✓

ax+ by

cx+ dy

◆

.
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Now notice that for any vector

✓

x

y

◆

, we have

✓

a b

c d

◆✓

x

y

◆

=

✓

ax+ by

cx+ dy

◆

= L

✓

x

y

◆

.

Then the matrix

✓

a b

c d

◆

acts by matrix multiplication in the same way that L does.

This is the matrix of L in the basis

⇢✓

1
0

◆

,

✓

0
1

◆�

.

Example Any vector in Rn can be written as a linear combination of the standard

basis vectors {e
i

|i 2 {1, . . . , n}}. The vector e
i

has a one in the ith position, and
zeros everywhere else. I.e.

e

1

=

0

B

B

B

@

1
0
...
0

1

C

C

C

A

, e

2

=

0

B

B

B

@

0
1
...
0

1

C

C

C

A

, . . . e

n

=

0

B

B

B

@

0
0
...
1

1

C

C

C

A

.

Then to find the matrix of any linear transformation L : Rn ! Rn, it su�ces to know
what L(e

i

) is for every i.
For any matrix M , observe that Me

i

is equal to the ith column of M . Then if the
ith column of M equals L(e

i

) for every i, then Mv = L(v) for every v 2 Rn. Then
the matrix representing L in the standard basis is just the matrix whose ith column is
L(e

i

).

18.2 Invariant Directions

Have a look at the linear transformation L depicted below:
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It was picked at random by choosing a pair of vectors L(e
1

) and L(e
2

) as
the outputs of L acting on the canonical basis vectors. Notice how the unit
square with a corner at the origin get mapped to a parallelogram. The second
line of the picture shows these superimposed on one another. Now look at the
second picture on that line. There, two vectors f

1

and f
2

have been carefully
chosen such that if the inputs into L are in the parallelogram spanned by f

1

and f
2

, the outputs also form a parallelogram with edges lying along the same
two directions. Clearly this is a very special situation that should correspond
to a interesting properties of L.

Now lets try an explicit example to see if we can achieve the last picture:

Example Consider the linear transformation L such that

L

✓

1
0

◆

=

✓

�4
�10

◆

and L

✓

0
1

◆

=

✓

3
7

◆

,

so that the matrix of L is
✓

�4 3
�10 7

◆

.

Recall that a vector is a direction and a magnitude; L applied to

✓

1
0

◆

or

✓

0
1

◆

changes

both the direction and the magnitude of the vectors given to it.
Notice that

L

✓

3
5

◆

=

✓

�4 · 3 + 3 · 5
�10 · 3 + 7 · 5

◆

=

✓

3
5

◆

.
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Then L fixes the direction (and actually also the magnitude) of the vector v
1

=

✓

3
5

◆

.

In fact also the vector v
2

=

✓

1
2

◆

has its direction fixed by M .

Reading homework: problem 18.1

Now, notice that any vector with the same direction as v
1

can be written as cv
1

for some constant c. Then L(cv
1

) = cL(v
1

) = cv

1

, so L fixes every vector pointing
in the same direction as v

1

.
Also notice that

L

✓

1
2

◆

=

✓

�4 · 1 + 3 · 2
�10 · 1 + 7 · 2

◆

=

✓

2
4

◆

= 2

✓

1
2

◆

.

Then L fixes the direction of the vector v
2

=

✓

1
2

◆

but stretches v
2

by a factor of 2.

Now notice that for any constant c, L(cv
2

) = cL(v
2

) = 2cv
2

. Then L stretches every
vector pointing in the same direction as v

2

by a factor of 2.

In short, given a linear transformation L it is sometimes possible to find
a vector v 6= 0 and constant � 6= 0 such that

L(v) = �v.
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We call the direction of the vector v an invariant direction. In fact, any
vector pointing in the same direction also satisfies the equation: L(cv) =
cL(v) = �cv. The vector v is called an eigenvector of L, and � is an eigen-
value. Since the direction is all we really care about here, then any other
vector cv (so long as c 6= 0) is an equally good choice of eigenvector. Notice
that the relation “u and v point in the same direction” is an equivalence
relation.

In our example of the linear transformation L with matrix
✓

�4 3
�10 7

◆

,

we have seen that L enjoys the property of having two invariant directions,
represented by eigenvectors v

1

and v
2

with eigenvalues 1 and 2, respectively.
It would be very convenient if we could write any vector w as a linear

combination of v
1

and v
2

. Suppose w = rv
1

+sv
2

for some constants r and s.
Then:

L(w) = L(rv
1

+ sv
2

) = rL(v
1

) + sL(v
2

) = rv
1

+ 2sv
2

.

Now L just multiplies the number r by 1 and the number s by 2. If we
could write this as a matrix, it would look like:

✓

1 0
0 2

◆✓

s
t

◆

which is much slicker than the usual scenario

L

✓

x
y

◆

=

✓

a b
c d

◆✓

x
y

◆

=

✓

ax+ by
cx+ dy

◆

.

Here, s and t give the coordinates of w in terms of the vectors v
1

and v
2

. In the
previous example, we multiplied the vector by the matrix L and came up with
a complicated expression. In these coordinates, we can see that L is a very
simple diagonal matrix, whose diagonal entries are exactly the eigenvalues of
L.

This process is called diagonalization. It makes complicated linear sys-
tems much easier to analyze.

Reading homework: problem 18.2

Now that we’ve seen what eigenvalues and eigenvectors are, there are a
number of questions that need to be answered.
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• How do we find eigenvectors and their eigenvalues?

• How many eigenvalues and (independent) eigenvectors does a given
linear transformation have?

• When can a linear transformation be diagonalized?

We’ll start by trying to find the eigenvectors for a linear transformation.

2⇥ 2 Example

Example Let L : R2 ! R2 such that L(x, y) = (2x + 2y, 16x + 6y). First, we can
find the matrix of L:

✓

x

y

◆

L7�!
✓

2 2
16 6

◆✓

x

y

◆

.

We want to find an invariant direction v =

✓

x

y

◆

such that

L(v) = �v

or, in matrix notation,
✓

2 2
16 6

◆✓

x

y

◆

= �

✓

x

y

◆

,
✓

2 2
16 6

◆✓

x

y

◆

=

✓

� 0
0 �

◆✓

x

y

◆

,
✓

2� � 2
16 6� �

◆✓

x

y

◆

=

✓

0
0

◆

.

This is a homogeneous system, so it only has solutions when the matrix

✓

2� � 2
16 6� �

◆

is singular. In other words,

det

✓

2� � 2
16 6� �

◆

= 0

, (2� �)(6� �)� 32 = 0

, �

2 � 8�� 20 = 0

, (�� 10)(�+ 2) = 0
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For any square n⇥ n matrix M , the polynomial in � given by

P

M

(�) = det(�I �M) = (�1)n det(M � �I)

is called the characteristic polynomial of M , and its roots are the eigenvalues of M .
In this case, we see that L has two eigenvalues, �

1

= 10 and �

2

= �2. To find the
eigenvectors, we need to deal with these two cases separately. To do so, we solve the

linear system

✓

2� � 2
16 6� �

◆✓

x

y

◆

=

✓

0
0

◆

with the particular eigenvalue � plugged

in to the matrix.

� = 10: We solve the linear system
✓

�8 2
16 �4

◆✓

x

y

◆

=

✓

0
0

◆

.

Both equations say that y = 4x, so any vector

✓

x

4x

◆

will do. Since we only

need the direction of the eigenvector, we can pick a value for x. Setting x = 1

is convenient, and gives the eigenvector v
1

=

✓

1
4

◆

.

� = �2: We solve the linear system
✓

4 2
16 8

◆✓

x

y

◆

=

✓

0
0

◆

.

Here again both equations agree, because we chose � to make the system

singular. We see that y = �2x works, so we can choose v

2

=

✓

1
�2

◆

.

In short, our process was the following:

• Find the characteristic polynomial of the matrix M for L, given by11 det(�I �
M).

• Find the roots of the characteristic polynomial; these are the eigenvalues of L.

• For each eigenvalue �

i

, solve the linear system (M � �

i

I)v = 0 to obtain an
eigenvector v associated to �

i

.

Jordan block example

11It is often easier (and equivalent if you only need the roots) to compute det(M � �I).
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Review Problems

1. Let M =

✓

2 1
0 2

◆

. Find all eigenvalues of M . Does M have two

independent12 eigenvectors? Can M be diagonalized?

2. Consider L : R2 ! R2 with L(x, y) = (x cos ✓+y sin ✓,�x sin ✓+y cos ✓).

(a) Write the matrix of L in the basis

✓

1
0

◆

,

✓

0
1

◆

.

(b) When ✓ 6= 0, explain how L acts on the plane. Draw a picture.

(c) Do you expect L to have invariant directions?

(d) Try to find real eigenvalues for L by solving the equation

L(v) = �v.

(e) Are there complex eigenvalues for L, assuming that i =
p
�1

exists?

3. Let L be the linear transformation L : R3 ! R3 given by L(x, y, z) =
(x+ y, x+ z, y+ z). Let e

i

be the vector with a one in the ith position
and zeros in all other positions.

(a) Find Le
i

for each i.

12Independence of vectors is explained here.
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(b) Given a matrix M =

0

@

m1

1

m1

2

m1

3

m2

1

m2

2

m2

3

m3

1

m3

2

m3

3

1

A, what can you say about

Me
i

for each i?

(c) Find a 3 ⇥ 3 matrix M representing L. Choose three nonzero
vectors pointing in di↵erent directions and show that Mv = Lv
for each of your choices.

(d) Find the eigenvectors and eigenvalues of M.

4. Let A be a matrix with eigenvector v with eigenvalue �. Show that v
is also an eigenvector for A2 and what is its eigenvalue? How about for
An where n 2 N? Suppose that A is invertible, show that v is also an
eigenvector for A�1.

5. A projection is a linear operator P such that P 2 = P . Let v be an
eigenvector with eigenvalue � for a projection P , what are all possible
values of �? Show that every projection P has at least one eigenvector.

Note that every complex matrix has at least 1 eigenvector, but you
need to prove the above for any field.
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19 Eigenvalues and Eigenvectors II

In Lecture 18, we developed the idea of eigenvalues and eigenvectors in the
case of linear transformations R2 ! R2. In this section, we will develop the
idea more generally.

Eigenvalues

Definition For a linear transformation L : V ! V , then � is an eigenvalue
of L with eigenvector v 6= 0

V

if

Lv = �v.

This equation says that the direction of v is invariant (unchanged) under L.
Let’s try to understand this equation better in terms of matrices. Let

V be a finite-dimensional vector space and let L : V ! V . Since we can
represent L by a square matrix M , we find eigenvalues � and associated
eigenvectors v by solving the homogeneous system

(M � �I)v = 0.

This system has non-zero solutions if and only if the matrix

M � �I

is singular, and so we require that

det(�I �M) = 0.

The left hand side of this equation is a polynomial in the variable �
called the characteristic polynomial P

M

(�) of M . For an n ⇥ n matrix, the
characteristic polynomial has degree n. Then

P
M

(�) = �n + c
1

�n�1 + · · ·+ c
n

.

Notice that P
M

(0) = det(�M) = (�1)n detM .
The fundamental theorem of algebra states that any polynomial can be

factored into a product of linear terms over C. Then there exists a collection
of n complex numbers �

i

(possibly with repetition) such that

P
M

(�) = (�� �
1

)(�� �
2

) · · · (�� �
n

), P
M

(�
i

) = 0
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The eigenvalues �
i

of M are exactly the roots of P
M

(�). These eigenvalues
could be real or complex or zero, and they need not all be di↵erent. The
number of times that any given root �

i

appears in the collection of eigenvalues
is called its multiplicity .

Example Let L be the linear transformation L : R3 ! R3 given by

L(x, y, z) = (2x+ y � z, x+ 2y � z,�x� y + 2z) .

The matrix M representing L has columns Le
i

for each i, so:

0

@

x

y

z

1

A

L7!

0

@

2 1 �1
1 2 �1
�1 �1 2

1

A

0

@

x

y

z

1

A

.

Then the characteristic polynomial of L is13

P

M

(�) = det

0

@

�� 2 �1 1
�1 �� 2 1
1 1 �� 2

1

A

= (�� 2)[(�� 2)2 � 1] + [�(�� 2)� 1] + [�(�� 2)� 1]

= (�� 1)2(�� 4)

Then L has eigenvalues �
1

= 1 (with multiplicity 2), and �

2

= 4 (with multiplicity 1).
To find the eigenvectors associated to each eigenvalue, we solve the homogeneous

system (M � �

i

I)X = 0 for each i.

13It is often easier (and equivalent) to solve det(M � �I) = 0.
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� = 4: We set up the augmented matrix for the linear system:

0

@

�2 1 �1 0
1 �2 �1 0
�1 �1 �2 0

1

A ⇠

0

@

1 �2 �1 0
0 �3 �3 0
0 �3 �3 0

1

A

⇠

0

@

1 0 1 0
0 1 1 0
0 0 0 0

1

A

.

So we see that z = t, y = �t, and x = �t gives a formula for eigenvectors in

terms of the free parameter t. Any such eigenvector is of the form t

0

@

�1
�1
1

1

A;

thus L leaves a line through the origin invariant.

� = 1: Again we set up an augmented matrix and find the solution set:

0

@

1 1 �1 0
1 1 �1 0
�1 �1 1 0

1

A ⇠

0

@

1 1 �1 0
0 0 0 0
0 0 0 0

1

A

.

Then the solution set has two free parameters, s and t, such that z = t, y = s,
and x = �s+ t. Then L leaves invariant the set:

8

<

:

s

0

@

�1
1
0

1

A+ t

0

@

1
0
1

1

A

�

�

�

�

�

�

s, t 2 R

9

=

;

.

This set is a plane through the origin. So the multiplicity two eigenvalue has

two independent eigenvectors,

0

@

�1
1
0

1

A and

0

@

1
0
1

1

A that determine an invariant

plane.

Example Let V be the vector space of smooth (i.e. infinitely di↵erentiable) functions
f : R ! R. Then the derivative is a linear operator d

dx

: V ! V . What are the
eigenvectors of the derivative? In this case, we don’t have a matrix to work with, so
we have to make do.

A function f is an eigenvector of d

dx

if there exists some number � such that d

dx

f =

�f . An obvious candidate is the exponential function, e�x; indeed, d

dx

e

�x = �e

�x.
As such, the operator d

dx

has an eigenvector e�x for every � 2 R.
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This is actually the whole collection of eigenvectors for d

dx

; this can be proved
using the fact that every infinitely di↵erentiable function has a Taylor series with
infinite radius of convergence, and then using the Taylor series to show that if two
functions are eigenvectors of d

dx

with eigenvalues �, then they are scalar multiples of
each other.

19.1 Eigenspaces

In the previous example, we found two eigenvectors

0

@

�1
1
0

1

A and

0

@

1
0
1

1

A for L

with eigenvalue 1. Notice that

0

@

�1
1
0

1

A+

0

@

1
0
1

1

A =

0

@

0
1
1

1

A is also an eigenvector

of L with eigenvalue 1. In fact, any linear combination r

0

@

�1
1
0

1

A+ s

0

@

1
0
1

1

A of

these two eigenvectors will be another eigenvector with the same eigenvalue.
More generally, let {v

1

, v
2

, . . .} be eigenvectors of some linear transforma-
tion L with the same eigenvalue �. A linear combination of the v

i

can be
written c

1

v
1

+ c
2

v
2

+ · · · for some constants {c
1

, c
2

, . . .}. Then:

L(c
1

v
1

+ c
2

v
2

+ · · · ) = c
1

Lv
1

+ c
2

Lv
2

+ · · · by linearity of L

= c
1

�v
1

+ c
2

�v
2

+ · · · since Lv
i

= �v
i

= �(c
1

v
1

+ c
2

v
2

+ · · · ).

So every linear combination of the v
i

is an eigenvector of L with the same
eigenvalue �. In simple terms, any sum of eigenvectors is again an eigenvector
if they share the same eigenvalue.

The space of all vectors with eigenvalue � is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V : It
contains 0

V

, since L0
V

= 0
V

= �0
V

, and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties are
inherited from the fact that V itself is a vector space.

An eigenspace is an example of a subspace of V , a notion explored in
Lecture 15.

More on eigenspaces
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Reading homework: problem 19.1

You are now ready to attempt the second sample midterm.

References

He↵eron, Chapter Three, Section III.1: Representing Linear Maps with Ma-
trices
He↵eron, Chapter Five, Section II.3: Eigenvalues and Eigenvectors
Beezer, Chapter E, Section EE
Wikipedia:

• Eigen*

• Characteristic Polynomial

• Linear Transformations (and matrices thereof)

Review Problems

1. Explain why the characteristic polynomial of an n⇥nmatrix has degree
n. Make your explanation easy to read by starting with some simple
examples, and then use properties of the determinant to give a general
explanation.

2. Compute the characteristic polynomial P
M

(�) of the matrix M =
✓

a b
c d

◆

. Now, since we can evaluate polynomials on square matrices,

we can plug M into its characteristic polynomial and find the matrix
P
M

(M). What do you find from this computation? Does something
similar hold for 3⇥ 3 matrices? What about n⇥ n matrices?
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3. Discrete dynamical system. Let M be the matrix given by

M =

✓

3 2
2 3

◆

.

Given any vector v(0) =

✓

x(0)
y(0)

◆

, we can create an infinite sequence of

vectors v(1), v(2), v(3), and so on using the rule

v(t+ 1) = Mv(t) for all natural numbers t.

(This is known as a discrete dynamical system whose initial condition
is v(0).)

(a) Find all eigenvectors and eigenvalues of M.

(b) Find all vectors v(0) such that

v(0) = v(1) = v(2) = v(3) = · · ·

(Such a vector is known as a fixed point of the dynamical system.)

(c) Find all vectors v(0) such that v(0), v(1), v(2), v(3), . . . all point in
the same direction. (Any such vector describes an invariant curve
of the dynamical system.)

Hint
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20 Diagonalization

Given a linear transformation, we are interested in how to write it as a
matrix. We are especially interested in the case that the matrix is written
with respect to a basis of eigenvectors, in which case it is a particularly nice
matrix.

20.1 Diagonalization

Now suppose we are lucky, and we have L : V 7! V , and the basis {v
1

, . . . , v
n

}
is a set of linearly independent eigenvectors for L, with eigenvalues �

1

, . . . ,�
n

.
Then:

L(v
1

) = �
1

v
1

L(v
2

) = �
2

v
2

...

L(v
n

) = �
n

v
n

As a result, the matrix of L in the basis of eigenvectors is diagonal:
0

B

B

B

@

�
1

�
2

. . .
�
n

1

C

C

C

A

,

where all entries o↵ of the diagonal are zero.
Suppose that V is any n-dimensional vector space. We call a linear trans-

formation L : V 7! V diagonalizable if there exists a collection of n linearly
independent eigenvectors for L. In other words, L is diagonalizable if there
exists a basis for V of eigenvectors for L.

In a basis of eigenvectors, the matrix of a linear transformation is diag-
onal. On the other hand, if an n ⇥ n matrix is diagonal, then the standard
basis vectors e

i

must already be a set of n linearly independent eigenvectors.
We have shown:

165



Theorem 20.1. Given a basis S for a vector space V and a linear transfor-
mation L : V ! V , then the matrix for L in the basis S is diagonal if and
only if S is a basis of eigenvectors for L.

Non-diagonalizable example

Reading homework: problem 20.2

20.2 Change of Basis

Suppose we have two bases S = {v
1

, . . . , v
n

} and T = {u
1

, . . . , u
n

} for a
vector space V . (Here v

i

and u
i

are vectors, not components of vectors in a
basis!) Then we may write each v

i

uniquely as a linear combination of the u
j

:

v
j

=
X

i

u
i

P i

j

,

or in a matrix notation

�

v
1

v
2

· · · v
n

�

=
�

u
1

u
2

· · · u
n

�

0

B

B

B

@

P 1

1

P 1

2

· · · P 1

n

P 2

1

P 2

2

...
...

P n

1

· · · P n

n

1

C

C

C

A

.

Here, the P i

j

are constants, which we can regard as entries of a square ma-
trix P = (P i

j

). The matrix P must have an inverse, since we can also write
each u

i

uniquely as a linear combination of the v
j

:

u
j

=
X

k

v
k

Qk

j

.

Then we can write:
v
j

=
X

k

X

i

v
k

Qk

j

P i

j

.

But
P

i

Qk

j

P i

j

is the k, j entry of the product of the matrices QP . Since the
only expression for v

j

in the basis S is v
j

itself, then QP fixes each v
j

. As
a result, each v

j

is an eigenvector for QP with eigenvalue 1, so QP is the
identity.
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The matrix P is called a change of basis matrix. There is a quick and
dirty trick to obtain it: Look at the formula above relating the new basis
vectors v

1

, v
2

, . . . v
n

to the old ones u
1

, u
2

, . . . , u
n

. In particular focus on v
1

for which

v
1

=
�

u
1

u
2

· · · u
n

�

0

B

B

B

@

P 1

1

P 2

1

...
P n

1

1

C

C

C

A

.

This says that the first column of the change of basis matrix P is really just
the components of the vector v

1

in the basis u
1

, u
2

, . . . , u
n

.

Example Suppose the vectors v
1

and v

2

form a basis for a vector space V and with
respect to some other basis u

1

, u

2

have, respectively, components
 

1p
2

1p
2

!

and

 

1p
3

� 1p
3

!

.

What is the change of basis matrix P from the old basis u
1

, u

2

to the new basis v
1

, v

2

?
Before answering note that the above statements mean

v

1

=
�

u

1

u

2

�

 

1p
2

1p
2

!

=
u

1

+ u

2p
2

and v

2

=
�

u

1

u

2

�

 

1p
3

� 1p
3

!

=
u

1

� u

2p
3

.

The change of basis matrix has as its columns just the components of v
1

and v

2

, so
is just

P =

 

1p
2

1p
3

1p
2

� 1p
3

!

.

Changing basis changes the matrix of a linear transformation. However,
as a map between vector spaces, the linear transformation is the same no
matter which basis we use. Linear transformations are the actual objects of
study of this course, not matrices; matrices are merely a convenient way of
doing computations.

Worked Change of Basis Example
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Lets now apply this to our eigenvector problem. To wit, suppose L : V 7!
V has matrix M = (M i

j

) in the basis T = {u
1

, . . . , u
n

}, so

L(u
i

) =
X

k

u
k

Mk

i

.

Now, let S = {v
1

, . . . , v
n

} be a basis of eigenvectors for L, with eigenvalues
�
1

, . . . ,�
n

. Then
L(v

i

) = �
i

v
i

=
X

k

v
k

Dk

i

where D is the diagonal matrix whose diagonal entries Dk

k

are the eigenval-

ues �
k

; ie, D =

0

B

B

B

@

�
1

�
2

. . .
�
n

1

C

C

C

A

. Let P be the change of basis matrix

from the basis T to the basis S. Then:

L(v
j

) = L

 

X

i

u
i

P i

j

!

=
X

i

L(u
i

)P i

j

=
X

i

X

k

u
k

Mk

i

P i

j

.

Meanwhile, we have:

L(v
i

) =
X

k

v
k

Dk

i

=
X

k

X

j

u
j

P j

k

Dk

i

.

Since the expression for a vector in a basis is unique, then we see that the
entries of MP are the same as the entries of PD. In other words, we see that

MP = PD or D = P�1MP.

This motivates the following definition:

Definition A matrix M is diagonalizable if there exists an invertible matrix
P and a diagonal matrix D such that

D = P�1MP.

We can summarize as follows:

• Change of basis multiplies vectors by the change of basis matrix P , to
give vectors in the new basis.
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• To get the matrix of a linear transformation in the new basis, we con-
jugate the matrix of L by the change of basis matrix: M ! P�1MP .

If for two matrices N and M there exists an invertible matrix P such
that M = P�1NP , then we say that M and N are similar . Then the
above discussion shows that diagonalizable matrices are similar to diagonal
matrices.

Corollary 20.2. A square matrix M is diagonalizable if and only if there
exists a basis of eigenvectors for M . Moreover, these eigenvectors are the
columns of the change of basis matrix P which diagonalizes M .

Reading homework: problem 20.3

Example Let’s try to diagonalize the matrix

M =

0

@

�14 �28 �44
�7 �14 �23
9 18 29

1

A

.

The eigenvalues of M are determined by

det(M � �) = ��3 + �

2 + 2� = 0.

So the eigenvalues of M are �1, 0, and 2, and associated eigenvectors turn out to be

v

1

=

0

@

�8
�1
3

1

A

, v

2

=

0

@

�2
1
0

1

A

, and v

3

=

0

@

�1
�1
1

1

A. In order for M to be diagonalizable,

we need the vectors v
1

, v

2

, v

3

to be linearly independent. Notice that the matrix

P =
�

v

1

v

2

v

3

�

=

0

@

�8 �2 �1
�1 1 �1
3 0 1

1

A

is invertible because its determinant is �1. Therefore, the eigenvectors of M form a
basis of R, and so M is diagonalizable. Moreover, the matrix P of eigenvectors is a
change of basis matrix which diagonalizes M :

P

�1

MP =

0

@

�1 0 0
0 0 0
0 0 2

1

A

.
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2⇥ 2 Example

As a reminder, here is the key result of this Lecture

References

He↵eron, Chapter Three, Section V: Change of Basis
Beezer, Chapter E, Section SD
Beezer, Chapter R, Sections MR-CB
Wikipedia:

• Change of Basis

• Diagonalizable Matrix

• Similar Matrix

Review Problems

1. Let P
n

(t) be the vector space of polynomials of degree n or less, and
d

dt

: P
n

(t) 7! P
n�1

(t) be the derivative operator. Find the matrix of d

dt

in the bases {1, t, . . . , tn} for P
n

(t) and {1, t, . . . , tn�1} for P
n�1

(t).

Recall that the derivative operator is linear from Chapter 7.

2. When writing a matrix for a linear transformation, we have seen that
the choice of basis matters. In fact, even the order of the basis matters!
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• Write all possible reorderings of the standard basis {e
1

, e
2

, e
3

}
for R3.

• Write each change of basis matrix between the standard basis
{e

1

, e
2

, e
3

} and each of its reorderings. Make as many observations
as you can about these matrices: what are their entries? Do you
notice anything about how many of each type of entry appears
in each row and column? What are their determinants? (Note:
These matrices are known as permutation matrices .)

• Given the linear transformation L(x, y, z) = (2y�z, 3x, 2z+x+y),
write the matrix M for L in the standard basis, and two other
reorderings of the standard basis. How are these matrices related?

3. When is the 2⇥ 2 matrix

✓

a b
c d

◆

diagonalizable? Include examples in

your answer.

4. Show that similarity of matrices is an equivalence relation. (The defi-
nition of an equivalence relation is given in Homework 0.)

5. Jordan form

• Can the matrix

✓

� 1
0 �

◆

be diagonalized? Either diagonalize it or

explain why this is impossible.

• Can the matrix

0

@

� 1 0
0 � 1
0 0 �

1

A be diagonalized? Either diagonalize

it or explain why this is impossible.

• Can the n ⇥ n matrix

0

B

B

B

B

B

B

B

@

� 1 0 · · · 0 0
0 � 1 · · · 0 0
0 0 � · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · � 1
0 0 0 · · · 0 �

1

C

C

C

C

C

C

C

A

be diagonalized?

Either diagonalize it or explain why this is impossible.

Note: It turns out that every matrix is similar to a block ma-
trix whose diagonal blocks look like diagonal matrices or the ones
above and whose o↵-diagonal blocks are all zero. This is called
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the Jordan form of the matrix and a (maximal) block that look
like

0

B

B

B

@

� 1 0 0
0 � 1 0
. . . . . . . . .

...
0 0 0 �

1

C

C

C

A

is called a Jordan n-cell or a Jordan block where n is the size of
the block.

6. Let A and B be commuting matrices (i.e. AB = BA) and suppose
that A has an eigenvector v with eigenvalue �. Show that Bv also has
an eigenvalue of �. Additionally suppose that A is diagonalizable with
distinct eigenvalues. Show that v is also an eigenvector of B, and thus
showing A and B can be simultaneously diagonalized (i.e. they have
the same eigenvalues and eigenvectors).
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21 Orthonormal Bases

You may have noticed that we have only rarely used the dot product. That
is because many of the results we have obtained do not require a preferred
notion of lengths of vectors. Now let us consider the case of Rn where the
length of a vector (x

1

, x
2

, . . . , x
n

) 2 Rn is
p

(x
1

)2 + (x
2

)2 + · · · (x
n

)2.
The canonical/standard basis in Rn

e
1

=

0

B

B

B

@

1
0
...
0

1

C

C

C

A

, e
2

=

0

B

B

B

@

0
1
...
0

1

C

C

C

A

, . . . , e
n

=

0

B

B

B

@

0
0
...
1

1

C

C

C

A

has many useful properties.

• Each of the standard basis vectors has unit length:

ke
i

k = pe
i

e
i

=
q

eT
i

e
i

= 1.

• The standard basis vectors are orthogonal (in other words, at right
angles or perpendicular).

e
i

e
j

= eT
i

e
j

= 0 when i 6= j

This is summarized by

eT
i

e
j

= �
ij

=

⇢

1 i = j
0 i 6= j

,

where �
ij

is the Kronecker delta. Notice that the Kronecker delta gives the
entries of the identity matrix.

Given column vectors v and w, we have seen that the dot product v w is
the same as the matrix multiplication vTw. This is the inner product on Rn.
We can also form the outer product vwT , which gives a square matrix.
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The outer product on the standard basis vectors is interesting. Set

⇧
1

= e
1

eT
1

=

0

B

B

B

@

1
0
...
0

1

C

C

C

A

�

1 0 · · · 0
�

=

0

B

B

B

@

1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

1

C

C

C

A

...

⇧
n

= e
n

eT
n

=

0

B

B

B

@

0
0
...
1

1

C

C

C

A

�

0 0 · · · 1
�

=

0

B

B

B

@

0 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 1

1

C

C

C

A

In short, ⇧
i

is the diagonal square matrix with a 1 in the ith diagonal position
and zeros everywhere else. 14

Notice that ⇧
i

⇧
j

= e
i

eT
i

e
j

eT
j

= e
i

�
ij

eT
j

. Then:

⇧
i

⇧
j

=

⇢

⇧
i

i = j
0 i 6= j

.

Moreover, for a diagonal matrix D with diagonal entries �
1

, . . . ,�
n

, we
can write

D = �
1

⇧
1

+ · · ·+ �
n

⇧
n

.

14This is reminiscent of an older notation, where vectors are written in juxtaposition.
This is called a “dyadic tensor”, and is still used in some applications.
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Other bases that share these properties should behave in many of the
same ways as the standard basis. As such, we will study:

• Orthogonal bases {v
1

, . . . , v
n

}:
v
i

v
j

= 0 if i 6= j

In other words, all vectors in the basis are perpendicular.

• Orthonormal bases {u
1

, . . . , u
n

}:
u
i

u
j

= �
ij

.

In addition to being orthogonal, each vector has unit length.

Suppose T = {u
1

, . . . , u
n

} is an orthonormal basis for Rn. Since T is
a basis, we can write any vector v uniquely as a linear combination of the
vectors in T :

v = c1u
1

+ · · · cnu
n

.

Since T is orthonormal, there is a very easy way to find the coe�cients of this
linear combination. By taking the dot product of v with any of the vectors
in T , we get:

v u
i

= c1u
1

u
i

+ · · ·+ ciu
i

u
i

+ · · ·+ cnu
n

u
i

= c1 · 0 + · · ·+ ci · 1 + · · ·+ cn · 0
= ci,

) ci = v u
i

) v = (v u
1

)u
1

+ · · ·+ (v u
n

)u
n

=
X

i

(v u
i

)u
i

.

This proves the theorem:

Theorem 21.1. For an orthonormal basis {u
1

, . . . , u
n

}, any vector v can be
expressed as

v =
X

i

(v u
i

)u
i

.

Reading homework: problem 21.1

All orthonormal bases for R2
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21.1 Relating Orthonormal Bases

Suppose T = {u
1

, . . . , u
n

} and R = {w
1

, . . . , w
n

} are two orthonormal bases
for Rn. Then:

w
1

= (w
1

u
1

)u
1

+ · · ·+ (w
1

u
n

)u
n

...

w
n

= (w
n

u
1

)u
1

+ · · ·+ (w
n

u
n

)u
n

) w
i

=
X

j

u
j

(u
j

w
i

)

As such, the matrix for the change of basis from T to R is given by

P = (P j

i

) = (u
j

w
i

).

Consider the product PP T in this case.

(PP T )j
k

=
X

i

(u
j

w
i

)(w
i

u
k

)

=
X

i

(uT

j

w
i

)(wT

i

u
k

)

= uT

j

"

X

i

(w
i

wT

i

)

#

u
k

= uT

j

I
n

u
k

(⇤)
= uT

j

u
k

= �
jk

.

The equality (⇤) is explained below. So assuming (⇤) holds, we have shown
that PP T = I

n

, which implies that

P T = P�1.

The equality in the line (⇤) says that
P

i

w
i

wT

i

= I
n

. To see this, we
examine

�

P

i

w
i

wT

i

�

v for an arbitrary vector v. We can find constants cj
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such that v =
P

j

cjw
j

, so that:

 

X

i

w
i

wT

i

!

v =

 

X

i

w
i

wT

i

! 

X

j

cjw
j

!

=
X

j

cj
X

i

w
i

wT

i

w
j

=
X

j

cj
X

i

w
i

�
ij

=
X

j

cjw
j

since all terms with i 6= j vanish

= v.

Then as a linear transformation,
P

i

w
i

wT

i

= I
n

fixes every vector, and thus
must be the identity I

n

.

Definition A matrix P is orthogonal if P�1 = P T .

Then to summarize,

Theorem 21.2. A change of basis matrix P relating two orthonormal bases
is an orthogonal matrix. I.e.,

P�1 = P T .

Reading homework: problem 21.2

Example Consider R3 with the orthonormal basis

S =

8

>

<

>

:

u

1

=

0

B

@

2p
6

1p
6

�1p
6

1

C

A

, u

2

=

0

B

@

0
1p
2

1p
2

1

C

A

, u

3

=

0

B

@

1p
3

�1p
3

1p
3

1

C

A

9

>

=

>

;

.

Let R be the standard basis {e
1

, e

2

, e

3

}. Since we are changing from the standard
basis to a new basis, then the columns of the change of basis matrix are exactly the
images of the standard basis vectors. Then the change of basis matrix from R to S is
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given by:

P = (P j

i

) = (e
j

u

i

) =

0

@

e

1

u

1

e

1

u

2

e

1

u

3

e

2

u

1

e

2

u

2

e

2

u

3

e

3

u

1

e

3

u

2

e

3

u

3

1

A

=
�

u

1

u

2

u

3

�

=

0

B

@

2p
6

0 1p
3

1p
6

1p
2

�1p
3

�1p
6

1p
2

1p
3

1

C

A

.

From our theorem, we observe that:

P

�1 = P

T =

0

@

u

T

1

u

T

2

u

T

3

1

A

=

0

B

@

2p
6

1p
6

�1p
6

0 1p
2

1p
2

1p
3

�1p
3

1p
3

1

C

A

.

We can check that P

T

P = I by a lengthy computation, or more simply, notice
that

(P T

P )
ij

=

0

@

u

T

1

u

T

2

u

T

3

1

A

�

u

1

u

2

u

3

�

=

0

@

1 0 0
0 1 0
0 0 1

1

A

.

We are using orthonormality of the u

i

for the matrix multiplication above. It is very
important to realize that the columns of an orthogonal matrix are made from an
orthonormal set of vectors.

Orthonormal Change of Basis and Diagonal Matrices. Suppose D is a diagonal
matrix, and we use an orthogonal matrix P to change to a new basis. Then the matrix
M of D in the new basis is:

M = PDP

�1 = PDP

T

.
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Now we calculate the transpose of M .

M

T = (PDP

T )T

= (P T )TDT

P

T

= PDP

T

= M

So we see the matrix PDP

T is symmetric!

References

He↵eron, Chapter Three, Section V: Change of Basis
Beezer, Chapter V, Section O, Subsection N
Beezer, Chapter VS, Section B, Subsection OBC
Wikipedia:

• Orthogonal Matrix

• Diagonalizable Matrix

• Similar Matrix

Review Problems

1. Let D =

✓

�
1

0
0 �

2

◆

.

(a) Write D in terms of the vectors e
1

and e
2

, and their transposes.

(b) Suppose P =

✓

a b
c d

◆

is invertible. Show that D is similar to

M =
1

ad� bc

✓

�
1

ad� �
2

bc �(�
1

� �
2

)ab

(�
1

� �
2

)cd ��
1

bc+ �
2

ad

◆

.

(c) Suppose the vectors
�

a b
�

and
�

c d
�

are orthogonal. What can
you say about M in this case? (Hint: think about what MT is
equal to.)
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2. Suppose S = {v
1

, . . . , v
n

} is an orthogonal (not orthonormal) basis
for Rn. Then we can write any vector v as v =

P

i

civ
i

for some
constants ci. Find a formula for the constants ci in terms of v and the
vectors in S.

Hint for 2

3. Let u, v be independent vectors in R3, and P = span{u, v} be the plane
spanned by u and v.

(a) Is the vector v? = v � u·v
u·uu in the plane P?

(b) What is the angle between v? and u?

(c) Given your solution to the above, how can you find a third vector
perpendicular to both u and v??

(d) Construct an orthonormal basis for R3 from u and v.

(e) Test your abstract formulae starting with

u =
�

1 2 0
�

and v =
�

0 1 1
�

.

Hint for 3
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22 Gram-Schmidt and Orthogonal Comple-
ments

Given a vector u and some other vector v not in the span of u, we can
construct a new vector:

v? = v � u · v
u · uu.

v
u

v?

u·v
u·u u = vk

This new vector v? is orthogonal to u because

u v? = u v � u · v
u · uu u = 0.

Hence, {u, v?} is an orthogonal basis for span{u, v}. When v is not par-

allel to u, v? 6= 0, and normalizing these vectors we obtain
n

u

|u| ,
v

?

|v?|

o

, an

orthonormal basis.
Sometimes we write v = v? + vk where:

v? = v � u · v
u · uu

vk =
u · v
u · uu.

This is called an orthogonal decomposition because we have decomposed v
into a sum of orthogonal vectors. It is significant that we wrote this decom-
position with u in mind; vk is parallel to u.

If u, v are linearly independent vectors in R3, then the set {u, v?, u⇥v?}
would be an orthogonal basis for R3. This set could then be normalized by
dividing each vector by its length to obtain an orthonormal basis.
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However, it often occurs that we are interested in vector spaces with di-
mension greater than 3, and must resort to craftier means than cross products
to obtain an orthogonal basis. 15

Given a third vector w, we should first check that w does not lie in the
span of u and v, i.e. check that u, v and w are linearly independent. We
then can define:

w? = w � u w

u u
u� v? w

v? v?
v?.

We can check that u w? and v? w? are both zero:

u w? = u

✓

w � u w

u u
u� v? w

v? v?
v?
◆

= u w � u w

u u
u u� v? w

v? v?
u v?

= u w � u w � v? w

v? v?
u v? = 0

since u is orthogonal to v?, and

v? w? = v?
✓

w � u w

u u
u� v? w

v? v?
v?
◆

= v? w � u w

u u
v? u� v? w

v? v?
v? v?

= v? w � u w

u u
v? u� v? w = 0

because u is orthogonal to v?. Since w? is orthogonal to both u and v?, we
have that {u, v?, w?} is an orthogonal basis for span{u, v, w}.

In fact, given a collection {x, v
2

, . . .} of linearly independent vectors, we
can produce an orthogonal basis for span{v

1

, v
2

, . . .} consisting of the follow-

15Actually, given a set T of (n � 1) independent vectors in n-space, one can define an
analogue of the cross product that will produce a vector orthogonal to the span of T , using
a method exactly analogous to the usual computation for calculating the cross product of
two vectors in R3. This only gets us the last orthogonal vector, though; the process in
this Section gives a way to get a full orthogonal basis.
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ing vectors:

v?
1

= v
1

v?
2

= v
2

� v?
1

· v
2

v?
1

· v?
1

v?
1

v?
3

= v
3

� v?
1

· v
3

v?
1

· v?
1

v?
1

� v?
2

· v
3

v?
2

· v?
2

v?
2

...

v?
i

= v
i

�
X

j<i

v?
j

· v
i

v?
j

· v?
j

v?
j

= v
i

� v?
1

· v
i

v?
1

· v?
1

v?
1

� · · ·� v?
n�1

· v
i

v?
n�1

· v?
n�1

v?
n�1

...

Notice that each v?
i

here depends on the existence of v?
j

for every j < i.
This allows us to inductively/algorithmically build up a linearly independent,
orthogonal set of vectors whose span is span{v

1

, v
2

, . . .}. This algorithm bears
the name Gram–Schmidt orthogonalization procedure.

Example Let u =
�

1 1 0
�

, v =
�

1 1 1
�

, and w =
�

3 1 1
�

. We’ll apply
Gram-Schmidt to obtain an orthogonal basis for R3.

First, we set u? = u. Then:

v

? =
�

1 1 1
�

� 2

2

�

1 1 0
�

=
�

0 0 1
�

w

? =
�

3 1 1
�

� 4

2

�

1 1 0
�

� 1

1

�

0 0 1
�

=
�

1 �1 0
�

.

Then the set
��

1 1 0
�

,

�

0 0 1
�

,

�

1 �1 0
� 

is an orthogonal basis for R3. To obtain an orthonormal basis, as always we simply
divide each of these vectors by its length, yielding:

n⇣

1p
2

1p
2

0
⌘

,

�

0 0 1
�

,

⇣

1p
2

�1p
2

0
⌘o

.

A 4⇥ 4 Gram Schmidt Example

183

http://math.ucdavis.edu/~linear/videos/gram_schimdt_and_orthogonal_complements_4by4_example.mp4


In Lecture 11 we learned how to solve linear systems by decomposing a
matrix M into a product of lower and upper triangular matrices

M = LU .

The Gram–Schmidt procedure suggests another matrix decomposition,

M = QR

where Q is an orthogonal matrix and R is an upper triangular matrix. So-
called QR-decompositions are useful for solving linear systems, eigenvalue
problems and least squares approximations. You can easily get the idea
behind QR decomposition by working through a simple example.

Example Find the QR decomposition of

M =

0

@

2 �1 1
1 3 �2
0 1 �2

1

A

.

What we will do is to think of the columns of M as three vectors and use Gram–
Schmidt to build an orthonormal basis from these that will become the columns of
the orthogonal matrix Q. We will use the matrix R to record the steps of the Gram–
Schmidt procedure in such a way that the product QR equals M .

To begin with we write

M =

0

B

@

2 �7

5

1

1 14

5

�2
0 1 �2

1

C

A

0

B

@

1 1

5

0

0 1 0

0 0 1

1

C

A

.

In the first matrix the first two columns are mutually orthogonal because we simpy
replaced the second column of M by the vector that the Gram–Schmidt procedure
produces from the first two columns of M , namely

0

B

@

�7

5

14

5

1

1

C

A

=

0

B

@

�1
3

1

1

C

A

� 1

5

0

B

@

2

1

0

1

C

A

.

The matrix on the right is almost the identity matrix, save the +1

5

in the second entry
of the first row, whose e↵ect upon multiplying the two matrices precisely undoes what
we we did to the second column of the first matrix.
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For the third column of M we use Gram–Schmidt to deduce the third orthogonal
vector

0

B

@

�1

6

1

3

�7

6

1

C

A

=

0

B

@

1

�2
�2

1

C

A

� 0.

0

B

@

2

1

0

1

C

A

� �9
54

5

0

B

@

�7

5

14

5

1

1

C

A

,

and therefore, using exactly the same procedure write

M =

0

B

@

2 �7

5

�1

6

1 14

5

1

3

0 1 �7

6

1

C

A

0

B

@

1 1

5

0

0 1 �5

6

0 0 1

1

C

A

.

This is not quite the answer because the first matrix is now made of mutually orthog-
onal column vectors, but a bona fide orthogonal matrix is comprised of orthonormal
vectors. To achieve that we divide each column of the first matrix by its length and
multiply the corresponding row of the second matrix by the same amount:

M =

0

B

B

B

@

2

p
5

5

�7

p
30

90

�
p
6

18

p
5

5

7

p
30

45

p
6

9

0
p
30

18

�7

p
6

18

1

C

C

C

A

0

B

B

B

@

p
5

p
5

5

0

0 3

p
30

5

�
p
30

2

0 0
p
6

2

1

C

C

C

A

= QR .

A nice check of this result is to verify that entry (i, j) of the matrix R equals the dot
product of the i-th column of Q with the j-th column of M . (Some people memorize
this fact and use it as a recipe for computing QR deompositions.) A good test of
your own understanding is to work out why this is true!

Another QR decomposition example

22.1 Orthogonal Complements

Let U and V be subspaces of a vector space W . We saw as a review exercise
that U \V is a subspace of W , and that U [V was not a subspace. However,
span(U[V ) is certainly a subspace, since the span of any subset is a subspace.

Notice that all elements of span(U [ V ) take the form u+ v with u 2 U
and v 2 V . We call the subspace

U + V = span(U [ V ) = {u+ v|u 2 U, v 2 V }

the sum of U and V . Here, we are not adding vectors, but vector spaces to
produce a new vector space!
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Definition Given two subspaces U and V of a space W such that U \ V =
{0

W

}, the direct sum of U and V is defined as:

U � V = span(U [ V ) = {u+ v|u 2 U, v 2 V }.

Notice that when U \ V = {0
W

}, U + V = U � V .
The direct sum has a very nice property.

Theorem 22.1. Let w = u+ v 2 U � V . Then the expression w = u+ v is
unique. That is, there is only one way to write w as the sum of a vector in
U and a vector in V .

Proof. Suppose that u+ v = u0 + v0, with u, u0 2 U , and v, v0 2 V . Then we
could express 0 = (u � u0) + (v � v0). Then (u � u0) = �(v � v0). Since U
and V are subspaces, we have (u � u0) 2 U and �(v � v0) 2 V . But since
these elements are equal, we also have (u�u0) 2 V . Since U \V = {0}, then
(u� u0) = 0. Similarly, (v � v0) = 0, proving the theorem.

Reading homework: problem 22.1

Given a subspace U in W , we would like to write W as the direct sum of
U and something. There is not a unique answer to this question as can be
seen from this picture of subspaces in W = R3:

However, using the inner product, there is a natural candidate U? for this
second subspace as shown here:
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The general definition is as follows:

Definition Given a subspace U of a vector space W , define:

U? = {w 2 W |w u = 0 for all u 2 U}.

The set U? (pronounced “U -perp”) is the set of all vectors in W orthogo-
nal to every vector in U . This is also often called the orthogonal complement
of U . Probably by now you may be feeling overwhelmed, it may help to
watch this quick overview video:

Overview

Example Consider any plane P through the origin in R3. Then P is a subspace, and
P

? is the line through the origin orthogonal to P . For example, if P is the xy-plane,
then

R3 = P � P

? = {(x, y, 0)|x, y 2 R}� {(0, 0, z)|z 2 R}.

Theorem 22.2. Let U be a subspace of a finite-dimensional vector space W .
Then the set U? is a subspace of W , and W = U � U?.

Proof. To see that U? is a subspace, we only need to check closure, which
requires a simple check.

We have U \ U? = {0}, since if u 2 U and u 2 U?, we have:

u u = 0, u = 0.
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Finally, we show that any vector w 2 W is in U � U?. (This is where
we use the assumption that W is finite-dimensional.) Let e

1

, . . . , e
n

be an
orthonormal basis for W . Set:

u = (w e
1

)e
1

+ · · ·+ (w e
n

)e
n

2 U

u? = w � u

It is easy to check that u? 2 U? (see the Gram-Schmidt procedure). Then
w = u+ u?, so w 2 U � U?, and we are done.

Reading homework: problem 22.2

Example Consider any line L through the origin in R4. Then L is a subspace, and L

?

is a 3-dimensional subspace orthogonal to L. For example, let L be the line spanned
by the vector (1, 1, 1, 1) 2 R4

. Then L

? is given by

L

? = {(x, y, z, w) | x, y, z, w 2 R and (x, y, z, w) (1, 1, 1, 1) = 0}
= {(x, y, z, w) | x, y, z, w 2 R and x, y, z, w = 0}.

It is easy to check that {v
1

= (1,�1, 0, 0), v
2

= (1, 0,�1, 0), v
3

= (1, 0, 0,�1)} forms
a basis for L?. We use Gram-Schmidt to find an orthogonal basis for L?:

First, we set v?
1

= v

1

. Then:

v

?
2

= (1, 0,�1, 0)� 1

2
(1,�1, 0, 0) =

✓

1

2
,

1

2
,�1, 0

◆

,

v

?
3

= (1, 0, 0,�1)� 1

2
(1,�1, 0, 0)� 1/2

3/2

✓

1

2
,

1

2
,�1, 0

◆

=

✓

1

3
,

1

3
,

1

3
,�1

◆

.

So the set
⇢

(1,�1, 0, 0),
✓

1

2
,

1

2
,�1, 0

◆

,

✓

1

3
,

1

3
,

1

3
,�1

◆�

is an orthogonal basis for L?. We find an orthonormal basis for L? by dividing each
basis vector by its length:

(

✓

1p
2
,� 1p

2
, 0, 0

◆

,

✓

1p
6
,

1p
6
,� 2p

6
, 0

◆

,

 p
3

6
,

p
3

6
,

p
3

6
,�
p
3

2

!)

.

Moreover, we have

R4 = L�L? = {(c, c, c, c) | c 2 R}�{(x, y, z, w) | x, y, z, w 2 R and x+y+z+w = 0}.

Notice that for any subspace U , the subspace (U?)? is just U again. As
such, ? is an involution on the set of subspaces of a vector space.
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References
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Wikipedia:

• Gram-Schmidt Process

• QR Decomposition
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Review Problems

1. Find the QR factorization of

M =

0

@

1 0 2
�1 2 0
�1 �2 2

1

A .

Hint

2. Suppose u and v are linearly independent. Show that u and v? are also
linearly independent. Explain why {u, v?} are a basis for span{u, v}.

3. Repeat the previous problem, but with three independent vectors u, v, w,
and v? and w? as defined in the lecture.

4. Given any three vectors u, v, w, when do v? or w? vanish?

5. For U a subspace of W , use the subspace theorem to check that U? is
a subspace of W .

6. This question will answer the question, “If I choose a bit vector at
random, what is the probability that it lies in the span of some other
vectors?”
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i. Given a collection S of k bit vectors in B3, consider the bit matrix
M whose columns are the vectors in S. Show that S is linearly
independent if and only if the kernel of M is trivial.

ii. Give some method for choosing a random bit vector v in B3. Sup-
pose S is a collection of 2 linearly independent bit vectors in B3.
How can we tell whether S [ {v} is linearly independent? Do you
think it is likely or unlikely that S [ {v} is linearly independent?
Explain your reasoning.

iii. If P is the characteristic polynomial of a 3 ⇥ 3 bit matrix, what
must the degree of P be? Given that each coe�cient must be
either 0 or 1, how many possibilities are there for P? How many
of these possible characteristic polynomials have 0 as a root? If M
is a 3⇥3 bit matrix chosen at random, what is the probability that
it has 0 as an eigenvalue? (Assume that you are choosing a random
matrix M in such a way as to make each characteristic polynomial
equally likely.) What is the probability that the columns of M
form a basis for B3? (Hint: what is the relationship between the
kernel of M and its eigenvalues?)

Note: We could ask the same question for real vectors: If I choose a real
vector at random, what is the probability that it lies in the span
of some other vectors? In fact, once we write down a reasonable
way of choosing a random real vector, if I choose a real vector in
Rn at random, the probability that it lies in the span of n � 1
other real vectors is 0!
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23 Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider the
shortest distance between pairs of important cities, we might get a table like
this:

Davis Seattle San Francisco
Davis 0 2000 80
Seattle 2000 0 2010

San Francisco 80 2010 0

Encoded as a matrix, we obtain:

M =

0

@

0 2000 80
2000 0 2010
80 2010 0

1

A = MT .

Definition A matrix is symmetric if it obeys

M = MT .

One very nice property of symmetric matrices is that they always have
real eigenvalues. The general proof is an exercise, but here’s an example for
2⇥ 2 matrices.

Example For a general symmetric 2⇥ 2 matrix, we have:

P

�

✓

a b

b d

◆

= det

✓

�� a �b
�b �� d

◆

= (�� a)(�� d)� b

2

= �

2 � (a+ d)�� b

2 + ad

) � =
a+ d

2
±

s

b

2 +

✓

a� d

2

◆

2

.

Notice that the discriminant 4b2 + (a� d)2 is always positive, so that the eigenvalues
must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues � 6= µ
and eigenvectors x and y:

Mx = �x, My = µy.
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Consider the dot product x y = xTy = yTx. And now calculate:

xTMy = xTµy = µx y, and

xTMy = (yTMx)T (by transposing a 1⇥ 1 matrix)

= xTMTy

= xTMy

= xT�y

= �x y.

Subtracting these two results tells us that:

0 = xTMy � xTMy = (µ� �) x y.

Since µ and � were assumed to be distinct eigenvalues, � � µ is non-zero,
and so x y = 0. Then we have proved the following theorem.

Theorem 23.1. Eigenvectors of a symmetric matrix with distinct eigenval-
ues are orthogonal.

Reading homework: problem 23.1

Example The matrix M =

✓

2 1
1 2

◆

has eigenvalues determined by

det(M � �) = (2� �)2 � 1 = 0.

Then the eigenvalues of M are 3 and 1, and the associated eigenvectors turn out to

be

✓

1
1

◆

and

✓

1
�1

◆

. It is easily seen that these eigenvectors are orthogonal:

✓

1
1

◆ ✓

1
�1

◆

= 0

In Lecture 21 we saw that the matrix P built from orthonormal basis
vectors {v

1

, . . . , v
n

}
P =

�

v
1

· · · v
n

�

was an orthogonal matrix:

P�1 = P T , or PP T = I = P TP.
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Moreover, given any (unit) vector x
1

, one can always find vectors x
2

, . . . , x
n

such that {x
1

, . . . , x
n

} is an orthonormal basis. (Such a basis can be obtained
using the Gram-Schmidt procedure.)

Now suppose M is a symmetric n⇥n matrix and �
1

is an eigenvalue with
eigenvector x

1

. Let the square matrix of column vectors P be the following:

P =
�

x
1

x
2

· · · x
n

�

,

where x
1

through x
n

are orthonormal, and x
1

is an eigenvector for M , but
the others are not necessarily eigenvectors for M . Then

MP =
�

�
1

x
1

Mx
2

· · · Mx
n

�

.

But P is an orthogonal matrix, so P�1 = P T . Then:

P�1 = P T =

0

B

@

xT

1

...
xT

n

1

C

A

) P TMP =

0

B

B

B

@

xT

1

�
1

x
1

⇤ · · · ⇤
xT

2

�
1

x
1

⇤ · · · ⇤
...

...
xT

n

�
1

x
1

⇤ · · · ⇤

1

C

C

C

A

=

0

B

B

B

@

�
1

⇤ · · · ⇤
0 ⇤ · · · ⇤
... ⇤ ...
0 ⇤ · · · ⇤

1

C

C

C

A

=

0

B

B

B

@

�
1

0 · · · 0
0
... M̂
0

1

C

C

C

A

The last equality follows since P TMP is symmetric. The asterisks in the
matrix are where “stu↵” happens; this extra information is denoted by M̂
in the final equation. We know nothing about M̂ except that it is an (n �
1)⇥ (n� 1) matrix and that it is symmetric. But then, by finding an (unit)
eigenvector for M̂ , we could repeat this procedure successively. The end
result would be a diagonal matrix with eigenvalues of M on the diagonal.
Then we have proved a theorem.
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Theorem 23.2. Every symmetric matrix is similar to a diagonal matrix of
its eigenvalues. In other words,

M = MT )M = PDP T

where P is an orthogonal matrix and D is a diagonal matrix whose entries
are the eigenvalues of M .

Reading homework: problem 23.2

To diagonalize a real symmetric matrix, begin by building an orthogonal
matrix from an orthonormal basis of eigenvectors.

Example The symmetric matrix M =

✓

2 1
1 2

◆

has eigenvalues 3 and 1 with eigen-

vectors

✓

1
1

◆

and

✓

1
�1

◆

respectively. From these eigenvectors, we normalize and build

the orthogonal matrix:

P =

 

1p
2

1p
2

1p
2

�1p
2

!

Notice that P T

P = I

2

. Then:

MP =

 

3p
2

1p
2

3p
2

�1p
2

!

=

 

1p
2

1p
2

1p
2

�1p
2

!

✓

3 0
0 1

◆

.

In short, MP = DP , so D = P

T

MP . Then D is the diagonalized form of M

and P the associated change-of-basis matrix from the standard basis to the basis of
eigenvectors.

3⇥ 3 Example

References

He↵eron, Chapter Three, Section V: Change of Basis
Beezer, Chapter E, Section PEE, Subsection EHM
Beezer, Chapter E, Section SD, Subsection D
Wikipedia:

• Symmetric Matrix

• Diagonalizable Matrix

• Similar Matrix
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Review Problems

1. (On Reality of Eigenvalues)

(a) Suppose z = x + iy where x, y 2 R, i =
p
�1, and z = x � iy.

Compute zz and zz in terms of x and y. What kind of numbers
are zz and zz? (The complex number z is called the complex
conjugate of z).

(b) Suppose that � = x+ iy is a complex number with x, y 2 R, and
that � = �. Does this determine the value of x or y? What kind
of number must � be?

(c) Let x =

0

B

@

z1
...
zn

1

C

A

2 Cn. Let x† =
�

z1 · · · zn
�

2 Cn (a 1 ⇥ n

complex matrix or a row vector). Compute x†x. Using the result
of part 1a, what can you say about the number x†x? (E.g., is it
real, imaginary, positive, negative, etc.)

(d) Suppose M = MT is an n⇥n symmetric matrix with real entries.
Let � be an eigenvalue of M with eigenvector x, so Mx = �x.
Compute:

x†Mx

x†x

(e) Suppose ⇤ is a 1⇥ 1 matrix. What is ⇤T ?

(f) What is the size of the matrix x†Mx?

(g) For any matrix (or vector) N , we can compute N by applying
complex conjugation to each entry of N . Compute (x†)T . Then
compute (x†Mx)T . Note that for matrices AB + C = AB + C.

(h) Show that � = �. Using the result of a previous part of this
problem, what does this say about �?

Problem 1 hint

2. Let x
1

=

0

@

a
b
c

1

A, where a2 + b2 + c2 = 1. Find vectors x
2

and x
3

such

that {x
1

, x
2

, x
3

} is an orthonormal basis for R3.

195

http://math.ucdavis.edu/~linear/videos/diagonalizing_symmetric_matrices_hint.mp4


3. (Dimensions of Eigenspaces)

(a) Let A =

0

@

4 0 0
0 2 �2
0 �2 2

1

A . Find all eigenvalues of A.

(b) Find a basis for each eigenspace of A. What is the sum of the
dimensions of the eigenspaces of A?

(c) Based on your answer to the previous part, guess a formula for the
sum of the dimensions of the eigenspaces of a real n⇥n symmetric
matrix. Explain why your formula must work for any real n ⇥ n
symmetric matrix.
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24 Kernel, Range, Nullity, Rank

Given a linear transformation L : V ! W , we would like to know whether
it has an inverse. That is, we would like to know whether there exists a
linear transformation M : W ! V such that for any vector v 2 V , we have
M(L(v)) = v, and for any vector w 2 W , we have L(M(w)) = w. A linear
transformation is just a special kind of function from one vector space to
another. So before we discuss which linear transformations have inverses, let
us first discuss inverses of arbitrary functions. When we later specialize to
linear transformations, we’ll also find some nice ways of creating subspaces.

Let f : S ! T be a function from a set S to a set T . Recall that S is
called the domain of f , T is called the codomain of f , and the set

ran(f) = im(f) = f(S) = {f(s)|s 2 S} ⇢ T

is called the range or image of f . The image of f is the set of elements of T
to which the function f maps, i.e., the things in T which you can get to by
starting in S and applying f . We can also talk about the pre-image of any
subset U ⇢ T :

f�1(U) = {s 2 S|f(s) 2 U} ⇢ S.

The pre-image of a set U is the set of all elements of S which map to U .
The function f is one-to-one if di↵erent elements in S always map to

di↵erent elements in T . That is, f is one-to-one if for any elements x 6= y 2 S,
we have that f(x) 6= f(y). One-to-one functions are also called injective
functions. Notice that injectivity is a condition on the pre-image of f .

The function f is onto if every element of T is mapped to by some element
of S. That is, f is onto if for any t 2 T , there exists some s 2 S such that
f(s) = t. Onto functions are also called surjective functions. Notice that
surjectivity is a condition on the image of f .

If f is both injective and surjective, it is bijective.

Theorem 24.1. A function f : S ! T has an inverse function g : T ! S if
and only if it is bijective.

Proof. Suppose that f is bijective. Since f is surjective, every element t 2 T
has at least one pre-image, and since f is injective, every t has no more
than one pre-image. Therefore, to construct an inverse function g, we simply
define g(t) to be the unique pre-image f�1(t) of t.

Conversely, suppose that f has an inverse function g.
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• The function f is injective:

Suppose that we have x, y 2 S such that f(x) = f(y). We must have
that g(f(s)) = s for any s 2 S, so in particular g(f(x)) = x and
g(f(y)) = y. But since f(x) = f(y), we have g(f(x)) = g(f(y)) so
x = y. Therefore, f is injective.

• The function f is surjective:

Let t be any element of T . We must have that f(g(t)) = t. Thus, g(t)
is an element of S which maps to t. So f is surjective.

Now let us restrict to the case that our function f is not just an arbitrary
function, but a linear transformation between two vector spaces. Everything
we said above for arbitrary functions is exactly the same for linear trans-
formations. However, the linear structure of vector spaces lets us say much
more about one-to-one and onto functions than we can say about functions
on general sets. For example, we always know that a linear function sends 0

V

to 0
W

. You will show that a linear transformation is one-to-one if and only if
0
V

is the only vector that is sent to 0
W

: by looking at just one (very special)
vector, we can figure out whether f is one-to-one. For arbitrary functions
between arbitrary sets, things aren’t nearly so convenient!

Let L : V ! W be a linear transformation. Suppose L is not injective.
Then we can find v

1

6= v
2

such that Lv
1

= Lv
2

. Then v
1

� v
2

6= 0, but

L(v
1

� v
2

) = 0.

Definition Let L : V ! W be a linear transformation. The set of all vectors
v such that Lv = 0

W

is called the kernel of L:

kerL = {v 2 V |Lv = 0
W

}.

Theorem 24.2. A linear transformation L is injective if and only if

kerL = {0
V

} .

Proof. The proof of this theorem is an exercise.

Notice that if L has matrix M in some basis, then finding the kernel of
L is equivalent to solving the homogeneous system

MX = 0.
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Example Let L(x, y) = (x+ y, x+ 2y, y). Is L one-to-one?
To find out, we can solve the linear system:

0

@

1 1 0
1 2 0
0 1 0

1

A ⇠

0

@

1 0 0
0 1 0
0 0 0

1

A

.

Then all solutions of MX = 0 are of the form x = y = 0. In other words, kerL = 0,
and so L is injective.

Reading homework: problem 24.1

Theorem 24.3. Let L : V ! W . Then kerL is a subspace of V .

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d,
L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace
of V .

This theorem has an interpretation in terms of the eigenspaces of L : V !
V . Suppose L has a zero eigenvalue. Then the associated eigenspace consists
of all vectors v such that Lv = 0v = 0; in other words, the 0-eigenspace of L
is exactly the kernel of L.

Returning to the previous example, let L(x, y) = (x + y, x + 2y, y). L is
clearly not surjective, since L sends R2 to a plane in R3.

Example Let L : R3 ! R be the linear transformation defined by L(x, y, z) = (x +
y + z). Then kerL consists of all vectors (x, y, z) 2 R3 such that x + y + z = 0.
Therefore, the set

V = {(x, y, z) 2 R3 | x+ y + z = 0}
is a subspace of R3.

Notice that if x = L(v) and y = L(u), then for any constants c, d, cx +
dy = L(cv + du). Now the subspace theorem strikes again, and we have the
following theorem.

Theorem 24.4. Let L : V ! W . Then the image L(V ) is a subspace of W .

To find a basis of the image of L, we can start with a basis S = {v
1

, . . . , v
n

}
for V , and conclude (see the Review Exercises) that

L(V ) = spanL(S) = span{L(v
1

), . . . , L(v
n

)}.
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However, the set {L(v
1

), . . . , L(v
n

)} may not be linearly independent, so we
solve

c1L(v
1

) + · · ·+ cnL(v
n

) = 0.

By finding relations amongst L(S), we can discard vectors until a basis is
arrived at. The size of this basis is the dimension of the image of L, which
is known as the rank of L.

Definition The rank of a linear transformation L is the dimension of its
image, written rankL = dimL(V ) = dim ran L.

The nullity of a linear transformation is the dimension of the kernel,
written nullL = dimkerL.

Theorem 24.5 (Dimension Formula). Let L : V ! W be a linear transfor-
mation, with V a finite-dimensional vector space16. Then:

dimV = dimkerV + dimL(V )

= nullL+ rankL.

Proof. Pick a basis for V :

{v
1

, . . . , v
p

, u
1

, . . . , u
q

},

where v
1

, . . . , v
p

is also a basis for kerL. This can always be done, for exam-
ple, by finding a basis for the kernel of L and then extending to a basis for V .
Then p = nullL and p+ q = dimV . Then we need to show that q = rankL.
To accomplish this, we show that {L(u

1

), . . . , L(u
q

)} is a basis for L(V ).
To see that {L(u

1

), . . . , L(u
q

)} spans L(V ), consider any vector w in L(V ).
Then we can find constants ci, dj such that:

w = L(c1v
1

+ · · ·+ cpv
p

+ d1u
1

+ · · ·+ dqu
q

)

= c1L(v
1

) + · · ·+ cpL(v
p

) + d1L(u
1

) + · · ·+ dqL(u
q

)

= d1L(u
1

) + · · ·+ dqL(u
q

) since L(v
i

) = 0,

) L(V ) = span{L(u
1

), . . . , L(u
q

)}.
16The formula still makes sense for infinite dimensional vector spaces, such as the space

of all polynomials, but the notion of a basis for an infinite dimensional space is more
sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite
dimensional vector spaces isn’t useful for computing the rank of a linear transformation,
since an equation like 1 = 1 + x cannot be solved for x. As such, the proof presented
assumes a finite basis for V .
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Now we show that {L(u
1

), . . . , L(u
q

)} is linearly independent. We argue
by contradiction: Suppose there exist constants dj (not all zero) such that

0 = d1L(u
1

) + · · ·+ dqL(u
q

)

= L(d1u
1

+ · · ·+ dqu
q

).

But since the uj are linearly independent, then d1u
1

+ · · · + dqu
q

6= 0, and
so d1u

1

+ · · · + dqu
q

is in the kernel of L. But then d1u
1

+ · · · + dqu
q

must
be in the span of {v

1

, . . . , v
p

}, since this was a basis for the kernel. This
contradicts the assumption that {v

1

, . . . , v
p

, u
1

, . . . , u
q

} was a basis for V , so
we are done.

Reading homework: problem 24.2

24.1 Summary

We have seen that a linear transformation has an inverse if and only if it is
bijective (i.e., one-to-one and onto). We also know that linear transforma-
tions can be represented by matrices, and we have seen many ways to tell
whether a matrix is invertible. Here is a list of them.
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Theorem 24.6 (Invertibility). Let M be an n⇥ n matrix, and let L : Rn !
Rn be the linear transformation defined by L(v) = Mv. Then the following
statements are equivalent:

1. If V is any vector in Rn, then the system MX = V has exactly one
solution.

2. The matrix M is row-equivalent to the identity matrix.

3. If v is any vector in Rn, then L(x) = v has exactly one solution.

4. The matrix M is invertible.

5. The homogeneous system MX = 0 has no non-zero solutions.

6. The determinant of M is not equal to 0.

7. The transpose matrix MT is invertible.

8. The matrix M does not have 0 as an eigenvalue.

9. The linear transformation L does not have 0 as an eigenvalue.

10. The characteristic polynomial det(�I �M) does not have 0 as a root.

11. The columns (or rows) of M span Rn.

12. The columns (or rows) of M are linearly independent.

13. The columns (or rows) of M are a basis for Rn.

14. The linear transformation L is injective.

15. The linear transformation L is surjective.

16. The linear transformation L is bijective.

Note: it is important that M be an n ⇥ n matrix! If M is not square,
then it can’t be invertible, and many of the statements above are no longer
equivalent to each other.

Proof. Many of these equivalences were proved earlier in these notes. Some
were left as review questions or sample final questions. The rest are left as
exercises for the reader.
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Discussion on Theorem 24.6.

References

He↵eron, Chapter Three, Section II.2: Rangespace and Nullspace (Recall
that “homomorphism” is is used instead of “linear transformation” in Hef-
feron.)
Beezer, Chapter LT, Sections ILT-IVLT
Wikipedia:

• Rank

• Dimension Theorem

• Kernel of a Linear Operator

Review Problems

1. Let L : V ! W be a linear transformation. Show that kerL = {0
V

} if
and only if L is one-to-one:

(a) First, suppose that kerL = {0
V

}. Show that L is one-to-one.
Think about methods of proof–does a proof by contradiction, a
proof by induction, or a direct proof seem most appropriate?

(b) Now, suppose that L is one-to-one. Show that kerL = {0
V

}. That
is, show that 0

V

is in kerL, and then show that there are no other
vectors in kerL.

Hint for 1

2. Let {v
1

, . . . , v
n

} be a basis for V . Explain why

L(V ) = span{L(v
1

), . . . , L(v
n

)}.
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3. Suppose L : R4 ! R3 whose matrix M in the standard basis is row
equivalent to the following matrix:

0

@

1 0 0 �1
0 1 0 1
0 0 1 1

1

A .

Explain why the first three columns of the original matrix M form a
basis for L(R4).
Find and describe and algorithm (i.e. a general procedure) for finding
a basis for L(Rn) when L : Rn ! Rm.
Finally, use your algorithm to find a basis for L(R4) when L : R4 ! R3

is the linear transformation whose matrix M in the standard basis is
0

@

2 1 1 4
0 1 0 5
4 1 1 6

1

A .

4. Claim: If {v
1

, . . . , v
n

} is a basis for kerL, where L : V ! W , then it is
always possible to extend this set to a basis for V .

Choose a simple yet non-trivial linear transformation with a non-trivial
kernel and verify the above claim for the transformation you choose.

5. Let P
n

(x) be the space of polynomials in x of degree less than or equal
to n, and consider the derivative operator @

@x

. Find the dimension of
the kernel and image of @

@x

.

Now, consider P
2

(x, y), the space of polynomials of degree two or less
in x and y. (Recall that xy is degree two, y is degree one and x2y is
degree three, for example.) Let L = @

@x

+ @

@y

. (For example, L(xy) =
@

@x

(xy) + @

@y

(xy) = y + x.) Find a basis for the kernel of L. Verify the
dimension formula in this case.

6. (Extra credit) We will show some ways the dimension formula can break
down with the vector space is infinite dimensional.

(a) Let R[x] be the vector space of all polynomials with coe�cients in
R in the variable x. Let D = d

dx

be the usual derivative operator.
Show that the range of D is R[x]. What is kerD?

Hint: Use the basis {xn | n 2 N}.
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(b) Consider R[x] and letM : R[x]! R[x] be the linear mapM(p(x)) =
xp(x) which multiplies by x. What is the kernel and range of M?

(c) Let `1 be the vector space of all absolutely convergent sequences
s = {s

i

}. Define the map P : `1 ! `1 by

s
i

7!
(

s
i

if i is even

0 if i is odd,

and for example

P ((1, 0, 0, . . .)) = (0, 0, 0, . . .), P ((0, 1, 0, . . .)) = (0, 1, 0, . . .).

Show that P is linear, is a projection (i.e. P 2 = P ), has infinite
kernel, and has infinite range.

Hint: Define e
i

as the sequence with a 1 in the i-th position and 0
everywhere else which you can think of as a standard basis vector.
What is P (e

i

) when i is even? When i is odd?

(d) Let V be an infinite dimensional vector space and L : V ! V be a
linear operator. Suppose that dim kerL <1, show that dimL(V )
is infinite. Also show when dimL(V ) < 1 that dimkerL is infi-
nite.
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25 Least Squares

Consider the linear system L(x) = v, where L : U
linear�! W , and v 2 W

is given. As we have seen, this system may have no solutions, a unique
solution, or a space of solutions. But if v is not in the range of L then there
will never be any solutions for L(x) = v.

However, for many applications we do not need a exact solution of the
system; instead, we try to find the best approximation possible. To do this,
we try to find x that minimizes ||L(x)� v||.

“My work always tried to unite the Truth with the Beautiful,
but when I had to choose one or the other, I usually chose the
Beautiful.”

– Hermann Weyl.

This method has many applications, such as when trying to fit a (perhaps
linear) function to a “noisy” set of observations. For example, suppose we
measured the position of a bicycle on a racetrack once every five seconds.
Our observations won’t be exact, but so long as the observations are right on
average, we can figure out a best-possible linear function of position of the
bicycle in terms of time.

Suppose M is the matrix for L in some bases for U and W , and v and x
are given by column vectors V and X in these bases. Then we need to
approximate

MX � V ⇡ 0 .

Note that if dimU = n and dimW = m then M can be represented by
an m ⇥ n matrix and x and v as vectors in Rn and Rm, respectively. Thus,
we can write W = L(U)� L(U)?. Then we can uniquely write v = vk + v?,
with vk 2 L(U) and v? 2 L(U)?.

Then we should solve L(u) = vk. In components, v? is just V �MX,
and is the part we will eventually wish to minimize.

In terms of M , recall that L(V ) is spanned by the columns of M . (In
the natural basis, the columns of M are Me

1

, . . ., Me
n

.) Then v? must be
perpendicular to the columns of M . i.e., MT (V �MX) = 0, or

MTMX = MTV.

Solutions X to MTMX = MTV are called least squares solutions to
MX = V .
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Notice that any solution X to MX = V is a least squares solution.
However, the converse is often false. In fact, the equationMX = V may have
no solutions at all, but still have least squares solutions to MTMX = MTV .

Observe that since M is an m⇥ n matrix, then MT is an n⇥m matrix.
Then MTM is an n⇥ n matrix, and is symmetric, since (MTM)T = MTM .
Then, for any vector X, we can evaluate XTMTMX to obtain a num-
ber. This is a very nice number, though! It is just the length |MX|2 =
(MX)T (MX) = XTMTMX.

Reading homework: problem 25.1

Now suppose that kerL = {0}, so that the only solution to MX = 0 is
X = 0. (This need not mean that M is invertible because M is an n ⇥ m
matrix, so not necessarily square.) However the square matrix MTM is
invertible. To see this, suppose there was a vector X such that MTMX = 0.
Then it would follow that XTMTMX = |MX|2 = 0. In other words the
vector MX would have zero length, so could only be the zero vector. But we
are assuming that kerL = {0} so MX = 0 implies X = 0. Thus the kernel
of MTM is {0} so this matrix is invertible. So, in this case, the least squares
solution (the X that solves MTMX = MV ) is unique, and is equal to

X = (MTM)�1MTV.

In a nutshell, this is the least squares method.

• Compute MTM and MTV .

• Solve (MTM)X = MTV by Gaussian elimination.

Example Captain Conundrum falls o↵ of the leaning tower of Pisa and makes three
(rather shaky) measurements of his velocity at three di↵erent times.

t s v m/s
1 11
2 19
3 31
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Having taken some calculus17, he believes that his data are best approximated by
a straight line

v = at+ b.

Then he should find a and b to best fit the data.

11 = a · 1 + b

19 = a · 2 + b

31 = a · 3 + b.

As a system of linear equations, this becomes:

0

@

1 1
2 1
3 1

1

A

✓

a

b

◆

?

=

0

@

11
19
31

1

A

.

There is likely no actual straight line solution, so instead solve M

T

MX = M

T

V .

✓

1 2 3
1 1 1

◆

0

@

1 1
2 1
3 1

1

A

✓

a

b

◆

=

✓

1 2 3
1 1 1

◆

0

@

11
19
31

1

A

.

This simplifies to the system:

✓

14 6 142
6 3 61

◆

⇠
✓

1 0 10
0 1 1

3

◆

.

Then the least-squares fit is the line

v = 10 t+
1

3
.

Notice that this equation implies that Captain Conundrum accelerates towards Italian
soil at 10 m/s2 (which is an excellent approximation to reality) and that he started at
a downward velocity of 1

3

m/s (perhaps somebody gave him a shove...)!

17In fact, he is a Calculus Superhero.
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Congratulations, you have reached the end of the notes!

Now test your skills on the sample final exam.

References

He↵eron, Chapter Three, Section VI.2: Gram-Schmidt Orthogonalization
Beezer, Part A, Section CF, Subsection DF
Wikipedia:

• Linear Least Squares

• Least Squares

Review Problems

1. Let L : U ! V be a linear transformation. Suppose v 2 L(U) and you
have found a vector u

ps

that obeys L(u
ps

) = v.

Explain why you need to compute kerL to describe the solution space
of the linear system L(u) = v.

Hint for Problem 1

2. Suppose that M is an m⇥ n matrix with trivial kernel. Show that for
any vectors u and v in Rm:

• uTMTMv = vTMTMu.

• vTMTMv � 0. In case you are concerned (you don’t need to be)
and for future reference, the notation v � 0 means each entry
vi � 0.
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• If vTMTMv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)

Hint for Problem 2
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A Sample Midterm I Problems and Solutions

1. Solve the following linear system. Write the solution set in vector
form. Check your solution. Write one particular solution and one
homogeneous solution, if they exist. What does the solution set look
like geometrically?

x + 3y = 4

x � 2y + z = 1

2x + y + z = 5

2. Consider the system
8

>

>

>

>

>

<

>

>

>

>

>

:

x � z + 2w = �1
x + y + z � w = 2

� y � 2z + 3w = �3
5x + 2y � z + 4w = 1

(a) Write an augmented matrix for this system.

(b) Use elementary row operations to find its reduced row echelon
form.

(c) Write the solution set for the system in the form

S = {X
0

+
X

i

µ
i

Y
i

: µ
i

2 R}.

(d) What are the vectors X
0

and Y
i

called and which matrix equations
do they solve?

(e) Check separately that X
0

and each Y
i

solve the matrix systems
you claimed they solved in part (d).

3. Use row operations to invert the matrix
0

B

B

@

1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50

1

C

C

A
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4. Let M =

✓

2 1
3 �1

◆

. Calculate MTM�1. Is M symmetric? What is

the trace of the transpose of f(M), where f(x) = x2 � 1?

5. In this problem M is the matrix

M =

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

and X is the vector

X =

✓

x
y

◆

.

Calculate all possible dot products between the vectors X and MX.
Compute the lengths of X and MX. What is the angle between the
vectors MX and X. Draw a picture of these vectors in the plane. For
what values of ✓ do you expect equality in the triangle and Cauchy–
Schwartz inequalities?

6. Let M be the matrix
0

B

B

B

B

B

B

@

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

C

A

Find a formula for Mk for any positive integer power k. Try some
simple examples like k = 2, 3 if confused.

7. Determinants: The determinant detM of a 2⇥ 2 matrix M =

✓

a b
c d

◆

is defined by
detM = ad� bc .

(a) For which values of detM does M have an inverse?

(b) Write down all 2⇥2 bit matrices with determinant 1. (Remember
bits are either 0 or 1 and 1 + 1 = 0.)

(c) Write down all 2⇥ 2 bit matrices with determinant 0.
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(d) Use one of the above examples to show why the following state-
ment is FALSE.

Square matrices with the same determinant are always
row equivalent.

8. What does it mean for a function to be linear? Check that integration is
a linear function from V to V , where V = {f : R! R | f is integrable}
is a vector space over R with usual addition and scalar multiplication.

9. What are the four main things we need to define for a vector space?
Which of the following is a vector space over R? For those that are
not vector spaces, modify one part of the definition to make it into a
vector space.

(a) V = { 2⇥ 2 matrices with entries in R}, usual matrix addition,

and k ·
✓

a b
c d

◆

=

✓

ka b
kc d

◆

for k 2 R.

(b) V = {polynomials with complex coe�cients of degree  3}, with
usual addition and scalar multiplication of polynomials.

(c) V = {vectors in R3 with at least one entry containing a 1}, with
usual addition and scalar multiplication.

10. Subspaces: If V is a vector space, we say that U is a subspace of V when
the set U is also a vector space, using the vector addition and scalar
multiplication rules of the vector space V . (Remember that U ⇢ V
says that “U is a subset of V ”, i.e., all elements of U are also elements
of V . The symbol 8 means “for all” and 2 means “is an element of”.)

Explain why additive closure (u+w 2 U 8 u, v 2 U) and multiplicative
closure (r.u 2 U 8 r 2 R, u 2 V ) ensure that (i) the zero vector 0 2 U
and (ii) every u 2 U has an additive inverse.

In fact it su�ces to check closure under addition and scalar multipli-
cation to verify that U is a vector space. Check whether the following
choices of U are vector spaces:

(a) U =

8

<

:

0

@

x
y
0

1

A : x, y 2 R

9

=

;
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(b) U =

8

<

:

0

@

1
0
z

1

A : z 2 R

9

=

;

Solutions

1. As an additional exercise, write out the row operations above the ⇠
signs below:
0

B

@

1 3 0 4

1 �2 1 1

2 1 1 5

1

C

A

⇠

0

B

@

1 3 0 4

0 �5 1 �3
0 �5 1 �3

1

C

A

⇠

0

B

@

1 0 3

5

11

5

0 1 �1

5

3

5

0 0 0 0

1

C

A

Solution set
8

<

:

0

@

x
y
z

1

A =

0

@

11

5

3

5

0

1

A+ µ

0

@

�3

5

1

5

1

1

A : µ 2 R

9

=

;

Geometrically this represents a line in R3 through the point

0

@

11

5

3

5

0

1

A and

running parallel to the vector

0

@

�3

5

1

5

1

1

A.

A particular solution is

0

@

11

5

3

5

0

1

A and a homogeneous solution is

0

@

�3

5

1

5

1

1

A.

As a double check note that
0

@

1 3 0
1 �2 1
2 1 1

1

A

0

@

11

5

3

5

0

1

A =

0

@

4
1
5

1

A and

0

@

1 3 0
1 �2 1
2 1 1

1

A

0

@

�3

5

1

5

1

1

A =

0

@

0
0
0

1

A .

2. (a) Again, write out the row operations as an additional exercise.
0

B

B

B

@

1 0 �1 2 �1
1 1 1 �1 2

0 �1 �2 3 �3
5 2 �1 4 1

1

C

C

C

A
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(b)

⇠

0

B

B

B

@

1 0 �1 2 �1
0 1 2 �3 3

0 �1 �2 3 �3
0 2 4 �6 6

1

C

C

C

A

⇠

0

B

B

B

@

1 0 �1 2 �1
0 1 2 �3 3

0 0 0 0 0

0 0 0 0 0

1

C

C

C

A

(c) Solution set
8

>

>

<

>

>

:

X =

0

B

B

@

�1
3
0
0

1

C

C

A

+ µ
1

0

B

B

@

1
�2
1
0

1

C

C

A

+ µ
2

0

B

B

@

�2
3
0
1

1

C

C

A

: µ
1

, µ
2

2 R

9

>

>

=

>

>

;

.

(d) The vector X
0

=

0

B

B

@

�1
3
0
0

1

C

C

A

is a particular solution and the vectors

Y
1

=

0

B

B

@

1
�2
1
0

1

C

C

A

and Y
2

=

0

B

B

@

�2
3
0
1

1

C

C

A

are homogeneous solutions. Calling

M =

0

B

B

@

1 0 �1 2
1 1 1 �1
0 �1 �2 3
5 2 �1 4

1

C

C

A

and V =

0

B

B

@

�1
2
�3
1

1

C

C

A

, they obey

MX = V , MY
1

= 0 = MY
2

.

(e) This amounts to performing explicitly the matrix manipulations
MX�V , MY

1

, MY
2

and checking they all return the zero vector.

3. As usual, be sure to write out the row operations above the ⇠’s so your
work can be easily checked.

0

B

B

@

1 2 3 4 1 0 0 0
2 4 7 11 0 1 0 0
3 7 14 25 0 0 1 0
4 11 25 50 0 0 0 1

1

C

C

A
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⇠

0

B

B

@

1 2 3 4 1 0 0 0
0 0 1 3 �2 1 0 0
0 1 5 13 �3 0 1 0
0 3 13 34 �4 0 0 1

1

C

C

A

⇠

0

B

B

@

1 0 �7 �22 7 0 �2 0
0 1 5 13 �3 0 1 0
0 0 1 3 �2 1 0 0
0 0 �2 �5 5 0 �3 1

1

C

C

A

⇠

0

B

B

@

1 0 0 �1 �7 7 �2 0
0 1 0 �2 7 �5 1 0
0 0 1 3 �2 1 0 0
0 0 0 1 1 2 �3 1

1

C

C

A

⇠

0

B

B

@

1 0 0 0 �6 9 �5 1
0 1 0 0 9 �1 �5 2
0 0 1 0 �5 �5 9 �3
0 0 0 1 1 2 �3 1

1

C

C

A

.

Check
0

B

B

@

1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50

1

C

C

A

0

B

B

@

�6 9 �5 1
9 �1 �5 2
�5 �5 9 �3
1 2 �3 1

1

C

C

A

=

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

.

4.

MTM�1 =

✓

2 3
1 �1

◆✓

1

5

1

5

3

5

�2

5

◆

=

✓

11

5

�4

5

�2

5

3

5

◆

.

Since MTM�1 6= I, it follows MT 6= M so M is not symmetric. Finally

trf(M)T = trf(M) = tr(M2 � I) = tr

✓

2 1
3 �1

◆✓

2 1
3 �1

◆

� trI

= (2 · 2 + 1 · 3) + (3 · 1 + (�1) · (�1))� 2 = 9 .

5. First

X (MX) = XTMX =
�

x y
�

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓

x
y

◆
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=
�

x y
�

✓

x cos ✓ + y sin ✓
�x sin ✓ + y cos ✓

◆

= (x2 + y2) cos ✓ .

Now ||X|| =
p
X X =

p

x2 + y2 and (MX) (MX) = XMTMX.
But

MTM =

✓

cos ✓ � sin ✓
sin ✓ cos ✓

◆✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

=

✓

cos2 ✓ + sin2 ✓ 0
0 cos2 ✓ + sin2 ✓

◆

= I .

Hence ||MX|| = ||X|| =
p

x2 + y2. Thus the cosine of the angle be-
tween X and MX is given by

X (MX)

||X|| ||MX|| =
(x2 + y2) cos ✓

p

x2 + y2
p

x2 + y2
= cos ✓ .

In other words, the angle is ✓ OR �✓. You should draw two pictures,
one where the angle between X and MX is ✓, the other where it is �✓.
For Cauchy–Schwartz, |X (MX)|

||X|| ||MX|| = | cos ✓| = 1 when ✓ = 0, ⇡. For the

triangle equality MX = X achieves ||X + MX|| = ||X|| + ||MX||,
which requires ✓ = 0.

6. This is a block matrix problem. Notice the that matrix M is really

just M =

✓

I I
0 I

◆

, where I and 0 are the 3⇥ 3 identity zero matrices,

respectively. But

M2 =

✓

I I
0 I

◆✓

I I
0 I

◆

=

✓

I 2I
0 I

◆

and

M3 =

✓

I I
0 I

◆✓

I 2I
0 I

◆

=

✓

I 3I
0 I

◆

so, Mk =

✓

I kI
0 I

◆

, or explicitly

Mk =

0

B

B

B

B

B

B

@

1 0 0 k 0 0
0 1 0 0 k 0
0 0 1 0 0 k
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

C

A

.
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7. (a) Whenever detM = ad� bc 6= 0.

(b) Unit determinant bit matrices:

✓

1 0
0 1

◆

,

✓

1 1
0 1

◆

,

✓

1 0
1 1

◆

,

✓

0 1
1 0

◆

,

✓

1 1
1 0

◆

,

✓

0 1
1 1

◆

.

(c) Bit matrices with vanishing determinant:

✓

0 0
0 0

◆

,

✓

1 0
0 0

◆

,

✓

0 1
0 0

◆

,

✓

0 0
1 0

◆

,

✓

0 0
0 1

◆

,

✓

1 1
0 0

◆

,

✓

0 0
1 1

◆

,

✓

1 0
1 0

◆

,

✓

0 1
0 1

◆

,

✓

1 1
1 1

◆

.

As a check, count that the total number of 2 ⇥ 2 bit matrices is
2(number of entries) = 24 = 16.

(d) To disprove this statement, we just need to find a single counterex-
ample. All the unit determinant examples above are actually row
equivalent to the identity matrix, so focus on the bit matrices with
vanishing determinant. Then notice (for example), that

✓

1 1
0 0

◆

⇠/
✓

0 0
0 0

◆

.

So we have found a pair of matrices that are not row equivalent
but do have the same determinant. It follows that the statement
is false.

8. We can call a function f : V �! W linear if the sets V and W are
vector spaces and f obeys

f(↵u+ �v) = ↵f(u) + �f(v) ,

for all u, v 2 V and ↵, � 2 R.
Now, integration is a linear transformation from the space V of all in-
tegrable functions (don’t be confused between the definition of a linear
function above, and integrable functions f(x) which here are the vec-
tors in V ) to the real numbers R, because

R1
�1(↵f(x) + �g(x))dx =

↵
R1
�1 f(x)dx+ �

R1
�1 g(x)dx.
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9. The four main ingredients are (i) a set V of vectors, (ii) a number
fieldK (usuallyK = R), (iii) a rule for adding vectors (vector addition)
and (iv) a way to multiply vectors by a number to produce a new vector
(scalar multiplication). There are, of course, ten rules that these four
ingredients must obey.

(a) This is not a vector space. Notice that distributivity of scalar
multiplication requires 2u = (1+1)u = u+u for any vector u but

2 ·
✓

a b
c d

◆

=

✓

2a b
2c d

◆

which does not equal
✓

a b
c d

◆

+

✓

a b
c d

◆

=

✓

2a 2b
2c 2d

◆

.

This could be repaired by taking

k ·
✓

a b
c d

◆

=

✓

ka kb
kc kd

◆

.

(b) This is a vector space. Although, the question does not ask you to,
it is a useful exercise to verify that all ten vector space rules are
satisfied.

(c) This is not a vector space for many reasons. An easy one is
that (1,�1, 0) and (�1, 1, 0) are both in the space, but their sum
(0, 0, 0) is not (i.e., additive closure fails). The easiest way to re-
pair this would be to drop the requirement that there be at least
one entry equaling 1.

10. (i) Thanks to multiplicative closure, if u 2 U , so is (�1) · u. But
(�1) · u+ u = (�1) · u+ 1 · u = (�1 + 1) · u = 0.u = 0 (at each step in
this chain of equalities we have used the fact that V is a vector space
and therefore can use its vector space rules). In particular, this means
that the zero vector of V is in U and is its zero vector also. (ii) Also,
in V , for each u there is an element �u such that u + (�u) = 0. But
by additive close, (�u) must also be in U , thus every u 2 U has an
additive inverse.
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(a) This is a vector space. First we check additive closure: let

0

@

x
y
0

1

A

and

0

@

z
w
0

1

A be arbitrary vectors in U . But since

0

@

x
y
0

1

A +

0

@

z
w
0

1

A =

0

@

x+ z
y + w
0

1

A, so is their sum (because vectors in U are those whose

third component vanishes). Multiplicative closure is similar: for

any ↵ 2 R, ↵

0

@

x
y
0

1

A =

0

@

↵x
↵y
0

1

A, which also has no third component,

so is in U .

(b) This is not a vector space for various reasons. A simple one is

that u =

0

@

1
0
z

1

A is in U but the vector u + u =

0

@

2
0
2z

1

A is not in U

(it has a 2 in the first component, but vectors in U always have a
1 there).
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B Sample Midterm II Problems and Solu-
tions

1. Find an LU decomposition for the matrix
0

B

B

@

1 1 �1 2
1 3 2 2
�1 �3 �4 6
0 4 7 �2

1

C

C

A

Use your result to solve the system
8

>

>

>

<

>

>

>

:

x + y � z + 2w = 7

x + 3y + 2z + 2w = 6

�x � 3y � 4z + 6w = 12

4y + 7z � 2w = �7

2. Let

A =

0

B

@

1 1 1

2 2 3

4 5 6

1

C

A

.

Compute detA. Find all solutions to (i) AX = 0 and (ii) AX =

0

@

1
2
3

1

A

for the vector X 2 R3. Find, but do not solve, the characteristic
polynomial of A.

3. Let M be any 2⇥ 2 matrix. Show

detM = �1

2
trM2 +

1

2
(trM)2 .

4. The permanent: Let M = (M i

j

) be an n ⇥ n matrix. An operation
producing a single number from M similar to the determinant is the
“permanent”

permM =
X

�

M1

�(1)

M2

�(2)

· · ·Mn

�(n)

.
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For example

perm

✓

a b
c d

◆

= ad+ bc .

Calculate

perm

0

@

1 2 3
4 5 6
7 8 9

1

A .

What do you think would happen to the permanent of an n ⇥ n ma-
trix M if (include a brief explanation with each answer):

(a) You multiplied M by a number �.

(b) You multiplied a row of M by a number �.

(c) You took the transpose of M .

(d) You swapped two rows of M .

5. Let X be an n⇥ 1 matrix subject to

XTX = (1) ,

and define
H = I � 2XXT ,

(where I is the n⇥ n identity matrix). Show

H = HT = H�1.

6. Suppose � is an eigenvalue of the matrix M with associated eigenvec-
tor v. Is v an eigenvector of Mk (where k is any positive integer)? If
so, what would the associated eigenvalue be?

Now suppose that the matrix N is nilpotent, i.e.

Nk = 0

for some integer k � 2. Show that 0 is the only eigenvalue of N .

7. Let M =

 

3 �5
1 �3

!

. Compute M12. (Hint: 212 = 4096.)
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8. The Cayley Hamilton Theorem: Calculate the characteristic polyno-

mial P
M

(�) of the matrix M =

✓

a b
c d

◆

. Now compute the matrix

polynomial P
M

(M). What do you observe? Now suppose the n ⇥ n
matrix A is “similar” to a diagonal matrix D, in other words

A = P�1DP

for some invertible matrix P and D is a matrix with values �
1

, �
2

, . . .�
n

along its diagonal. Show that the two matrix polynomials P
A

(A) and
P
A

(D) are similar (i.e. P
A

(A) = P�1P
A

(D)P ). Finally, compute
P
A

(D), what can you say about P
A

(A)?

9. Define what it means for a set U to be a subspace of a vector space V .
Now let U and W be subspaces of V . Are the following also subspaces?
(Remember that [ means “union” and \ means “intersection”.)

(a) U [W

(b) U \W

In each case draw examples in R3 that justify your answers. If you
answered “yes” to either part also give a general explanation why this
is the case.

10. Define what it means for a set of vectors {v
1

, v
2

, . . . , v
n

} to (i) be lin-
early independent, (ii) span a vector space V and (iii) be a basis for a
vector space V .

Consider the following vectors in R3

u =

0

@

�1
�4
3

1

A , v =

0

@

4
5
0

1

A , w =

0

@

10
7

h+ 3

1

A .

For which values of h is {u, v, w} a basis for R3?

Solutions

1.
0

B

B

@

1 1 �1 2
1 3 2 2
�1 �3 �4 6
0 4 7 �2

1

C

C

A

=

0

B

B

@

1 0 0 0
1 1 0 0
�1 0 1 0
0 0 0 1

1

C

C

A

0

B

B

@

1 1 �1 2
0 2 3 0
0 �2 �5 8
0 4 7 �2

1

C

C

A
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=

0

B

B

@

1 0 0 0
1 1 0 0
�1 �1 1 0
0 2 0 1

1

C

C

A

0

B

B

@

1 1 �1 2
0 2 3 0
0 0 �2 8
0 0 1 �2

1

C

C

A

=

0

B

B

@

1 0 0 0
1 1 0 0
�1 �1 1 0
0 2 �1

2

1

1

C

C

A

0

B

B

@

1 1 �1 2
0 2 3 0
0 0 �2 8
0 0 0 2

1

C

C

A

.

To solve MX = V using M = LU we first solve LW = V whose
augmented matrix reads

0

B

B

@

1 0 0 0 7
1 1 0 0 6
�1 �1 1 0 12
0 2 �1

2

1 �7

1

C

C

A

⇠

0

B

B

@

1 0 0 0 7
0 1 0 0 �1
0 0 1 0 18
0 2 �1

2

1 �7

1

C

C

A

⇠

0

B

B

@

1 0 0 0 7
0 1 0 0 �1
0 0 1 0 18
0 0 0 1 4

1

C

C

A

,

from which we can read o↵W . Now we computeX by solving UX = W
with the augmented matrix

0

B

B

@

1 1 �1 2 7
0 2 3 0 �1
0 0 �2 8 18
0 0 0 2 4

1

C

C

A

⇠

0

B

B

@

1 1 �1 2 7
0 2 3 0 �1
0 0 �2 0 2
0 0 0 1 2

1

C

C

A

⇠

0

B

B

@

1 1 �1 2 7
0 2 0 0 2
0 0 1 0 �1
0 0 0 1 2

1

C

C

A

⇠

0

B

B

@

1 0 0 0 1
0 1 0 0 1
0 0 1 0 �1
0 0 0 1 2

1

C

C

A

So x = 1, y = 1, z = �1 and w = 2.

2.
detA = 1.(2.6� 3.5)� 1.(2.6� 3.4) + 1.(2.5� 2.4) = �1 .
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(i) Since detA 6= 0, the homogeneous system AX = 0 only has the
solution X = 0. (ii) It is e�cient to compute the adjoint

adj A =

0

@

�3 0 2
�1 2 �1
1 �1 0

1

A

T

=

0

@

�3 �1 1
0 2 �1
2 �1 0

1

A

Hence

A�1 =

0

@

3 1 �1
0 �2 1
�2 1 0

1

A .

Thus

X =

0

@

3 1 �1
0 �2 1
�2 1 0

1

A

0

@

1
2
3

1

A =

0

@

2
�1
0

1

A .

Finally,

P
A

(�) = � det

0

@

1� � 1 1
2 2� � 3
4 5 6� �

1

A

= �
h

(1� �)[(2� �)(6� �)� 15]� [2.(6� �)� 12] + [10� 4.(2� �)]
i

= �3 � 9�2 � �+ 1 .

3. Call M =

✓

a b
c d

◆

. Then detM = ad� bc, yet

�1

2
trM2 +

1

2
(trM)2 = �1

2
tr

✓

a2 + bc ⇤
⇤ bc+ d2

◆

� 1

2
(a+ d)2

= �1

2
(a2 + 2bc+ d2) +

1

2
(a2 + 2ad+ d2) = ad� bc ,

which is what we were asked to show.

4.

perm

0

@

1 2 3
4 5 6
7 8 9

1

A = 1.(5.9 + 6.8) + 2.(4.9 + 6.7) + 3.(4.8 + 5.7) = 450 .
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(a) Multiplying M by � replaces every matrix element M i

�(j)

in the

formula for the permanent by �M i

�(j)

, and therefore produces an
overall factor �n.

(b) Multiplying the ith row by � replaces M i

�(j)

in the formula for the

permanent by �M i

�(j)

. Therefore the permanent is multiplied by
an overall factor �.

(c) The permanent of a matrix transposed equals the permanent of
the original matrix, because in the formula for the permanent
this amounts to summing over permutations of rows rather than
columns. But we could then sort the productM�(1)

1

M�(2)

2

. . .M�(n)

n

back into its original order using the inverse permutation ��1. But
summing over permutations is equivalent to summing over inverse
permutations, and therefore the permanent is unchanged.

(d) Swapping two rows also leaves the permanent unchanged. The
argument is almost the same as in the previous part, except that
we need only reshu✏e two matrix elements M j

�(i)

and M i

�(j)

(in
the case where rows i and j were swapped). Then we use the fact
that summing over all permutations � or over all permutations e�
obtained by swapping a pair in � are equivalent operations.

5. Firstly, lets call (1) = 1 (the 1⇥ 1 identity matrix). Then we calculate

HT = (I�2XXT )T = IT�2(XXT )T = I�2(XT )TXT = I�2XXT = H ,

which demonstrates the first equality. Now we compute

H2 = (I � 2XXT )(I � 2XXT ) = I � 4XXT + 4XXTXXT

= I � 4XXT + 4X(XTX)XT = I � 4XXT + 4X.1.XT = I .

So, since HH = I, we have H�1 = H.

6. We know Mv = �v. Hence

M2v = MMv = M�v = �Mv = �2v ,

and similarly
Mkv = �Mk�1v = . . . = �kv .

So v is an eigenvector of Mk with eigenvalue �k.
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Now let us assume v is an eigenvector of the nilpotent matrix N with
eigenvalue �. Then from above

Nkv = �kv

but by nilpotence, we also have

Nkv = 0

Hence �kv = 0 and v (being an eigenvector) cannot vanish. Thus
�k = 0 and in turn � = 0.

7. Let us think about the eigenvalue problemMv = �v. This has solutions
when

0 = det

✓

3� � �5
1 �3� �

◆

= �2 � 4) � = ±2 .

The associated eigenvalues solve the homogeneous systems (in aug-
mented matrix form)
✓

1 �5 0
1 �5 0

◆

⇠
✓

1 �5 0
0 0 0

◆

and

✓

5 �5 0
1 �1 0

◆

⇠
✓

1 �1 0
0 0 0

◆

,

respectively, so are v
2

=

✓

5
1

◆

and v�2

=

✓

1
1

◆

. Hence M12v
2

= 212v
2

and M12v�2

= (�2)12v�2

. Now,

✓

x
y

◆

= x�y

4

✓

5
1

◆

� x�5y

4

✓

1
1

◆

(this was

obtained by solving the linear system av
2

+ bv�2

= for a and b). Thus

M

✓

x
y

◆

=
x� y

4
Mv

2

� x� 5y

4
Mv�2

= 212
⇣x� y

4
v
2

� x� 5y

4
v�2

⌘

= 212
✓

x
y

◆

.

Thus

M12 =

✓

4096 0
0 4096

◆

.

If you understand the above explanation, then you have a good un-
derstanding of diagonalization. A quicker route is simply to observe

that M2 =

✓

4 0
0 4

◆

.
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8.

P
M

(�) = (�1)2det
✓

a� � b
c d� �

◆

= (�� a)(�� d)� bc .

Thus
P
M

(M) = (M � aI)(M � dI)� bcI

=

✓✓

a b
c d

◆

�
✓

a 0
0 a

◆◆✓✓

a b
c d

◆

�
✓

d 0
0 d

◆◆

�
✓

bc 0
0 bc

◆

=

✓

0 b
c d� a

◆✓

a� d b
c 0

◆

�
✓

bc 0
0 bc

◆

= 0 .

Observe that any 2⇥ 2 matrix is a zero of its own characteristic poly-
nomial (in fact this holds for square matrices of any size).

Now if A = P�1DP then A2 = P�1DPP�1DP = P�1D2P . Similarly
Ak = P�1DkP . So for any matrix polynomial we have

An + c
1

An�1 + · · · c
n�1

A+ c
n

I

= P�1DnP + c
1

P�1Dn�1P + · · · c
n�1

P�1DP + c
n

P�1P

= P�1(Dn + c
1

Dn�1 + · · · c
n�1

D + c
n

I)P .

Thus we may conclude P
A

(A) = P�1P
A

(D)P .

Now suppose D =

0

B

B

B

@

�
1

0 · · · 0

0 �
2

...
...

. . .
0 · · · �

n

1

C

C

C

A

. Then

P
A

(�) = det(�I�A) = det(�P�1IP�P�1DP ) = detP.det(�I�D).detP

= det(�I �D) = det

0

B

B

B

@

�� �
1

0 · · · 0

0 �� �
2

...
...

. . .
0 · · · �� �

n

1

C

C

C

A

= (�� �
1

)(�� �
2

) . . . (�� �
n

) .

Thus we see that �
1

, �
2

, . . . ,�
n

are the eigenvalues of M . Finally we
compute

P
A

(D) = (D � �
1

)(D � �
2

) . . . (D � �
n

)
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=

0

B

B

B

@

0 0 · · · 0

0 �
2

...
...

. . .
0 · · · �

n

1

C

C

C

A

0

B

B

B

@

�
1

0 · · · 0

0 0
...

...
. . .

0 · · · �
n

1

C

C

C

A

. . .

0

B

B

B

@

�
1

0 · · · 0

0 �
2

...
...

. . .
0 · · · 0

1

C

C

C

A

= 0 .

We conclude the P
M

(M) = 0.

9. A subset of a vector space is called a subspace if it itself is a vector space,
using the rules for vector addition and scalar multiplication inherited
from the original vector space.

(a) So long as U 6= U [W 6= W the answer is no. Take, for example,
U to be the x-axis in R2 and W to be the y-axis. Then

�

1 0
�

2 U
and

�

0 1
�

2 W , but
�

1 0
�

+
�

0 1 0
�

=
�

1 1
�

/2 U [W . So
U [W is not additively closed and is not a vector space (and thus
not a subspace). It is easy to draw the example described.

(b) Here the answer is always yes. The proof is not di�cult. Take
a vector u and w such that u 2 U \W 3 w. This means that
both u and w are in both U and W . But, since U is a vector
space, ↵u + �w is also in U . Similarly, ↵u + �w 2 W . Hence
↵u + �w 2 U \W . So closure holds in U \W and this set is a
subspace by the subspace theorem. Here, a good picture to draw
is two planes through the origin in R3 intersecting at a line (also
through the origin).

10. (i) We say that the vectors {v
1

, v
2

, . . . v
n

} are linearly independent if
there exist no constants c1, c2, . . . cn (all non-vanishing) such that c1v

1

+
c2v

2

+ · · · + cnv
n

= 0. Alternatively, we can require that there is
no non-trivial solution for scalars c1, c2, . . . , cn to the linear system
c1v

1

+ c2v
2

+ · · · + cnv
n

= 0. (ii) We say that these vectors span a
vector space V if the set span{v

1

, v
2

, . . . v
n

} = {c1v
1

+c2v
2

+ · · ·+cnv
n

:
c1, c2, . . . cn 2 R} = V . (iii) We call {v

1

, v
2

, . . . v
n

} a basis for V if
{v

1

, v
2

, . . . v
n

} are linearly independent and span{v
1

, v
2

, . . . v
n

} = V .

For u, v, w to be a basis for R3, we firstly need (the spanning require-

ment) that any vector

0

@

x
y
z

1

A can be written as a linear combination of
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u, v and w

c1

0

@

�1
�4
3

1

A+ c2

0

@

4
5
0

1

A+ c3

0

@

10
7

h+ 3

1

A =

0

@

x
y
z

1

A .

The linear independence requirement implies that when x = y = z = 0,
the only solution to the above system is c1 = c2 = c3 = 0. But the
above system in matrix language reads

0

@

�1 4 10
�4 5 7
3 0 h+ 3

1

A

0

@

c1

c2

c3

1

A =

0

@

x
y
z

1

A .

Both requirements mean that the matrix on the left hand side must be
invertible, so we examine its determinant

det

0

@

�1 4 10
�4 5 7
3 0 h+ 3

1

A = �4.(�4.(h+ 3)� 7.3) + 5.(�1.(h+ 3)� 10.3)

= 11(h� 3) .

Hence we obtain a basis whenever h 6= 3.
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C Sample Final Problems and Solutions

1. Define the following terms:

(a) An orthogonal matrix.

(b) A basis for a vector space.

(c) The span of a set of vectors.

(d) The dimension of a vector space.

(e) An eigenvector.

(f) A subspace of a vector space.

(g) The kernel of a linear transformation.

(h) The nullity of a linear transformation.

(i) The image of a linear transformation.

(j) The rank of a linear transformation.

(k) The characteristic polynomial of a square matrix.

(l) An equivalence relation.

(m) A homogeneous solution to a linear system of equations.

(n) A particular solution to a linear system of equations.

(o) The general solution to a linear system of equations.

(p) The direct sum of a pair of subspaces of a vector space.

(q) The orthogonal complement to a subspace of a vector space.

2. Kircho↵ ’s laws: Electrical circuits are easy to analyze using systems
of equations. The change in voltage (measured in Volts) around any
loop due to batteries |

�

� and resistors /\/\/\/\ (given by the product
of the current measured in Amps and resistance measured in Ohms)
equals zero. Also, the sum of currents entering any junction vanishes.
Consider the circuit

J Amps

3 Ohms

60 Volts

1 Ohm 2 Ohms

80 Volts

3 Ohms

V Volts

13 AmpsI Amps
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Find all possible equations for the unknowns I, J and V and then solve
for I, J and V . Give your answers with correct units.

3. Suppose M is the matrix of a linear transformation

L : U ! V

and the vector spaces U and V have dimensions

dimU = n , dimV = m,

and
m 6= n .

Also assume
kerL = {0

U

} .

(a) How many rows does M have?

(b) How many columns does M have?

(c) Are the columns of M linearly independent?

(d) What size matrix is MTM?

(e) What size matrix is MMT ?

(f) Is MTM invertible?

(g) is MTM symmetric?

(h) Is MTM diagonalizable?

(i) Does MTM have a zero eigenvalue?

(j) Suppose U = V and kerL 6= {0
U

}. Find an eigenvalue of M .

(k) Suppose U = V and kerL 6= {0
U

}. Find detM .

4. Consider the system of equations

x + y + z + w = 1
x + 2y + 2z + 2w = 1
x + 2y + 3z + 3w = 1

Express this system as a matrix equation MX = V and then find the
solution set by computing an LU decomposition for the matrix M (be
sure to use back and forward substitution).
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5. Compute the following determinants

det

✓

1 2
3 4

◆

, det

0

@

1 2 3
4 5 6
7 8 9

1

A , det

0

B

B

@

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1

C

C

A

,

det

0

B

B

B

B

@

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

1

C

C

C

C

A

.

Now test your skills on

det

0

B

B

B

B

B

@

1 2 3 · · · n
n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n+ 3 3n

...
. . .

...
n2 � n+ 1 n2 � 1 + 2 n2 � n+ 3 · · · n2

1

C

C

C

C

C

A

.

Make sure to jot down a few brief notes explaining any clever tricks
you use.

6. For which values of a does

U = span

8

<

:

0

@

1
0
1

1

A ,

0

@

1
2
�3

1

A ,

0

@

a
1
0

1

A

9

=

;

= R3 ?

For any special values of a at which U 6= R3, express the subspace U as
the span of the least number of vectors possible. Give the dimension
of U for these cases and draw a picture showing U inside R3.

7. Vandermonde determinant: Calculate the following determinants

det

✓

1 x
1 y

◆

, det

0

@

1 x x2

1 y y2

1 z z2

1

A , det

0

B

B

@

1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

1

C

C

A

.
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Be sure to factorize you answers, if possible.

Challenging: Compute the determinant

det

0

B

B

B

B

B

@

1 x
1

(x
1

)2 · · · (x
1

)n�1

1 x
2

(x
2

)2 · · · (x
2

)n�1

1 x
3

(x
3

)2 · · · (x
3

)n�1

...
...

...
. . .

...
1 x

n

(x
n

)2 · · · (x
n

)n�1

1

C

C

C

C

C

A

.

8. (a) Do the vectors

8

<

:

0

@

1
2
3

1

A ,

0

@

3
2
1

1

A ,

0

@

1
0
0

1

A ,

0

@

0
1
0

1

A ,

0

@

0
0
1

1

A

9

=

;

form a basis

for R3? Be sure to justify your answer.

(b) Find a basis for R4 that includes the vectors

0

B

B

@

1
2
3
4

1

C

C

A

and

0

B

B

@

4
3
2
1

1

C

C

A

.

(c) Explain in words how to generalize your computation in part (b)
to obtain a basis for Rn that includes a given pair of (linearly
independent) vectors u and v.

9. Elite NASA engineers determine that if a satellite is placed in orbit
starting at a point O, it will return exactly to that same point after
one orbit of the earth. Unfortunately, if there is a small mistake in the
original location of the satellite, which the engineers label by a vector
X in R3 with origin18 at O, after one orbit the satellite will instead
return to some other point Y 2 R3. The engineer’s computations show
that Y is related to X by a matrix

Y =

0

B

@

0 1

2

1
1

2

1

2

1

2

1 1

2

0

1

C

A

X .

(a) Find all eigenvalues of the above matrix.

18This is a spy satellite. The exact location of O, the orientation of the coordinate axes
in R3 and the unit system employed by the engineers are CIA secrets.
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(b) Determine all possible eigenvectors associated with each eigen-
value.

Let us assume that the rule found by the engineers applies to all sub-
sequent orbits. Discuss case by case, what will happen to the satellite
if the initial mistake in its location is in a direction given by an eigen-
vector.

10. In this problem the scalars in the vector spaces are bits (0, 1 with
1+1 = 0). The space Bk is the vector space of bit-valued, k-component
column vectors.

(a) Find a basis for B3.

(b) Your answer to part (a) should be a list of vectors v
1

, v
2

, . . . v
n

.
What number did you find for n?

(c) How many elements are there in the set B3.

(d) What is the dimension of the vector space B3.

(e) Suppose L : B3 ! B = {0, 1} is a linear transformation. Explain
why specifying L(v

1

), L(v
2

), . . . , L(v
n

) completely determines L.

(f) Use the notation of part (e) to list all linear transformations

L : B3 ! B .

How many di↵erent linear transformations did you find? Compare
your answer to part (c).

(g) Suppose L
1

: B3 ! B and L
2

: B3 ! B are linear transforma-
tions, and ↵ and � are bits. Define a new map (↵L

1

+ �L
2

) :
B3 ! B by

(↵L
1

+ �L
2

)(v) = ↵L
1

(v) + �L
2

(v).

Is this map a linear transformation? Explain.

(h) Do you think the set of all linear transformations from B3 to B is
a vector space using the addition rule above? If you answer yes,
give a basis for this vector space and state its dimension.
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11. A team of distinguished, post-doctoral engineers analyzes the design
for a bridge across the English channel. They notice that the force on

the center of the bridge when it is displaced by an amount X =

0

@

x
y
z

1

A

is given by

F =

0

@

�x� y
�x� 2y � z
�y � z

1

A .

Moreover, having read Newton’s Principiæ, they know that force is
proportional to acceleration so that19

F =
d2X

dt2
.

Since the engineers are worried the bridge might start swaying in the
heavy channel winds, they search for an oscillatory solution to this
equation of the form20

X = cos(!t)

0

@

a
b
c

1

A .

(a) By plugging their proposed solution in the above equations the
engineers find an eigenvalue problem

M

0

@

a
b
c

1

A = �!2

0

@

a
b
c

1

A .

Here M is a 3⇥3 matrix. Which 3⇥3 matrix M did the engineers
find? Justify your answer.

(b) Find the eigenvalues and eigenvectors of the matrix M .

(c) The number |!| is often called a characteristic frequency. What
characteristic frequencies do you find for the proposed bridge?

19The bridge is intended for French and English military vehicles, so the exact units,
coordinate system and constant of proportionality are state secrets.

20Here, a, b, c and ! are constants which we aim to calculate.
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(d) Find an orthogonal matrix P such that MP = PD where D is a
diagonal matrix. Be sure to also state your result for D.

(e) Is there a direction in which displacing the bridge yields no force?
If so give a vector in that direction. Briefly evaluate the quality
of this bridge design.

12. Conic Sections: The equation for the most general conic section is
given by

ax2 + 2bxy + dy2 + 2cx+ 2ey + f = 0 .

Our aim is to analyze the solutions to this equation using matrices.

(a) Rewrite the above quadratic equation as one of the form

XTMX +XTC + CTX + f = 0

relating an unknown column vector X =

✓

x
y

◆

, its transpose XT ,

a 2⇥2 matrix M , a constant column vector C and the constant f .

(b) Does your matrix M obey any special properties? Find its eigen-
values. You may call your answers � and µ for the rest of the
problem to save writing.

For the rest of this problem we will focus on central conics
for which the matrix M is invertible.

(c) Your equation in part (a) above should be be quadratic in X.
Recall that if m 6= 0, the quadratic equation mx2 + 2cx + f = 0
can be rewritten by completing the square

m
⇣

x+
c

m

⌘

2

=
c2

m
� f .

Being very careful that you are now dealing with matrices, use the
same trick to rewrite your answer to part (a) in the form

Y TMY = g.

Make sure you give formulas for the new unknown column vector Y
and constant g in terms of X, M , C and f . You need not multiply
out any of the matrix expressions you find.
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If all has gone well, you have found a way to shift coordi-
nates for the original conic equation to a new coordinate
system with its origin at the center of symmetry. Our next
aim is to rotate the coordinate axes to produce a readily
recognizable equation.

(d) Why is the angle between vectors V and W is not changed when
you replace them by PV and PW for P any orthogonal matrix?

(e) Explain how to choose an orthogonal matrix P such that MP =
PD where D is a diagonal matrix.

(f) For the choice of P above, define our final unknown vector Z by
Y = PZ. Find an expression for Y TMY in terms of Z and the
eigenvalues of M .

(g) Call Z =

✓

z
w

◆

. What equation do z and w obey? (Hint, write

your answer using �, µ and g.)

(h) Central conics are circles, ellipses, hyperbolae or a pair of straight
lines. Give examples of values of (�, µ, g) which produce each of
these cases.

13. Let L : V ! W be a linear transformation between finite-dimensional
vector spaces V and W , and let M be a matrix for L (with respect
to some basis for V and some basis for W ). We know that L has an
inverse if and only if it is bijective, and we know a lot of ways to tell
whether M has an inverse. In fact, L has an inverse if and only if M
has an inverse:

(a) Suppose that L is bijective (i.e., one-to-one and onto).

i. Show that dimV = rankL = dimW .

ii. Show that 0 is not an eigenvalue of M .

iii. Show that M is an invertible matrix.

(b) Now, suppose that M is an invertible matrix.

i. Show that 0 is not an eigenvalue of M .

ii. Show that L is injective.

iii. Show that L is surjective.
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14. Captain Conundrum gives Queen Quandary a pair of newborn doves,
male and female for her birthday. After one year, this pair of doves
breed and produce a pair of dove eggs. One year later these eggs hatch
yielding a new pair of doves while the original pair of doves breed again
and an additional pair of eggs are laid. Captain Conundrum is very
happy because now he will never need to buy the Queen a present ever
again!

Let us say that in year zero, the Queen has no doves. In year one
she has one pair of doves, in year two she has two pairs of doves etc...
Call F

n

the number of pairs of doves in years n. For example, F
0

= 0,
F
1

= 1 and F
2

= 1. Assume no doves die and that the same breeding
pattern continues well into the future. Then F

3

= 2 because the eggs
laid by the first pair of doves in year two hatch. Notice also that in
year three, two pairs of eggs are laid (by the first and second pair of
doves). Thus F

4

= 3.

(a) Compute F
5

and F
6

.

(b) Explain why (for any n � 2) the following recursion relation holds

F
n

= F
n�1

+ F
n�2

.

(c) Let us introduce a column vector X
n

=

✓

F
n

F
n�1

◆

. Compute X
1

and X
2

. Verify that these vectors obey the relationship

X
2

= MX
1

where M =

✓

1 1
1 0

◆

.

(d) Show that X
n+1

= MX
n

.

(e) Diagonalize M . (I.e., write M as a product M = PDP�1 where
D is diagonal.)

(f) Find a simple expression for Mn in terms of P , D and P�1.

(g) Show that X
n+1

= MnX
1

.

(h) The number

' =
1 +
p
5

2
is called the golden ratio. Write the eigenvalues of M in terms
of '.
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(i) Put your results from parts (c), (f) and (g) together (along with
a short matrix computation) to find the formula for the number
of doves F

n

in year n expressed in terms of ', 1� ' and n.

15. Use Gram–Schmidt to find an orthonormal basis for

span

8

>

>

<

>

>

:

0

B

B

@

1
1
1
1

1

C

C

A

,

0

B

B

@

1
0
1
1

1

C

C

A

,

0

B

B

@

0
0
1
2

1

C

C

A

9

>

>

=

>

>

;

.

16. Let M be the matrix of a linear transformation L : V ! W in given
bases for V and W . Fill in the blanks below with one of the following
six vector spaces: V , W , kerL,

�

kerL
�?

, imL,
�

imL
�?

.

(a) The columns of M span in the basis given for .

(b) The rows of M span in the basis given for .

Suppose

M =

0

B

B

@

1 2 1 3
2 1 �1 2
1 0 0 �1
4 1 �1 0

1

C

C

A

is the matrix of L in the bases {v
1

, v
2

, v
3

, v
4

} for V and {w
1

, w
2

, w
3

, w
4

}
for W . Find bases for kerL and imL. Use the dimension formula to
check your result.

17. Captain Conundrum collects the following data set

y x
5 �2
2 �1
0 1
3 2

which he believes to be well-approximated by a parabola

y = ax2 + bx+ c .
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(a) Write down a system of four linear equations for the unknown
coe�cients a, b and c.

(b) Write the augmented matrix for this system of equations.

(c) Find the reduced row echelon form for this augmented matrix.

(d) Are there any solutions to this system?

(e) Find the least squares solution to the system.

(f) What value does Captain Conundrum predict for y when x = 2?

18. Suppose you have collected the following data for an experiment

x y
x
1

y
1

x
2

y
2

x
3

y
3

and believe that the result is well modeled by a straight line

y = mx+ b .

(a) Write down a linear system of equations you could use to find the
slope m and constant term b.

(b) Arrange the unknowns (m, b) in a column vector X and write your
answer to (a) as a matrix equation

MX = V .

Be sure to give explicit expressions for the matrix M and column
vector V .

(c) For a generic data set, would you expect your system of equations
to have a solution? Briefly explain your answer.

(d) Calculate MTM and (MTM)�1 (for the latter computation, state
the condition required for the inverse to exist).

(e) Compute the least squares solution for m and b.

(f) The least squares method determines a vector X that minimizes
the length of the vector V �MX. Draw a rough sketch of the
three data points in the (x, y)-plane as well as their least squares
fit. Indicate how the components of V �MX could be obtained
from your picture.
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Solutions

1. You can find the definitions for all these terms by consulting the index
of these notes.

2. Both junctions give the same equation for the currents

I + J + 13 = 0 .

There are three voltage loops (one on the left, one on the right and one
going around the outside of the circuit). Respectively, they give the
equations

60� I � 80� 3I = 0

80 + 2J � V + 3J = 0

60� I + 2J � V + 3J � 3I = 0 . (2)

The above equations are easily solved (either using an augmented ma-
trix and row reducing, or by substitution). The result is I = �5 Amps,
J = �8 Amps, V = 40 Volts.

3. (a) m.

(b) n.

(c) Yes.

(d) n⇥ n.

(e) m⇥m.

(f) Yes. This relies on kerM = 0 because if MTM had a non-trivial
kernel, then there would be a non-zero solution X to MTMX = 0.
But then by multiplying on the left byXT we see that ||MX|| = 0.
This in turn implies MX = 0 which contradicts the triviality of
the kernel of M .

(g) Yes because
�

MTM
�

T

= MT (MT )T = MTM .

(h) Yes, all symmetric matrices have a basis of eigenvectors.

(i) No, because otherwise it would not be invertible.

(j) Since the kernel of L is non-trivial, M must have 0 as an eigen-
value.
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(k) Since M has a zero eigenvalue in this case, its determinant must
vanish. I.e., detM = 0.

4. To begin with the system becomes

0

B

@

1 1 1 1

1 2 2 2

1 2 3 3

1

C

A

0

B

B

B

@

x

y

z

w

1

C

C

C

A

=

0

B

@

1

1

1

1

C

A

Then

M =

0

B

@

1 1 1 1

1 2 2 2

1 2 3 3

1

C

A

=

0

B

@

1 0 0

1 1 0

1 0 1

1

C

A

0

B

@

1 1 1 1

0 1 1 1

0 1 2 2

1

C

A

=

0

B

@

1 0 0

1 1 0

1 1 1

1

C

A

0

B

@

1 1 1 1

0 1 1 1

0 0 1 1

1

C

A

= LU

So now MX = V becomes LW = V where W = UX =

0

@

a
b
c

1

A (say).

Thus we solve LW = V by forward substitution

a = 1, a+ b = 1, a+ b+ c = 1) a = 1, b = 0, c = 0 .

Now solve UX = W by back substitution

x+ y + z + w = 1, y + z + w = 0, z + w = 0

) w = µ (arbitrary), z = �µ, y = 0, x = 1 .

The solution set is

8

>

>

<

>

>

:

0

B

B

@

x
y
z
y

1

C

C

A

=

0

B

B

@

1
0
�µ
µ

1

C

C

A

: µ 2 R

9

>

>

=

>

>

;

5. ...
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6. If U spans R3, then we must be able to express any vector X =

0

@

x
y
z

1

A

2 R3 as

X = c1

0

@

1
0
1

1

A+ c2

0

@

1
2
�3

1

A+ c3

0

@

a
1
0

1

A =

0

@

1 1 a
0 2 1
1 �3 0

1

A

0

@

c1

c2

c3

1

A ,

for some coe�cients c1, c2 and c3. This is a linear system. We could
solve for c1, c2 and c3 using an augmented matrix and row operations.
However, since we know that dimR3 = 3, if U spans R3, it will also be
a basis. Then the solution for c1, c2 and c3 would be unique. Hence, the
3⇥ 3 matrix above must be invertible, so we examine its determinant

det

0

@

1 1 a
0 2 1
1 �3 0

1

A = 1.(2.0� 1.(�3)) + 1.(1.1� a.2) = 4� 2a .

Thus U spans R3 whenever a 6= 2. When a = 2 we can write the third
vector in U in terms of the preceding ones as

0

@

2
1
0

1

A =
3

2

0

@

1
0
1

1

A+
1

2

0

@

1
2
�3

1

A .

(You can obtain this result, or an equivalent one by studying the above
linear system with X = 0, i.e., the associated homogeneous system.)

The two vectors

0

@

1
2
�3

1

A and

0

@

2
1
0

1

A are clearly linearly independent, so

this is the least number of vectors spanning U for this value of a. Also
we see that dimU = 2 in this case. Your picture should be a plane in

R3 though the origin containing the vectors

0

@

1
2
�3

1

A and

0

@

2
1
0

1

A.

7.

det

✓

1 x
1 y

◆

= y � x ,
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det

0

@

1 x x2

1 y y2

1 z z2

1

A = det

0

@

1 x x2

0 y � x y2 � x2

0 z � x z2 � x2

1

A

= (y � x)(z2 � x2)� (y2 � x2)(z � x) = (y � x)(z � x)(z � y) .

det

0

B

B

@

1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

1

C

C

A

= det

0

B

B

@

1 x x2 x3

0 y � x y2 � x2 y3 � x3

0 z � x z2 � x2 z3 � x3

0 w � x w2 � x2 w3 � x3

1

C

C

A

= det

0

B

B

@

1 0 0 0
0 y � x y(y � x) y2(y � x)
0 z � x z(z � x) z2(z � x)
0 w � x w(w � x) w2(w � x)

1

C

C

A

= (y � x)(z � x)(w � x) det

0

B

B

@

1 0 0 0
0 1 y y2

0 1 z z2

0 1 w w2

1

C

C

A

= (y � x)(z � x)(w � x) det

0

@

1 x x2

1 y y2

1 z z2

1

A

= (y � x)(z � x)(w � x)(y � x)(z � x)(z � y) .

From the 4 ⇥ 4 case above, you can see all the tricks required for a
general Vandermonde matrix. First zero out the first column by sub-
tracting the first row from all other rows (which leaves the determinant
unchanged). Now zero out the top row by subtracting x

1

times the
first column from the second column, x

1

times the second column from
the third column etc. Again these column operations do not change
the determinant. Now factor out x

2

� x
1

from the second row, x
3

� x
1

from the third row, etc. This does change the determinant so we write
these factors outside the remaining determinant, which is just the same
problem but for the (n�1)⇥(n�1) case. Iterating the same procedure
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gives the result

det

0

B

B

B

B

B

@

1 x
1

(x
1

)2 · · · (x
1

)n�1

1 x
2

(x
2

)2 · · · (x
2

)n�1

1 x
3

(x
3

)2 · · · (x
3

)n�1

...
...

...
. . .

...
1 x

n

(x
n

)2 · · · (x
n

)n�1

1

C

C

C

C

C

A

=
Y

i>j

(x
i

� x
j

) .

(Here
Q

stands for a multiple product, just like ⌃ stands for a multiple
sum.)

8. ...

9. (a)

det

0

B

@

� �1

2

�1
�1

2

�� 1

2

�1

2

�1 �1

2

�

1

C

A

= �
⇣

(��1

2

⌘

��1

4
)+

1

2

⇣

��

2
�1

2

⌘

�
⇣

�1

4
+�
⌘

= �3 � 1

2
�2 � 3

2
� = �(�+ 1)(�� 3

2
) .

Hence the eigenvalues are 0,�1, 3
2

.

(b) When � = 0 we must solve the homogenous system

0

B

@

0 1

2

1 0
1

2

1

2

1

2

0

1 1

2

0 0

1

C

A

⇠

0

B

@

1 1

2

0 0

0 1

4

1

2

0

0 1

2

1 0

1

C

A

⇠

0

B

@

1 0 �1 0

0 1 2 0

0 0 0 0

1

C

A

.

So we find the eigenvector

0

@

s
�2s
s

1

A where s 6= 0 is arbitrary.

For � = �1
0

B

@

1 1

2

1 0
1

2

3

2

1

2

0

1 1

2

1 0

1

C

A

⇠

0

B

@

1 0 1 0

0 1 0 0

0 0 0 0

1

C

A

.
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So we find the eigenvector

0

@

�s
0
s

1

A where s 6= 0 is arbitrary.

Finally, for � = 3

2

0

B

@

�3

2

1

2

1 0
1

2

�1 1

2

0

1 1

2

�3

2

0

1

C

A

⇠

0

B

@

1 1

2

�3

2

0

0 �5

4

5

4

0

0 5

4

�5

4

0

1

C

A

⇠

0

B

@

1 0 �1 0

0 1 �1 0

0 0 0 0

1

C

A

.

So we find the eigenvector

0

@

s
s
s

1

A where s 6= 0 is arbitrary.

If the mistake X is in the direction of the eigenvector

0

@

1
�2
1

1

A, then

Y = 0. I.e., the satellite returns to the origin O. For all subsequent
orbits it will again return to the origin. NASA would be very pleased
in this case.

If the mistake X is in the direction

0

@

�1
0
1

1

A, then Y = �X. Hence the

satellite will move to the point opposite toX. After next orbit will move
back to X. It will continue this wobbling motion indefinitely. Since
this is a stable situation, again, the elite engineers will pat themselves
on the back.

Finally, if the mistake X is in the direction

0

@

1
1
1

1

A , the satellite will

move to a point Y = 3

2

X which is further away from the origin. The
same will happen for all subsequent orbits, with the satellite moving
a factor 3/2 further away from O each orbit (in reality, after several
orbits, the approximations used by the engineers in their calculations
probably fail and a new computation will be needed). In this case, the
satellite will be lost in outer space and the engineers will likely lose
their jobs!
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10. (a) A basis for B3 is

8

<

:

0

@

1
0
0

1

A ,

0

@

0
1
0

1

A ,

0

@

0
0
1

1

A

9

=

;

(b) 3.

(c) 23 = 8.

(d) dimB3 = 3.

(e) Because the vectors {v
1

, v
2

, v
3

} are a basis any element v 2 B3

can be written uniquely as v = b1v
1

+ b2v
2

+ b3v
3

for some triplet

of bits

0

@

b1

b2

b3

1

A. Hence, to compute L(v) we use linearity of L

L(v) = L(b1v
1

+ b2v
2

+ b3v
3

) = b1L(v
1

) + b2L(v
2

) + b3L(v
3

)

=
�

L(v
1

) L(v
2

) L(v
3

)
�

0

@

b1

b2

b3

1

A .

(f) From the notation of the previous part, we see that we can list
linear transformations L : B3 ! B by writing out all possible
bit-valued row vectors

�

0 0 0
�

,
�

1 0 0
�

,
�

0 1 0
�

,
�

0 0 1
�

,
�

1 1 0
�

,
�

1 0 1
�

,
�

0 1 1
�

,
�

1 1 1
�

.

There are 23 = 8 di↵erent linear transformations L : B3 ! B,
exactly the same as the number of elements in B3.

(g) Yes, essentially just because L
1

and L
2

are linear transformations.
In detail for any bits (a, b) and vectors (u, v) in B3 it is easy to
check the linearity property for (↵L

1

+ �L
2

)

(↵L
1

+ �L
2

)(au+ bv) = ↵L
1

(au+ bv) + �L
2

(au+ bv)

248



= ↵aL
1

(u) + ↵bL
1

(v) + �aL
1

(u) + �bL
1

(v)

= a(↵L
1

(u) + �L
2

(v)) + b(↵L
1

(u) + �L
2

(v))

= a(↵L
1

+ �L
2

)(u) + b(↵L
1

+ �L
2

)(v) .

Here the first line used the definition of (↵L
1

+ �L
2

), the second
line depended on the linearity of L

1

and L
2

, the third line was just
algebra and the fourth used the definition of (↵L

1

+ �L
2

) again.

(h) Yes. The easiest way to see this is the identification above of these
maps with bit-valued column vectors. In that notation, a basis is

n

�

1 0 0
�

,
�

0 1 0
�

,
�

0 0 1
�

o

.

Since this (spanning) set has three (linearly independent) ele-
ments, the vector space of linear maps B3 ! B has dimension 3.
This is an example of a general notion called the dual vector space.

11. ...

12. (a) If we callM =

✓

a b
b d

◆

, thenXTMX = ax2+2bxy+dy2. Similarly

putting C =

✓

c
e

◆

yields XTC+CTX = 2X C = 2cx+2ey. Thus

0 = ax2 + 2bxy + dy2 + 2cx+ 2ey + f

=
�

x y
�

✓

a b
b d

◆✓

x
y

◆

+
�

x y
�

✓

c
e

◆

+
�

c e
�

✓

x
y

◆

+ f .

(b) Yes, the matrix M is symmetric, so it will have a basis of eigen-
vectors and is similar to a diagonal matrix of real eigenvalues.

To find the eigenvalues notice that det

✓

a� � b
b d� �

◆

= (a �

�)(d� �)� b2 =
�

�� a+d

2

�

2 � b2 �
�

a�d

2

�

2

. So the eigenvalues are

� =
a+ d

2
+

r

b2 +
�a� d

2

�

2

and µ =
a+ d

2
�
r

b2 +
�a� d

2

�

2

.
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(c) The trick is to write

XTMX+CTX+XTC = (XT+CTM�1)M(X+M�1C)�CTM�1C ,

so that

(XT + CTM�1)M(X +M�1C) = CTMC � f .

Hence Y = X +M�1C and g = CTMC � f .

(d) The cosine of the angle between vectors V and W is given by

V Wp
V V W W

=
V TWp

V TV W TW
.

So replacing V ! PV and W ! PW will always give a factor
P TP inside all the products, but P TP = I for orthogonal matri-
ces. Hence none of the dot products in the above formula changes,
so neither does the angle between V and W .

(e) If we take the eigenvectors of M , normalize them (i.e. divide
them by their lengths), and put them in a matrix P (as columns)
then P will be an orthogonal matrix. (If it happens that � = µ,
then we also need to make sure the eigenvectors spanning the two
dimensional eigenspace corresponding to � are orthogonal.) Then,
since M times the eigenvectors yields just the eigenvectors back
again multiplied by their eigenvalues, it follows that MP = PD
where D is the diagonal matrix made from eigenvalues.

(f) If Y = PZ, then Y TMY = ZTP TMPZ = ZTP TPDZ = ZTDZ

where D =

✓

� 0
0 µ

◆

.

(g) Using part (f) and (c) we have

�z2 + µw2 = g .

(h) When � = µ and g/� = R2, we get the equation for a circle radius
R in the (z, w)-plane. When �, µ and g are postive, we have the
equation for an ellipse. Vanishing g along with � and µ of opposite
signs gives a pair of straight lines. When g is non-vanishing, but
� and µ have opposite signs, the result is a pair of hyperbolæ.
These shapes all come from cutting a cone with a plane, and are
therefore called conic sections.
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13. We show that L is bijective if and only if M is invertible.

(a) We suppose that L is bijective.

i. Since L is injective, its kernel consists of the zero vector alone.
Hence

L = dimkerL = 0.

So by the Dimension Formula,

dimV = L+ rankL = rankL.

Since L is surjective, L(V ) = W. Thus

rankL = dimL(V ) = dimW.

Thereby
dimV = rankL = dimW.

ii. Since dimV = dimW , the matrix M is square so we can talk
about its eigenvalues. Since L is injective, its kernel is the zero
vector alone. That is, the only solution to LX = 0 is X = 0

V

.
But LX is the same as MX, so the only solution to MX = 0
is X = 0

V

. So M does not have zero as an eigenvalue.

iii. Since MX = 0 has no non-zero solutions, the matrix M is
invertible.

(b) Now we suppose that M is an invertible matrix.

i. Since M is invertible, the system MX = 0 has no non-zero
solutions. But LX is the same as MX, so the only solution to
LX = 0 is X = 0

V

. So L does not have zero as an eigenvalue.

ii. Since LX = 0 has no non-zero solutions, the kernel of L is
the zero vector alone. So L is injective.

iii. Since M is invertible, we must have that dimV = dimW . By
the Dimension Formula, we have

dimV = L+ rankL

and since kerL = {0
V

} we have L = dimkerL = 0, so

dimW = dimV = rankL = dimL(V ).
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Since L(V ) is a subspace ofW with the same dimension asW ,
it must be equal to W . To see why, pick a basis B of L(V ).
Each element of B is a vector in W , so the elements of B form
a linearly independent set in W . Therefore B is a basis of W ,
since the size of B is equal to dimW . So L(V ) = spanB = W.
So L is surjective.

14. (a) F
4

= F
2

+ F
3

= 2 + 3 = 5.

(b) The number of pairs of doves in any given year equals the number
of the previous years plus those that hatch and there are as many
of them as pairs of doves in the year before the previous year.

(c) X
1

=

✓

F
1

F
0

◆

=

✓

1
0

◆

and X
2

=

✓

F
2

F
1

◆

=

✓

1
1

◆

.

MX
1

=

✓

1 1
1 0

◆✓

1
0

◆

=

✓

1
1

◆

= X
2

.

(d) We just need to use the recursion relationship of part (b) in the
top slot of X

n+1

:

X
n+1

=

✓

F
n+1

F
n

◆

=

✓

F
n

+ F
n�1

F
n

◆

=

✓

1 1
1 0

◆✓

F
n

F
n�1

◆

= MX
n

.

(e) Notice M is symmetric so this is guaranteed to work.

det

✓

1� � 1
1 ��

◆

= �(�� 1)� 1 =
�

�� 1

2

�

2 � 5

4
,

so the eigenvalues are 1±
p
5

2

. Hence the eigenvectors are

✓

1±
p
5

2

1

◆

,

respectively (notice that 1+

p
5

2

+ 1 = 1+

p
5

2

.1+
p
5

2

and 1�
p
5

2

+ 1 =
1�

p
5

2

.1�
p
5

2

). Thus M = PDP�1 with

D =

 

1+

p
5

2

0

0 1�
p
5

2

!

and P =

 

1+

p
5

2

1�
p
5

2

1 1

!

.

(f) Mn = (PDP�1)n = PDP�1PDP�1 . . . PDP�1 = PDnP�1.
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(g) Just use the matrix recursion relation of part (d) repeatedly:

X
n+1

= MX
n

= M2X
n�1

= · · · = MnX
1

.

(h) The eigenvalues are ' = 1+

p
5

2

and 1� ' = 1�
p
5

2

.

(i)

X
n+1

=

✓

F
n+1

F
n

◆

= MnX
n

= PDnP�1X
1

= P

✓

' 0
0 1� '

◆

n

 

1p
5

?

� 1p
5

?

!

✓

1
0

◆

= P

✓

'n 0
0 (1� ')n

◆

 

1p
5

� 1p
5

!

=

 

1+

p
5

2

1�
p
5

2

1 1

! 

'

n
p
5

� (1�')np
5

!

=

 

?
'

n�(1�')np
5

!

.

Hence

F
n

=
'n � (1� ')np

5
.

These are the famous Fibonacci numbers.

15. Call the three vectors u, v and w, respectively. Then

v? = v � u v

u u
u = v � 3

4
u =

0

B

B

B

@

1

4

�3

4

1

4

1

4

1

C

C

C

A

,

and

w? = w � u w

u u
u� v? w

v? v?
v? = w � 3

4
u�

3

4

3

4

v? =

0

B

B

@

�1
0
0
1

1

C

C

A

Dividing by lengths, an orthonormal basis for span{u, v, w} is
8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

1

2

1

2

1

2

1

2

1

C

C

C

C

A

,

0

B

B

B

B

@

p
3

6

�
p
3

2p
3

6p
3

6

1

C

C

C

C

A

,

0

B

B

B

B

@

�
p
2

2

0

0
p
2

2

1

C

C

C

C

A

9

>

>

>

>

=

>

>

>

>

;

.
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16. ...

17. ...

18. We show that L is bijective if and only if M is invertible.

(a) We suppose that L is bijective.

i. Since L is injective, its kernel consists of the zero vector alone.
So

L = dimkerL = 0.

So by the Dimension Formula,

dimV = L+ rankL = rankL.

Since L is surjective, L(V ) = W. So

rankL = dimL(V ) = dimW.

So
dimV = rankL = dimW.

ii. Since dimV = dimW , the matrix M is square so we can talk
about its eigenvalues. Since L is injective, its kernel is the zero
vector alone. That is, the only solution to LX = 0 is X = 0

V

.
But LX is the same as MX, so the only solution to MX = 0
is X = 0

V

. So M does not have zero as an eigenvalue.

iii. Since MX = 0 has no non-zero solutions, the matrix M is
invertible.

(b) Now we suppose that M is an invertible matrix.

i. Since M is invertible, the system MX = 0 has no non-zero
solutions. But LX is the same as MX, so the only solution to
LX = 0 is X = 0

V

. So L does not have zero as an eigenvalue.

ii. Since LX = 0 has no non-zero solutions, the kernel of L is
the zero vector alone. So L is injective.

iii. Since M is invertible, we must have that dimV = dimW . By
the Dimension Formula, we have

dimV = L+ rankL
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and since kerL = {0
V

} we have L = dimkerL = 0, so

dimW = dimV = rankL = dimL(V ).

Since L(V ) is a subspace ofW with the same dimension asW ,
it must be equal to W . To see why, pick a basis B of L(V ).
Each element of B is a vector in W , so the elements of B form
a linearly independent set in W . Therefore B is a basis of W ,
since the size of B is equal to dimW . So L(V ) = spanB = W.
So L is surjective.

19. ...
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D Points Vs. Vectors

This is an expanded explanation of this remark. People might interchange-
ably use the term point and vector in Rn, however these are not quite the
same concept. There is a notion of a point in Rn representing a vector, and
while we can do this in a purely formal (mathematical) sense, we really can-
not add two points together (there is the related notion of this using convex
combinations, but that is for a di↵erent course) or scale a point. We can
“subtract” two points which gives us the vector between as done which de-
scribing choosing the origin, thus if we take any point P , we can represent it
as a vector (based at the origin O) by taking v = P � O. Naturally (as we
should be able to) we can add vectors to points and get a point back.

To make all of this mathematically (and computationally) rigorous, we
“lift” Rn up to Rn+1 (sometimes written as eRn) by stating that all tu-
ples ep = (p1, p2, . . . , pn, 1) 2 Rn+1 correspond to a point p 2 Rn and ev =
(v1, . . . , vn, 0) 2 Rn+1 correspond to a vector v 2 Rn. Note that if the last
coordinate w is not 0 or 1, then it does not carry meaning in terms of Rn but
just exists in a formal sense. However we can project it down to a point by
scaling by 1

w

, and this concept is highly used in rendering computer graphics.
We also do a similar procedure for all matrices acting on Rn by the fol-

lowing. Let A be a k ⇥ n matrix, then when we lift, we get the following
(k + 1)⇥ (n+ 1) matrix

eA =

✓

A 0
0 1

◆

.

Note that we keep the last coordinate fixed, so we move points to points and
vectors to vectors. We can also act on Rn in a somewhat non-linear fashion
by taking matrices of the form

✓

⇤ ⇤
0 1

◆

and this still fixes the last coordinate. For example we can also represent
a translation, which is non-linear since it moves the origin, in the direction
v = (v1, v2, . . . , vn) by the following matrix

T
v

=

✓

I
n

v
0 1

◆

.

where I
n

is the n⇥ n identity matrix. Note that this is an invertible matrix
with determinant 1, and it is stronger, a translation is what is known an
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isometry on Rn (note it is not an isometry on Rn+1), an operator where
kT

v

xk = kxk for all vectors x 2 Rn.
A good exercises to try are to check that lifting R2 to R3 allows us to add,

subtract, and scale points and vectors as described and generates nonsense
when we can’t (i.e. adding two points gives us a 2 in the last coordinate,
so it is neither a point nor a vector). Another good exercise is to describe
all isometries of R2. As hint, you can get all of them by rotation about the
origin, reflection about a single line, and translation.
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E Abstract Concepts

Here we will introduce some abstract concepts which are mentioned or used
in this book. This is material is more advanced but will be interesting to
anybody wanting a deeper understanding of the underlying mathematical
structures behind linear algebra. In all cases below, we assume that the
given set is closed under the operation(s) introduced.

E.1 Dual Spaces

Definition A bounded operator is a linear operator � : V ! W such that
k�vk

W

 Ckvk
V

where C > 0 is a fixed constant.

Let V be a vector space over F, and a functional is a function � : V ! F.

Definition The dual space V ⇤ of a vector space V is the vector space of all
bounded linear functionals on V .

There is a natural basis {⇤
i

} for V ⇤ by ⇤
i

(e
j

) = �
ij

where {e
j

} is the
canonical (standard) basis for V and �

ij

is the Kronecker delta, which is 1
if i = j and 0 otherwise. Concretely for a finite dimensional vector space
V , we can associate V ⇤ with row vectors wT as a functional by the matrix
multiplication wTv for vectors v 2 V . Alternatively we can associated V ⇤

with vectors in V as a functional by taking the usual dot product. So the
basis for V ⇤ is eT

i

or he
i

, vi for vectors v 2 V .

E.2 Groups

Definition A group is a set G with a single operation · which satisfies the
axioms:

• Associativity (a · b) · c = a · (b · c) for all a, b, c 2 G.

• There exists an identity 1 2 G.

• There exists an inverse g�1 2 G for all g 2 G.

Groups can be finite or infinite, and notice that not alls element in a
group must commute (i.e., the order of multiplication can matter). Here are
some examples of groups:
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• Non-zero real numbers under multiplication.

• All real numbers under addition.

• All invertible n⇥ n real matrices.

• All n⇥ n real matrices of determinant 1.

• All permutations of [1, 2, . . . , n] under compositions.

• Any vector space under addition.

Note that all real numbers under multiplication is not a group since 0 does
not have an inverse.

E.3 Fields

Definition A field F is a set with two operations + and · that for all a, b, c 2
F the following axioms are satisfied:

A1. Addition is associative (a+ b) + c = a+ (b+ c).

A2. There exists an additive identity 0.

A3. Addition is commutative a+ b = b+ a.

A4. There exists an additive inverse �a.

M1. Multiplication is associative (a · b) · c = a · (b · c).

M2. There exists a multiplicative identity 1.

M3. Multiplication is commutative a · b = b · a.

M4. There exists a multiplicative inverse a�1 if a 6= 0.

D. The distributive law holds a · (b+ c) = ab+ ac.

Roughly, all of the above mean that you have notions of +, �, ⇥ and ÷ just
as for regular real numbers.

Fields are a very beautiful structure; some examples are Q, R, and C. We
note that every one of the these examples are infinite, however this does not
necessarily have to be the case. Let q � 0 and let Z

q

be the set of remainders
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of Z (the set of integers) by dividing by q. We say Z
q

is the set of all a
modulo q or a mod q for short or a ⌘ q where a 2 Z, and we define addition
and multiplication to be their usual counterparts in Z except we take the
result mod q. So for example we have Z

2

= {0, 1} where 1+1 = 2 ⌘ 0 (these
are exactly the bits used in bit matrices) and Z

3

= {0, 1, 2} with 1 + 1 = 2,
2 · 2 = 4 ⌘ 1. Now if p is a prime number, then Z

p

is a field (often written
as Z

p

). Clearly Z
2

is a field, and from above for Z
3

we have 2�1 = 2, so Z
3

is also a field. For Z
5

we have 2�1 = 3 since 2 · 3 = 6 ⌘ 1 and 4�1 = 4 since
4 · 4 = 16 ⌘ 1. Often when q = pn where p is a prime, then people will write
F
q

to reinforce that it is a field.

E.4 Rings

However Z
4

is not a field since 2 · 2 = 4 ⌘ 0 and 2 · 3 = 6 ⌘ 2. Similarly
Z is not a field since 2 does not have a multiplicative inverse. These are
known as rings. For rings all of the addition axioms hold, but none of the
multiplicative ones must.

Definition A ring R is a set with two operations + and · that for all a, b, c 2
R the following axioms are satisfied:

A1. Addition is associative (a+ b) + c = a+ (b+ c).

A2. There exists an additive identity 0.

A3. Addition is commutative a+ b = b+ a.

A4. There exists an additive inverse �a.

D. The distributive law holds a·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c.

Note that when we have axiom M3, then the two equations in axiom D are
equivalent.

Clearly all fields are rings, but rings in general are not nearly as nice
(for example, in Z

4

two things can be multiplied together to give you 0). An
important example of a ring is F[x], which is the ring of all polynomials in one
variable x with coe�cients in a field F. Recall that you can do everything you
want in a field except divide polynomials, but if you take the modulus with
respect to a polynomial which is not a product of two smaller polynomials,
you can get a field. We call such polynomials irreducible. In other words,
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you take a polynomial p and you set p ⌘ 0, thus this is just making sure
you don’t have ab ⌘ 0. For example, the polynomial p(x) = x2 + 1 cannot
be factored over R (i.e. with real coe�cients), so what you get is actually
the same field as C since we have x2 + 1 = 0 or perhaps more suggestively
x2 = �1. This is what is known as a field extension; these are the central
objects in Galois theory and are denoted F(↵) where ↵ is a root of p.

One final definition: We say that a field F has characteristic p if
P

p

i=1

1 ⌘
0 (i.e. we sum 1 together p times and return to 0). For example Z

3

has
characteristic 3 since 1 + 1 + 1 ⌘ 0, and in general Z

p

has characteristic p.
A good exercise is to find an irreducible degree 2 polynomial p in Z

2

[x],
and check that the field extension Z

2

(↵) has 4 elements and has characteris-
tic 2 (hence it is not actually Z

4

).

E.5 Algebras

Definition An algebra A is a vector space over F with the operation · such
that for all u, v, w 2 A and ↵, � 2 F, we have

D. The distributive law holds u · (v + w) = u · v + u · w and (u+ v) · w =
u · w + v · w.

S. We have (↵v) · (�w) = (↵�)(v · w).

Essentially an algebra is a ring that is also a vector space over some field.
Or in simpler words, an algebra is a vector space where you can multiply
vectors.

For example, all n⇥n real matrices M
n

(R) is a ring but we can let scalars
in R act on these matrices in their usual way. Another algebra is we can take
M

n

(R) but take scalars in C and just formally say iM is another element
in this algebra. Another example is R3 where multiplication is the cross-
product ⇥. We note that this is not associative nor commutative under ⇥
and that v⇥ v = 0 (so there are in fact no multiplicative inverses), and there
is no multiplicative identity. Lastly, recall that sl

n

defined here is an algebra
under [, ].
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F Sine and Cosine as an Orthonormal Basis

Definition Let ⌦ ✓ Rn for some n. Let Lp

0

(⌦) denote the space of all
continuous functions f : ⌦! R (or C) such that if p <1, then

✓

Z

⌦

|f(x)|p dx
◆

1/p

<1,

otherwise |f(x)| < M for some fixed M and all x 2 ⌦.

Note that this is a vector space over R (or C) under addition (in fact it is an
algebra under pointwise multiplication) with norm (the length of the vector)

kfk
p

=

✓

Z

⌦

|f(x)|p dx
◆

1/p

.

For example, the space L1

0

(R) is all absolutely integrable functions. However
note that not every di↵erentiable function is contained in Lp

0

(⌦); for example
we have

Z

R+

|1|p dx =

Z 1

0

dx = lim
x!1

x =1.

In particular, we can take S1, the unit circle in R2, and to turn this into
a valid integral, take ⌦ = [0, 2⇡) and take functions f : [0, 2⇡]! R such that
f(0) = f(2⇡) (or more generally for a periodic function f : R ! R where
f(x) = f(x + 2⇡n) for all n 2 Z). Additionally we can define an inner
product on H = L2

0

(S1) by taking

hf, gi =
Z

2⇡

0

f(x)g(x) dx,

and note that hf, fi = kfk2
2

. So the natural question to ask is what is a good
basis for H? The answer is sin(nx) and cos(nx) for all n 2 Z�0

, and in fact,
they are orthogonal. First note that

hsin(mx), sin(nx)i =
Z

2⇡

0

sin(mx) sin(nx) dx

=

Z

2⇡

0

cos((m� n)x)� cos((m+ n)x)

2
dx
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and if m 6= n, then we have

hsin(mx), sin(nx)i = sin((m� n)x)

2(m� n)

�

�

�

�

2⇡

0

� sin((m+ n)x)

2(m+ n)

�

�

�

�

2⇡

0

= 0.

However if m = n, then we have

hsin(mx), sin(mx)i =
Z

2⇡

0

1� cos(2mx)

2
dx = 2⇡,

so k sin(mx)k
2

=
p
2⇡, and similarly we have k cos(mx)k

2

=
p
2⇡. Finally

we have

hsin(mx), cos(nx)i =
Z

2⇡

0

sin(mx) cos(nx) dx

=

Z

2⇡

0

sin((m+ n)x) + sin((m� n)x)

2
dx

=
cos((m+ n)x)

2(m+ n)

�

�

�

�

2⇡

0

+
cos((m� n)x)

2(m� n)

�

�

�

�

2⇡

0

= 0.

Now it is not immediately apparent that we haven’t missed some basis vec-
tor, but this is a consequence of the Stone-Weierstrauss theorem. Now only
appealing to linear algebra, we have that einx is a also basis for L2(S1) (only
over C though) since

sin(nx) =
einx � e�inx

2i
, cos(nx) =

einx + einx

2
, einx = cos(nx) + i sin(nx)

is a linear change of basis.
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G Movie Scripts

The authors welcome your feedback on how useful these movies are for help-
ing you learn. We also welcome suggestions for other movie themes. You
might even like to try your hand at making your own!

G.1 Introductory Video

Three bears go into a cave, two come out.
Would you go in?
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G.2 What is Linear Algebra: Overview

In this course, we start with linear systems

8

>

<

>

:

f
1

(x
1

, . . . , x
m

) = a
1

...
...

f
n

(x
1

, . . . , x
m

) = a
n

,

(3)

and discuss how to solve them.
We end with the problem of finding a least squares fit---find

the line that best fits a given data set:

In equation (3) we have n linear functions called f
1

, . . . , f
n

, m
unknowns x

1

, . . . , x
m

and n given constants a
1

, . . . , a
n

. We need to say
what it means for a function to be linear. In one variable, a
linear function obeys the linearity property

f(a+ b) = f(a) + f(b) .

The solution to this is
f(x) = �x ,

for some constant �. The plot of this is just a straight line
through the origin with slope �
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We should also check that our solution obeys the linearity prop-
erty. The logic is to start with the left hand side f(a + b) and
try to turn it into the right hand side f(a) + f(b) using correct
manipulations:

f(a+ b) = �(a+ b) = �a+ �b = f(a) + f(b) .

The first step here just plugs a + b into f(x), the second is the
distributive property, and in the third we recognize that �a = f(a)
and �b = f(b). This proves our claim.

For functions of many variables, linearity must hold for every
slot. For a linear function of two variables f(x, y) this means

f(a+ b, c+ d) = f(a, c) + f(b, d) .

We finish with a question. The plot of f(x) = �x+� is a straight
line, but does it obey the linearity property?
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G.3 What is Linear Algebra: 3⇥ 3 Matrix Example

Your friend places a jar on a table and tells you that there is
65 cents in this jar with 7 coins consisting of quarters, nickels,
and dimes, and that there are twice as many dimes as quarters. Your
friend wants to know how many nickels, dimes, and quarters are in
the jar.

We can translate this into a system of the following linear
equations:

5n+ 10d+ 25q = 65

n+ d+ q = 7

d = 2q

Now we can rewrite the last equation in the form of �d + 2q = 0,
and thus express this problem as the matrix equation

0

@

5 10 25
1 1 1
0 �1 2

1

A

0

@

n
d
q

1

A =

0

@

65
7
0

1

A .

or as an augmented matrix (see also this script on the notation).

0

@

5 10 25 65
1 1 1 7
0 �1 2 0

1

A

Now to solve it, using our original set of equations and by sub-
stitution, we have

5n+ 20q + 25q = 5n+ 45q = 65

n+ 2q + q = n+ 3q = 7

and by subtracting 5 times the bottom equation from the top, we
get

45q � 15q = 30q = 65� 35 = 30

and hence q = 1. Clearly d = 2, and hence n = 7�2�1 = 4. Therefore
there are four nickels, two dimes, and one quarter.
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G.4 What is Linear Algebra: Hint

Looking at the problem statement we find some important informa-
tion, first that oranges always have twice as much sugar as ap-
ples, and second that the information about the barrel is recorded
as (s, f), where s = units of sugar in the barrel and f = number of
pieces of fruit in the barrel.

We are asked to find a linear transformation relating this new
representation to the one in the lecture, where in the lecture x =
the number of apples and y = the number of oranges. This means we
must create a system of equations relating the variable x and y to
the variables s and f in matrix form. Your answer should be the
matrix that transforms one set of variables into the other.

Hint: Let � represent the amount of sugar in each apple.

1. To find the first equation find a way to relate f to the
variables x and y.

2. To find the second equation, use the hint to figure out how
much sugar is in x apples, and y oranges in terms of �. Then
write an equation for s using x, y and �.
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G.5 Gaussian Elimination: Augmented Matrix Nota-
tion

Why is the augmented matrix

✓

1 1 27
2 �1 0

◆

,

equivalent to the system of equations

x+ y = 27

2x� y = 0 ?

Well the augmented matrix is just a new notation for the matrix
equation

✓

1 1
2 �1

◆✓

x
y

◆

=

✓

27
0

◆

and if you review your matrix multiplication remember that

✓

1 1
2 �1

◆✓

x
y

◆

=

✓

x+ y
2x� y

◆

This means that

✓

x+ y
2x� y

◆

=

✓

27
0

◆

Which is our original equation.
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G.6 Gaussian Elimination: Equivalence of Augmented
Matrices

Lets think about what it means for the two augmented matrices

✓

1 1 27
2 �1 0

◆

,

and

✓

1 0 9
0 1 18

◆

,

to be equivalent?
They are certainly not equal, because they don’t match in each

component, but since these augmented matrices represent a system,
we might want to introduce a new kind of equivalence relation.

Well we could look at the system of linear equations this rep-
resents

x+ y = 27

2x� y = 0 ?

and notice that the solution is x = 9 and y = 18. The other
augmented matrix represents the system

x+ 0 · y = 9

0 · x+ y = 18 ?

This which clearly has the same solution. The first and second
system are related in the sense that their solutions are the same.
Notice that it is really nice to have the augmented matrix in the
second form, because the matrix multiplication can be done in your
head.
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G.7 Gaussian Elimination: Hints for Review Ques-
tions 4 and 5

The hint for Review Question 4 is simple--just read the lecture on
Elementary Row Operations.

Question 5 looks harder than it actually is:

Row equivalence of matrices is an example of an equivalence

relation. Recall that a relation ⇠ on a set of objects U

is an equivalence relation if the following three properties

are satisfied:

• Reflexive: For any x 2 U, we have x ⇠ x.

• Symmetric: For any x, y 2 U, if x ⇠ y then y ⇠ x.

• Transitive: For any x, y and z 2 U, if x ⇠ y and y ⇠ z

then x ⇠ z.

(For a more complete discussion of equivalence relations, see

Webwork Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence

relation.

Firstly remember that an equivalence relation is just a more
general version of ‘‘equals’’. Here we defined row equivalence
for augmented matrices whose linear systems have solutions by the
property that their solutions are the same.

So this question is really about the word same. Lets do a silly
example: Lets replace the set of augmented matrices by the set of
people who have hair. We will call two people equivalent if they
have the same hair color. There are three properties to check:

• Reflexive: This just requires that you have the same hair
color as yourself so obviously holds.
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• Symmetric: If the first person, Bob (say) has the same hair
color as a second person Betty(say), then Bob has the same
hair color as Betty, so this holds too.

• Transitive: If Bob has the same hair color as Betty (say) and
Betty has the same color as Brenda (say), then it follows that
Bob and Brenda have the same hair color, so the transitive
property holds too and we are done.
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G.8 Gaussian Elimination: 3⇥ 3 Example

We’ll start with the matrix from the What is Linear Algebra: 3⇥ 3
Matrix Example which was

0

@

5 10 25 65
1 1 1 7
0 �1 2 0

1

A ,

and recall the solution to the problem was n = 4, d = 2, and q = 1.
So as a matrix equation we have

0

@

1 0 0
0 1 0
0 0 1

1

A

0

@

n
d
q

1

A =

0

@

4
2
1

1

A

or as an augmented matrix

0

@

1 4
1 2

1 1

1

A

Note that often in diagonal matrices people will either omit
the zeros or write in a single large zero. Now the first matrix is
equivalent to the second matrix and is written as

0

@

5 10 25 65
1 1 1 7
0 �1 2 0

1

A ,⇠

0

@

1 4
1 2

1 1

1

A

since they have the same solutions.
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G.9 Elementary Row Operations: Example

We have three basic rules

1. Row Swap

2. Scalar Multiplication

3. Row Sum

Lets look at an example. The system

3x+ y = 7

x+ 2y = 4

is something we learned to solve in high school algebra. Now we
can write it in augmented matrix for this way

✓

3 1 7
1 2 4

◆

.

We can see what these operations allow us to do:

1. Row swap allows us to switch the order of rows. In this exam-
ple there are only two equations, so I will switch them. This
will work with a larger system as well, but you have to decide
which equations to switch. So we get

x+ 2y = 4

3x+ y = 7

The augmented matrix looks like
✓

1 2 4
3 1 7

◆

.

Notice that this won’t change the solution of the system, but
the augmented matrix will look different. This is where we
can say that the original augmented matrix is equivalent to
the one with the rows swapped. This will work with a larger
system as well, but you have to decide which equations, or
rows to switch. Make sure that you don’t forget to switch the
entries in the right-most column.
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2. Scalar multiplication allows us to multiply both sides of an
equation by a non-zero constant. So if we are starting with

x+ 2y = 4

3x+ y = 7

Then we can multiply the first equation by �3 which is a non-
zero scalar. This operation will give us

�3x+�6y = �12
3x+ y = 7

which has a corresponding augmented matrix

✓

�3 �6 �12
3 1 7

◆

.

Notice that we have multiplied the entire first row by �3,
and this changes the augmented matrix, but not the solution
of the system. We are not allowed to multiply by zero because
it would be like replacing one of the equations with 0 =
0, effectively destroying the information contained in the
equation.

3. Row summing allows us to add one equation to another. In our
example we could start with

�3x+�6y = �12
3x+ y = 7

and replace the first equation with the sum of both equations.
So we get

�3x+ 3x+�6y + y = �12 + 7

3x+ y = 7,

which after some simplification is translates to

✓

0 �5 �5
3 1 7

◆

.
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When using this row operation make sure that you end up with
as many equations as you started with. Here we replaced the
first equation with a sum, but the second equation remained
untouched.

In the example, notice that the x-terms in the first equation
disappeared, which makes it much easier to solve for y. Think
about what the next steps for solving this system would be
using the language of elementary row operations.
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G.10 Elementary Row Operations: Worked Examples

Let us consider that we are given two systems of equations that
give rise to the following two (augmented) matrices:

0

@

2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

1

A

0

@

5 2 9
0 5 10
0 3 6

1

A

and we want to find the solution to those systems. We will do so
by doing Gaussian elimination.

For the first matrix we have
0

@

2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

1

A

R1$R2⇠

0

@

1 1 1 0 1
2 5 2 0 2
1 4 1 0 1

1

A

R2�2R1;R3�R1⇠

0

@

1 1 1 0 1
0 3 0 0 0
0 3 0 0 0

1

A

1
3R2⇠

0

@

1 1 1 0 1
0 1 0 0 0
0 3 0 0 0

1

A

R1�R2;R3�3R2⇠

0

@

1 0 1 0 1
0 1 0 0 0
0 0 0 0 0

1

A

1. We begin by interchanging the first two rows in order to get
a 1 in the upper-left hand corner and avoiding dealing with
fractions.

2. Next we subtract row 1 from row 3 and twice from row 2 to get
zeros in the left-most column.

3. Then we scale row 2 to have a 1 in the eventual pivot.

4. Finally we subtract row 2 from row 1 and three times from row 2
to get it into Row-Reduced Echelon Form.
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Therefore we can write x = 1 � �, y = 0, z = � and w = µ, or in
vector form

0

B

B

@

x
y
z
w

1

C

C

A

=

0

B

B

@

1
0
0
0

1

C

C

A

+ �

0

B

B

@

�1
0
1
0

1

C

C

A

+ µ

0

B

B

@

0
0
0
1

1

C

C

A

.

Now for the second system we have

0

@

5 2 9
0 5 10
0 3 6

1

A

1
5R2⇠

0

@

5 2 9
0 1 2
0 3 6

1

A

R3�3R2⇠

0

@

5 2 9
0 1 2
0 0 0

1

A

R1�2R2⇠

0

@

5 0 5
0 1 2
0 0 0

1

A

1
5R1⇠

0

@

1 0 1
0 1 2
0 0 0

1

A

We scale the second and third rows appropriately in order to avoid
fractions, then subtract the corresponding rows as before. Fi-
nally scale the first row and hence we have x = 1 and y = 2 as a
unique solution.
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G.11 Elementary Row Operations: Explanation of Proof
for Theorem 3.1

The first thing to realize is that there are choices in the Gaus-
sian elimination recipe, so maybe that could lead to two different
RREF’s and in turn two different solution sets for the same linear
system. But that would be weird, in fact this Theorem says that
this can never happen!

Because this proof comes at the end of the section it is often
glossed over, but it is a very important result. Here’s a sketch
of what happens in the video:

In words: we start with a linear system and convert it to an aug-
mented matrix. Then, because we are studying a uniqueness state-
ment, we try a proof by contradiction. That is the method where
to show that a statement is true, you try to demonstrate that the
opposite of the statement leads to a contradiction. Here, the
opposite statement to the theorem would be to find two different
RREFs for the same system.

Suppose, therefore, that Alice and Bob do find different RREF
augmented matrices called A and B. Then remove all the non-pivot
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columns from A and B until you hit the first column that differs.
Record that in the last column and call the results bA and bB.
Removing columns does change the solution sets, but it does not
ruin row equivalence, so bA and bB have the same solution sets.

Now, because we left only the pivot columns (plus the first
column that differs) we have

Â =

✓

I
N

a
0 0

◆

and B̂ =

✓

I
N

b
0 0

◆

,

where I
N

is an identity matrix and a and b are column vectors.
Importantly, by assumption,

a 6= b .

So if we try to wrote down the solution sets for bA and bB they
would be different. But at all stages, we only performed opera-
tions that kept Alice’s solution set the same as Bob’s. This is a
contradiction so the proof is complete.
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G.12 Elementary Row Operations: Hint for Review
Question 3

The first part for Review Question 3 is simple--just write out the
associated linear system and you will find the equation 0 = 6 which
is inconsistent. Therefore we learn that we must avoid a row of
zeros preceding a non-vanishing entry after the vertical bar.

Turning to the system of equations, we first write out the aug-
mented matrix and then perform two row operations

0

@

1 �3 0 6
1 0 3 �3
2 k 3� k 1

1

A

R2�R1;R3�2R1⇠

0

@

1 �3 0 6
0 3 3 �9
0 k + 6 3� k �11

1

A .

Next we would like to subtract some amount of R
2

from R
3

to achieve
a zero in the third entry of the second column. But if

k + 6 = 3� k ) k = �3

2
,

this would produce zeros in the third row before the vertical line.
You should also check that this does not make the whole third
line zero. You now have enough information to write a complete
solution.
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G.13 Solution Sets for Systems of Linear Equations:
Planes

Here we want to describe the mathematics of planes in space. The
video is summarised by the following picture:

A plane is often called R2 because it is spanned by two coordi-
nates, and space is called R3 and has three coordinates, usually
called (x, y, z). The equation for a plane is

ax+ by + cz = d .

Lets simplify this by calling V = (x, y, z) the vector of unknowns
and N = (a, b, c). Using the dot product in R3 we have

N V = d .

Remember that when vectors are perpendicular their dot products
vanish. I.e. U V = 0 , U ? V . This means that if a vector V

0

solves our equation N V = d, then so too does V
0

+ C whenever C
is perpendicular to N. This is because

N (V
0

+ C) = N V
0

+N C = d+ 0 = d .

But C is ANY vector perpendicular to N, so all the possibilities
for C span a plane whose normal vector is N. Hence we have shown
that solutions to the equation ax + by + cz = 0 are a plane with
normal vector N = (a, b, c).
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G.14 Solution Sets for Systems of Linear Equations:
Pictures and Explanation

This video considers solutions sets for linear systems with three
unknowns. These are often called (x, y, z) and label points in R3.
Lets work case by case:

• If you have no equations at all, then any (x, y, z) is a solu-
tion, so the solution set is all of R3. The picture looks a
little silly:

• For a single equation, the solution is a plane. This is ex-
plained in this video or the accompanying script. The picture
looks like this:

• For two equations, we must look at two planes. These usu-
ally intersect along a line, so the solution set will also
(usually) be a line:
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• For three equations, most often their intersection will be a
single point so the solution will then be unique:

• Of course stuff can go wrong. Two different looking equations
could determine the same plane, or worse equations could be
inconsistent. If the equations are inconsistent, there will
be no solutions at all. For example, if you had four equations
determining four parallel planes the solution set would be
empty. This looks like this:
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G.15 Solution Sets for Systems of Linear Equations:
Example

Here is an augmented matrix, let’s think about what the solution
set looks like

✓

1 0 3 2
0 1 0 1

◆

This looks like the system

x
1

+ 3x
3

= 2

x
2

= 1

Notice that when the system is written this way the copy of the

2 ⇥ 2 identity matrix

✓

1 0
0 1

◆

makes it easy to write a solution

in terms of the variables x
1

and x
2

. We will call x
1

and x
2

the

pivot variables. The third column

✓

3
0

◆

does not look like part of

an identity matrix, and there is no 3⇥ 3 identity in the augmented
matrix. Notice there are more variables than equations and that
this means we will have to write the solutions for the system in
terms of the variable x

3

. We’ll call x
3

the free variable.
Let x

3

= µ. Then we can rewrite the first equation in our system

x
1

+ 3x
3

= 2

x
1

+ 3µ = 2

x
1

= 2� 3µ.

Then since the second equation doesn’t depend on µ we can keep the
equation

x
2

= 1,

and for a third equation we can write

x
3

= µ
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so that we get system

0

@

x
1

x
2

x
3

1

A =

0

@

2� 3µ
1
µ

1

A

=

0

@

2
1
0

1

A+

0

@

�3µ
0
µ

1

A

=

0

@

2
1
0

1

A+ µ

0

@

�3
0
1

1

A .

So for any value of µ will give a solution of the system, and
any system can be written in this form for some value of µ. Since
there are multiple solutions, we can also express them as a set:

8

<

:

0

@

x
1

x
2

x
3

1

A =

0

@

2
1
0

1

A+ µ

0

@

�3
0
1

1

A µ 2 R

9

=

;

.
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G.16 Solution Sets for Systems of Linear Equations:
Hint

For the first part of this problem, the key is to consider the
vector as a n⇥ 1 matrix. For the second part, all you need to show
is that

M(↵ ·X + � · Y ) = ↵ · (MX) + � · (MY )

where ↵, � 2 R (or whatever field we are using) and

Y =

0

B

B

B

@

y1

y2

...
yk

1

C

C

C

A

.

Note that this will be somewhat tedious, and many people use sum-
mation notation or Einstein’s summation convention with the added
notation of M

j

denoting the j-th row of the matrix. For example,
for any j we have

(MX)
j

=
k

X

i=1

aj
i

xi = aj
i

xi.

You can see a concrete example after the definition of the lin-
earity property.
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G.17 Vectors in Space, n-Vectors: Overview

What is the space Rn. In short it is the usual vectors we are used
to. For example, if n = 1, then it is just the number line where we
either move in the positive or negative directions, and we clearly
have a notion of distance. This is something you should understand
well, but ultimately there is nothing really interesting that goes
on here.

Luckily when n = 2, things begin to get interesting. It is lucky
for us because we can represent this by drawing arrows on paper.
However what is interesting is that we no longer just have two
directions, but an infinite number which we typically encapsulate
as 0 to 2⇡ radians (i.e. 0 to 360 degrees). Recall that the length
of the vector is also known as its magnitude. We can add vectors
by putting them head to toe and we can scale our vectors, and this
concept is useful in physics such as Force Vector Diagrams. So why
is this system R2? The answer comes from trigonometry, and what
I have described is polar coordinates which you should be able to
translate back to the usual Cartesian coordinates of (x, y). You
still should be familiar with what things look like here.

Now for R3, if we look at this in Cartesian coordinates (x, y, z),
this is exactly the same as R2, just we can now move around in
our usual ‘‘3D’’ space by basically being able to draw in the air.
Now our notion of direction in somewhat more complicated using
azimuth and altitude (see Figure G.17 below), but it is secretly
still there. So we will just use the tuple to encapsulate the data
of it’s direction and magnitude. Also we can equivalently write
our tuple (x, y, z) as

0

@

x
y
z

1

A

so our notation is consistent with matrix multiplication. Thus
for all n � 3, we just use the tuple (x1, x2, . . . , xn) to encapsulate
our direction and magnitude and you can just treat vectors in Rn

the same way as you would for vectors in R2.
Just one final closing remark; I have been somewhat sloppy

through here on points and vectors, so make sure you read the
note: Points Versus Vectors or Appendix D.
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Azimuth

Altitude

Figure 2: The azimuth and altitude in spherical coordinates.

G.18 Vectors in Space, n-Vectors: Review of Paramet-
ric Notation

The equation for a plane in three variables x, y and z looks like

ax+ by + cz = d

where a, b, c, and d are constants. Lets look at the example

x+ 2y + 5z = 3 .

In fact this is a system of linear equations whose solutions form a
plane with normal vector (1, 2, 5). As an augmented matrix the system
is simply

⇣

1 2 5
�

�

�

3
⌘

.

This is actually RREF! So we can let x be our pivot variable and
y, z be represented by free parameters �

1

and �
2

:

x = �
1

, y = �
2

.

Thus we write the solution as

x = �2�
1

�5�
2

+3
y = �

1

z = �
2
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or in vector notation
0

@

x
y
z

1

A =

0

@

3
0
0

1

A+ �
1

0

@

�2
1
0

1

A+ �
2

0

@

�5
0
1

1

A .

This describes a plane parametric equation. Planes are ‘‘two-
dimensional’’ because they are described by two free variables.
Here’s a picture of the resulting plane:
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G.19 Vectors in Space, n-Vectors: The Story of Your
Life

This video talks about the weird notion of a ‘‘length-squared’’ for
a vector v = (x, t) given by ||v||2 = x2�t2 used in Einstein’s theory of
relativity. The idea is to plot the story of your life on a plane
with coordinates (x, t). The coordinate x encodes where an event
happened (for real life situations, we must replace x ! (x, y, z) 2
R3). The coordinate t says when events happened. Therefore you
can plot your life history as a worldline as shown:

Each point on the worldline corresponds to a place and time of an
event in your life. The slope of the worldline has to do with your
speed. Or to be precise, the inverse slope is your velocity. Ein-
stein realized that the maximum speed possible was that of light,
often called c. In the diagram above c = 1 and corresponds to the
lines x = ±t ) x2 � t2 = 0. This should get you started in your
search for vectors with zero length.
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G.20 Vector Spaces: Examples of Each Rule

Lets show that R2 is a vector space. To do this (unless we in-
vent some clever tricks) we will have to check all parts of the
definition. Its worth doing this once, so here we go:

Before we start, remember that for R2 we define vector addition
and scalar multiplication component-wise.

(+i) Additive closure: We need to make sure that when we add

✓

x
1

x
2

◆

and

✓

y
1

y
2

◆

that we do not get something outside the original

vector space R2. This just relies on the underlying structure
of real numbers whose sums are again real numbers so, using
our component-wise addition law we have

✓

x
1

x
2

◆

+

✓

y
1

y
2

◆

:=

✓

x
1

+ x
2

y
1

+ y
2

◆

2 R2 .

(+ii) Additive commutativity: We want to check that when we add any
two vectors we can do so in either order, i.e.

✓

x
1

x
2

◆

+

✓

y
1

y
2

◆

?

=

✓

y
1

y
2

◆

+

✓

x
1

x
2

◆

.

This again relies on the underlying real numbers which for
any x, y 2 R obey

x+ y = y + x .

This fact underlies the middle step of the following compu-
tation

✓

x
1

x
2

◆

+

✓

y
1

y
2

◆

=

✓

x
1

+ y
1

x
2

+ y
2

◆

=

✓

y
1

+ x
1

y
2

+ x
2

◆

=

✓

y
1

y
2

◆

+

✓

x
1

x
2

◆

,

which demonstrates what we wished to show.

(+iii) Additive Associativity: This shows that we needn’t specify
with parentheses which order we intend to add triples of vec-
tors because their sums will agree for either choice. What we
have to check is

✓✓

x
1

x
2

◆

+

✓

y
1

y
2

◆◆

+

✓

z
1

z
2

◆

?

=

✓

x
1

x
2

◆

+

✓✓

y
1

y
2

◆

+

✓

z
1

z
2

◆◆

.
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Again this relies on the underlying associativity of real
numbers:

(x+ y) + z = x+ (y + z) .

The computation required is

✓✓

x
1

x
2

◆

+

✓

y
1

y
2

◆◆

+

✓

z
1

z
2

◆

=

✓

x
1

+ y
1

x
2

+ y
2

◆

+

✓

z
1

z
2

◆

=

✓

(x
1

+ y
1

) + z
1

(x
2

+ y
2

) + z
2

◆

=

✓

x
1

+ (y
1

+ z
1

)
x
2

+ (y
2

+ z
2

)

◆

=

✓

x
1

y
1

◆

+

✓

y
1

+ z
1

y
2

+ z
2

◆

=

✓

x
1

x
2

◆

+

✓✓

y
1

y
2

◆

+

✓

z
1

z
2

◆◆

.

(iv) Zero: There needs to exist a vector ~0 that works the way we
would expect zero to behave, i.e.

✓

x
1

y
1

◆

+~0 =

✓

x
1

y
1

◆

.

It is easy to find, the answer is

~0 =

✓

0
0

◆

.

You can easily check that when this vector is added to any
vector, the result is unchanged.

(+v) Additive Inverse: We need to check that when we have

✓

x
1

x
2

◆

,

there is another vector that can be added to it so the sum is
~0. (Note that it is important to first figure out what ~0 is

here!) The answer for the additive inverse of

✓

x
1

x
2

◆

is

✓

�x
1

�x
2

◆

because
✓

x
1

x
2

◆

+

✓

�x
1

�x
2

◆

=

✓

x
1

� x
1

x
2

� x
2

◆

=

✓

0
0

◆

= ~0 .

We are half-way done, now we need to consider the rules for scalar
multiplication. Notice, that we multiply vectors by scalars (i.e.
numbers) but do NOT multiply a vectors by vectors.
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(·i) Multiplicative closure: Again, we are checking that an op-
eration does not produce vectors outside the vector space.

For a scalar a 2 R, we require that a

✓

x
1

x
2

◆

lies in R2. First

we compute using our component-wise rule for scalars times
vectors:

a

✓

x
1

x
2

◆

=

✓

ax
1

ax
2

◆

.

Since products of real numbers ax
1

and ax
2

are again real
numbers we see this is indeed inside R2.

(·ii) Multiplicative distributivity: The equation we need to check
is

(a+ b)

✓

x
1

x
2

◆

?

= a

✓

x
1

x
2

◆

+ b

✓

x
1

x
2

◆

.

Once again this is a simple LHS=RHS proof using properties of
the real numbers. Starting on the left we have

(a+ b)

✓

x
1

x
2

◆

=

✓

(a+ b)x
1

(a+ b)x
2

◆

=

✓

ax
1

+ bx
1

ax
2

+ bx
2

◆

=

✓

ax
1

ax
2

◆

+

✓

bx
1

bx
2

◆

= a

✓

x
1

x
2

◆

+ b

✓

x
1

x
2

◆

,

as required.

(·iii) Additive distributivity: This time we need to check the equa-
tion The equation we need to check is

a

✓✓

x
1

x
2

◆

+

✓

y
1

y
2

◆◆

?

= a

✓

x
1

x
2

◆

+ a

✓

y
1

y
2

◆

,

i.e., one scalar but two different vectors. The method is by
now becoming familiar

a

✓✓

x
1

x
2

◆

+

✓

y
1

y
2

◆◆

= a

✓✓

x
1

+ y
1

x
2

+ y
2

◆◆

=

✓

a(x
1

+ y
1

)
a(x

2

+ y
2

)

◆

=

✓

ax
1

+ ay
1

ax
2

+ ay
2

◆

=

✓

ax
1

ax
2

◆

+

✓

ay
1

ay
2

◆

= a

✓

x
1

x
2

◆

+ a

✓

y
1

y
2

◆

,

again as required.
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(·iv) Multiplicative associativity. Just as for addition, this is
the requirement that the order of bracketing does not matter.
We need to establish whether

(a.b) ·
✓

x
1

x
2

◆

?

= a ·
✓

b ·
✓

x
1

x
2

◆◆

.

This clearly holds for real numbers a.(b.x) = (a.b).x. The com-
putation is

(a.b)·
✓

x
1

x
2

◆

=

✓

(a.b).x
1

(a.b).x
2

◆

=

✓

a.(b.x
1

)
a.(b.x

2

)

◆

= a.

✓

(b.x
1

)
(b.x

2

)

◆

= a·
✓

b ·
✓

x
1

x
2

◆◆

,

which is what we want.

(·v) Unity: We need to find a special scalar acts the way we would
expect ‘‘1’’ to behave. I.e.

‘‘1’’ ·
✓

x
1

x
2

◆

=

✓

x
1

x
2

◆

.

There is an obvious choice for this special scalar---just the
real number 1 itself. Indeed, to be pedantic lets calculate

1 ·
✓

x
1

x
2

◆

=

✓

1.x
1

1.x
2

◆

=

✓

x
1

x
2

◆

.

Now we are done---we have really proven the R2 is a vector space
so lets write a little square ⇤ to celebrate.
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G.21 Vector Spaces: Example of a Vector Space

This video talks about the definition of a vector space. Even
though the defintion looks long, complicated and abstract, it is
actually designed to model a very wide range of real life situa-
tions. As an example, consider the vector space

V = {all possible ways to hit a hockey puck} .

The different ways of hitting a hockey puck can all be considered
as vectors. You can think about adding vectors by having two play-
ers hitting the puck at the same time. This picture shows vectors
N and J corresponding to the ways Nicole Darwitz and Jenny Potter
hit a hockey puck, plus the vector obtained when they hit the puck
together.

You can also model the new vector 2J obtained by scalar multi-
plication by 2 by thinking about Jenny hitting the puck twice (or
a world with two Jenny Potters....). Now ask yourself questions
like whether the multiplicative distributive law

2J + 2N = 2(J +N)

make sense in this context.
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G.22 Vector Spaces: Hint

I will only really worry about the last part of the problem. The
problem can be solved by considering a non-zero simple polynomial,
such as a degree 0 polynomial, and multiplying by i 2 C. That is
to say we take a vector p 2 PR

3

and then considering i · p. This
will violate one of the vector space rules about scalars, and you
should take from this that the scalar field matters.

As a second hint, consider Q (the field of rational numbers).
This is not a vector space over R since

p
2 · 1 =

p
2 /2 Q, so it is

not closed under scalar multiplication, but it is clearly a vector
space over Q.
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G.23 Linear Transformations: A Linear and A Non-
Linear Example

This video gives an example of a linear transformation as well as a
transformation that is not linear. In what happens below remember
the properties that make a transformation linear:

L(u+ v) = L(u) + L(v) and L(cu) = cL(u) .

The first example is the map

L : R2 �! R2 ,

via
✓

x
y

◆

7!
✓

2 �3
1 1

◆✓

x
y

◆

.

Here we focus on the scalar multiplication property L(cu) = cL(u)
which needs to hold for any scalar c 2 R and any vector u. The
additive property L(u+ v) = L(u) + L(v) is left as a fun exercise.
The calculation looks like this:

L(cu) = L

✓

c

✓

x
y

◆◆

= L

✓✓

cx
cy

◆◆

=

✓

2cx� 3cy
cx+ cy

◆

= c

✓

2x� 3y
x+ y

◆

= cL

✓✓

x
y

◆◆

= cL(u) .

The first equality uses the fact that u is a vector in R2, next
comes the rule for multiplying a vector by a number, then the
rule for the given linear transformation L is used. The c is
then factored out and we recognize that the vector next to c is
just our linear transformation again. This verifies the scalar
multiplication property L(cu) = cL(u).

For a non-linear example lets take the vector space R1 = R with

L : R �! R

via
x 7! x+ 1 .
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This looks linear because the variable x appears once, but the
constant term will be our downfall! Computing L(cx) we get:

L(cx) = cx+ 1 ,

but on the other hand

cL(x) = c(x+ 1) = cx+ c .

Now we see the problem, unless we are lucky and c = 1 the two
expressions above are not linear. Since we need L(cu) = cL(u) for
any c, the game is up! x 7! x+ 1 is not a linear transformation.
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G.24 Linear Transformations: Derivative and Integral
of (Real) Polynomials of Degree at Most 3

For this, we consider the vector space PR
3

of real coefficient
polynomials p such that the degree of deg p is at most 3. Let D
denote the usual derivative operator and we note that it is linear,
and we can write this as the matrix

D =

0

B

B

@

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

1

C

C

A

.

Similarly now consider the map I where I(f) =
R

f(x) dx is the
indefinite integral on any integrable function f. Now we first
note that for any ↵, � 2 R, we have

I(↵ · p+ � · q) =
Z

�

↵ · p(x) + � · q(x)
�

dx

= ↵

Z

p(x) dx+ �

Z

q(x) dx = ↵I(p) + �I(q),

so I is a linear map on functions. However we note that this is not
a well-defined map on vector spaces since the additive constant
states the image is not unique. For example I(3x2) = x3 + c where
c can be any constant. Therefore we have to perform a definite

integral instead, so we define I(f) :=
R

x

0

f(y) dy. The other thing
we could do is explicitly choose our constant, and we note that
this does not necessarily give the same map (ex. take the constant
to be non-zero with polynomials which in-fact will make it non-
linear).

Now going to our vector space PR
3

, if we take any p(x) = ↵x3 +
�x2 + �x+ �, then we have

I(p) =
↵

4
x4 +

�

3
x3 +

�

2
x2 + �x,

and we note that this is outside of PR
3

. So to make our image in
PR
3

, we formally set I(x3) = 0. Thus we can now (finally) write this
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as the linear map I : PR
3

! PR
3

as the matrix:

I =

0

B

B

@

0 0 0 0
1 0 0 0
0 1

2

0 0
0 0 1

3

0

1

C

C

A

.

Finally we have

ID =

0

B

B

@

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

and

DI =

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

C

C

A

,

and note the subspaces that are preserved under these composi-
tions.
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G.25 Linear Transformations: Linear Transformations
Hint

The first thing we see in the problem is a definition of this new
space P

n

. Elements of P
n

are polynomials that look like

a
0

+ a
1

t+ a
2

t2 + . . .+ a
n

tn

where the a
i

’s are constants. So this means if L is a linear
transformation from P

2

! P
3

that the inputs of L are degree two
polynomials which look like

a
0

+ a
1

t+ a
2

t2

and the output will have degree three and look like

b
0

+ b
1

t+ b
2

t2 + b
3

t3

We also know that L is a linear transformation, so what does
that mean in this case? Well, by linearity we know that we can
separate out the sum, and pull out the constants so we get

L(a
0

+ a
1

t+ a
2

t2) = a
0

L(1) + a
1

L(t) + a
2

L(t2)

Just this should be really helpful for the first two parts of the
problem. The third part of the problem is asking us to think about
this as a linear algebra problem, so lets think about how we could
write this in the vector notation we use in the class. We could
write

a
0

+ a
1

t+ a
2

t2 as

0

@

a
0

a
1

a
2

1

A

And think for a second about how you add polynomials, you match
up terms of the same degree and add the constants component-wise.
So it makes some sense to think about polynomials this way, since
vector addition is also component-wise.

We could also write the output

b
0

+ b
1

t+ b
2

t2 + b
3

t3 as

0

@

b
0

b
1

b
2

1

A b
3
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Then lets look at the information given in the problem and think
about it in terms of column vectors

• L(1) = 4 but we can think of the input 1 = 1 + 0t + 0t2 and the

output 4 = 4 + 0t+ 0t20t3 and write this as L(

0

@

1
0
0

1

A) =

0

B

B

@

4
0
0
0

1

C

C

A

• L(t) = t3 This can be written as L(

0

@

0
1
0

1

A) =

0

B

B

@

0
0
0
1

1

C

C

A

• L(t2) = t�1 It might be a little trickier to figure out how to
write t � 1 but if we write the polynomial out with the terms
in order and with zeroes next to the terms that do not appear,
we can see that

t� 1 = �1 + t+ 0t2 + 0t3 corresponds to

0

B

B

@

�1
1
0
0

1

C

C

A

So this can be written as L(

0

@

0
0
1

1

A) =

0

B

B

@

�1
1
0
0

1

C

C

A

Now to think about how you would write the linear transforma-
tion L as a matrix, first think about what the dimensions of
the matrix would be. Then look at the first two parts of this
problem to help you figure out what the entries should be.
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G.26 Matrices: Adjacency Matrix Example

Lets think about a graph as a mini-facebook. In this tiny facebook
there are only four people, Alice, Bob, Carl, and David.

Suppose we have the following relationships

• Alice and Bob are friends.

• Alice and Carl are friends.

• Carl and Bob are friends.

• David and Bob are friends.

Now draw a picture where each person is a dot, and then draw a
line between the dots of people who are friends. This is an example
of a graph if you think of the people as nodes, and the friendships
as edges.

Now lets make a 4 ⇥ 4 matrix, which is an adjacency matrix for
the graph. Make a column and a row for each of the four people. It
will look a lot like a table. When two people are friends put a 1
the the row of one and the column of the other. For example Alice
and Carl are friends so we can label the table below.

A B C D

A 1
B
C 1
D
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We can continue to label the entries for each friendship. Here
lets assume that people are friends with themselves, so the diag-
onal will be all ones.

A B C D

A 1 1 1 0
B 1 1 1 1
C 1 1 1 0
D 0 1 0 1

Then take the entries of this table as a matrix
0

B

B

@

1 1 1 0
1 1 1 1
1 1 1 0
0 1 0 1

1

C

C

A

Notice that this table is symmetric across the diagonal, the
same way a multiplication table would be symmetric. This is be-
cause on facebook friendship is symmetric in the sense that you
can’t be friends with someone if they aren’t friends with you too.
This is an example of a symmetric matrix.

You could think about what you would have to do differently to
draw a graph for something like twitter where you don’t have to
follow everyone who follows you. The adjacency matrix might not
be symmetric then.
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G.27 Matrices: Do Matrices Commute?

This video shows you a funny property of matrices. Some matrix
properties look just like those for numbers. For example numbers
obey

a(bc) = (ab)c

and so do matrices:
A(BC) = (AB)C.

This says the order of bracketing does not matter and is called
associativity. Now we ask ourselves whether the basic property of
numbers

ab = ba ,

holds for matrices
AB

?

= BA .

For this, firstly note that we need to work with square matrices
even for both orderings to even make sense. Lets take a simple
2⇥ 2 example, let

A =

✓

1 a
0 1

◆

, B =

✓

1 b
0 1

◆

, C =

✓

1 0
a 1

◆

.

In fact, computing AB and BA we get the same result

AB = BA =

✓

1 a+ b
0 1

◆

,

so this pair of matrices do commute. Lets try A and C:

AC =

✓

1 + a2 a
a 1

◆

, and CA =

✓

1 a
a 1 + a2

◆

so
AC 6= CA

and this pair of matrices does not commute. Generally, matrices
usually do not commute, and the problem of finding those that do
is a very interesting one.

306



G.28 Matrices: Hint for Review Question 4

This problem just amounts to remembering that the dot product of
x = (x

1

, x
2

, . . . , x
n

) and y = (y
1

, y
2

, . . . , y
n

) is

x
1

y
1

+ x
2

y
2

+ · · ·+ x
n

y
n

.

Then try multiplying the above row vector times yT and compare.
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G.29 Matrices: Hint for Review Question 5

The majority of the problem comes down to showing that matrices
are right distributive. Let M

k

is all n ⇥ k matrices for any n,
and define the map f

R

: M
k

! M
m

by f
R

(M) = MR where R is some
k⇥m matrix. It should be clear that f

R

(↵ ·M) = (↵M)R = ↵(MR) =
↵f

R

(M) for any scalar ↵. Now all that needs to be proved is that

f
R

(M +N) = (M +N)R = MR +NR = f
R

(M) + f
R

(N),

and you can show this by looking at each entry.
We can actually generalize the concept of this problem. Let V

be some vector space and M be some collection of matrices, and we
say that M is a left-action on V if

(M ·N) � v = M � (N � v)

for all M,N 2 N and v 2 V where · denoted multiplication in M
(i.e. standard matrix multiplication) and � denotes the matrix is
a linear map on a vector (i.e. M(v)). There is a corresponding
notion of a right action where

v � (M ·N) = (v �M) �N

where we treat v �M as M(v) as before, and note the order in which
the matrices are applied. People will often omit the left or right
because they are essentially the same, and just say that M acts
on V .
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G.30 Properties of Matrices: Matrix Exponential Ex-
ample

This video shows you how to compute

exp

✓

0 ✓
�✓ 0

◆

.

For this we need to remember that the matrix exponential is defined
by its power series

expM := I +M +
1

2!
M2 +

1

3!
M3 + · · · .

Now lets call
✓

0 ✓
�✓ 0

◆

= i✓

where the matrix

i :=

✓

0 1
�1 0

◆

and by matrix multiplication is seen to obey

i2 = �I , i3 = �i , i4 = I .

Using these facts we compute by organizing terms according to
whether they have an i or not:

exp i✓ = I +
1

2!
✓2(�I) + 1

4!
(+I) + · · ·

+ i✓ +
1

3!
✓3(�i) + 1

5!
i+ · · ·

= I(1� 1

2!
✓2 +

1

4!
✓4 + · · · )

+ i(✓ � 1

3!
✓3 +

1

5!
✓5 + · · · )

= I cos ✓ + i sin ✓

=

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

.

Here we used the familiar Taylor series for the cosine and sine
functions. A fun thing to think about is how the above matrix acts
on vector in the plane.
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G.31 Properties of Matrices: Explanation of the Proof

In this video we will talk through the steps required to prove

trMN = trNM .

There are some useful things to remember, first we can write

M = (mi

j

) and N = (ni

j

)

where the upper index labels rows and the lower one columns. Then

MN =
�

X

l

mi

l

nl

j

�

,

where the ‘‘open’’ indices i and j label rows and columns, but the
index l is a ‘‘dummy’’ index because it is summed over. (We could
have given it any name we liked!).

Finally the trace is the sum over diagonal entries for which
the row and column numbers must coincide

trM =
X

i

mi

i

.

Hence starting from the left of the statement we want to prove, we
have

LHS = trMN =
X

i

X

l

mi

l

nl

i

.

Next we do something obvious, just change the order of the entries
mi

l

and nl

i

(they are just numbers) so

X

i

X

l

mi

l

nl

i

=
X

i

X

l

nl

i

mi

l

.

Equally obvious, we now rename i! l and l ! i so
X

i

X

l

mi

l

nl

i

=
X

l

X

i

ni

l

ml

i

.

Finally, since we have finite sums it is legal to change the order
of summations

X

l

X

i

ni

l

ml

i

=
X

i

X

l

ni

l

ml

i

.
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This expression is the same as the one on the line above where we
started except the m and n have been swapped so

X

i

X

l

mi

l

nl

i

= trNM = RHS .

This completes the proof. ⇤
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G.32 Properties of Matrices: A Closer Look at the
Trace Function

This seemingly boring function which extracts a single real number
does not seem immediately useful, however it is an example of an
element in the dual-space of all n ⇥ n matrices since it is a
bounded linear operator to the underlying field F. By a bounded
operator, I mean it will at most scale the length of the matrix
(think of it as a vector in Fn

2
) by some fixed constant C > 0 (this

can depend upon n), and for example if the length of a matrix M
is d, then tr(M)  Cd (I believe C = 1 should work).

Some other useful properties is for block matrices, it should
be clear that we have

tr

✓

A B
C D

◆

= trA+ trD.

and that

tr(PAP�1) = tr
�

P (AP�1)
�

= tr
�

(AP�1)P
�

= tr(AP�1P ) = tr(A)

so the trace function is conjugate (i.e. similarity) invariant.
Using a concept from Chapter 17, it is basis invariant. Addition-
ally in later chapters we will see that the trace function can be
used to calculate the determinant (in a sense it is the derivative
of the determinant, see Lecture 13 Problem 5) and eigenvalues.

Additionally we can define the set sl
n

as the set of all n ⇥ n
matrices with trace equal to 0, and since the trace is linear and
a ·0 = 0, we note that sl

n

is a vector space. Additionally we can use
the fact tr(MN) = tr(NM) to define an operation called bracket

[M,N ] = MN �NM,

and we note that sl
n

is closed under bracket since

tr(MN �NM) = tr(MN)� tr(NM) = tr(MN)� tr(MN) = 0.
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G.33 Properties of Matrices: Matrix Exponent Hint

This is a hint for computing exponents of matrices. So what is eA

if A is a matrix? We remember that the Taylor series for

ex =
1
X

n=0

xn

n!
.

So as matrices we can think about

eA =
1
X

n=0

An

n!
.

This means we are going to have an idea of what An looks like for
any n. Lets look at the example of one of the matrices in the
problem. Let

A =

✓

1 �
0 1

◆

.

Lets compute An for the first few n.

A0 =

✓

1 0
0 1

◆

A1 =

✓

1 �
0 1

◆

A2 = A · A =

✓

1 2�
0 1

◆

A3 = A2 · A =

✓

1 3�
0 1

◆

.

There is a pattern here which is that

An =

✓

1 n�
0 1

◆

,

then we can think about the first few terms of the sequence

eA =
1
X

n=0

An

n!
= A0 + A+

1

2!
A2 +

1

3!
A3 + . . . .
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Looking at the entries when we add this we get that the upper left-
most entry looks like this:

1 + 1 +
1

2
+

1

3!
+ . . . =

1
X

n=0

1

n!
= e1.

Continue this process with each of the entries using what you know
about Taylor series expansions to find the sum of each entry.
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G.34 Inverse Matrix: A 2⇥ 2 Example

Lets go though and show how this 2 ⇥ 2 example satisfies all of
these properties. Lets look at

M =

✓

7 3
11 5

◆

We have a rule to compute the inverse

✓

a b
c d

◆�1

=
1

ad� bc

✓

d �b
�c a

◆

So this means that

M�1 =
1

35� 33

✓

5 �3
�11 7

◆

Lets check that M�1M = I = MM�1.

M�1M =
1

35� 33

✓

5 �3
�11 7

◆✓

7 3
11 5

◆

=
1

2

✓

2 0
0 2

◆

= I

You can compute MM�1, this should work the other way too.
Now lets think about products of matrices

Let A =

✓

1 3
1 5

◆

and B =

✓

1 0
2 1

◆

Notice that M = AB. We have a rule which says that (AB)�1 =
B�1A�1. Lets check to see if this works

A�1 =
1

2

✓

5 �3
�1 1

◆

and B�1 =

✓

1 0
�2 1

◆

and

B�1A�1 =

✓

1 0
�2 1

◆✓

5 �3
�1 1

◆

=
1

2

✓

2 0
0 2

◆
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G.35 Inverse Matrix: Hints for Problem 3

First I want to state that (b) implies (a) is the easy direction
by just thinking about what it means for M to be non-singular and
for a linear function to be well-defined. Therefore we assume that
M is singular which implies that there exists a non-zero vector
X

0

such that MX
0

= 0. Now assume there exists some vector X
V

such that MX
V

= V , and look at what happens to X
V

+ c · X
0

for
any c in your field. Lastly don’t forget to address what happens
if X

V

does not exist.

316



G.36 Inverse Matrix: Left and Right Inverses

This video is a hint for question 4 in the Inverse Matrixlec-
ture 10. In the lecture, only inverses for square matrices were
discussed, but there is a notion of left and right inverses for
matrices that are not square. It helps to look at an example with
bits to see why. To start with we look at vector spaces

Z3

2

= {(x, y, z)|x, y, z = 0, 1} and Z
2

2

2

.

These have 8 and 4 vectors, respectively, that can be depicted as
corners of a cube or square:

Z3

2

or Z2

2

Now lets consider a linear transformation

L : Z3

2

�! Z2

2

.

This must be represented by a matrix, and lets take the example

L

0

@

x
y
z

1

A =

✓

0 1 1
1 1 0

◆

0

@

x
y
z

1

A := AX .
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Since we have bits, we can work out what L does to every vector,
this is listed below

(0, 0, 0)
L7! (0, 0)

(0, 0, 1)
L7! (1, 0)

(1, 1, 0)
L7! (1, 0)

(1, 0, 0)
L7! (0, 1)

(0, 1, 1)
L7! (0, 1)

(0, 1, 0)
L7! (1, 1)

(1, 0, 1)
L7! (1, 1)

(1, 1, 1)
L7! (1, 1)

Now lets think about left and right inverses. A left inverse B to
the matrix A would obey

BA = I

and since the identity matrix is square, B must be 2⇥ 3. It would
have to undo the action of A and return vectors in Z3

2

to where
they started from. But above, we see that different vectors in Z3

2

are mapped to the same vector in Z2

2

by the linear transformation
L with matrix A. So B cannot exist. However a right inverse C
obeying

AC = I

can. It would be 2 ⇥ 2. Its job is to take a vector in Z2

2

back to
one in Z3

2

in a way that gets undone by the action of A. This can
be done, but not uniquely.
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G.37 LU Decomposition: Example: How to Use LU
Decomposition

Lets go through how to use a LU decomposition to speed up solving
a system of equations. Suppose you want to solve for x in the
equation Mx = b

0

@

1 0 �5
3 �1 �14
1 0 �3

1

Ax =

0

@

6
19
4

1

A

where you are given the decomposition of M into the product of
L and U which are lower and upper and lower triangular matrices
respectively.

M =

0

@

1 0 �5
3 �1 �14
1 0 �3

1

A =

0

@

1 0 0
3 1 0
1 0 2

1

A

0

@

1 0 �5
0 �1 1
0 0 1

1

A = LU

First you should solve L(Ux) = b for Ux. The augmented matrix you
would use looks like this

0

@

1 0 0 6
3 1 0 19
1 0 2 4

1

A

This is an easy augmented matrix to solve because it is upper
triangular. If you were to write out the three equations using
variables, you would find that the first equation has already been
solved, and is ready to be plugged into the second equation. This
backward substitution makes solving the system much faster. Try
it and in a few steps you should be able to get

0

@

1 0 0 6
0 1 0 1
0 0 1 �1

1

A

This tells us that Ux =

0

@

6
1
�1

1

A. Now the second part of the problem

is to solve for x. The augmented matrix you get is
0

@

1 0 �5 6
0 �1 1 1
0 0 1 �1

1

A
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It should take only a few step to transform it into

0

@

1 0 0 1
0 1 0 �2
0 0 1 �1

1

A ,

which gives us the answer x =

0

@

1
�2
�1

1

A.
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G.38 LU Decomposition: Worked Example

Here we will perform an LU decomposition on the matrix

M =

0

@

1 7 2
�3 �21 4
1 6 3

1

A

following the procedure outlined in Section 11.2. So initially we
have L

1

= I
3

and U
1

= M, and hence

L
2

=

0

@

1 0 0
�3 1 0
1 0 1

1

A U
2

=

0

@

1 7 2
0 0 10
0 �1 �1

1

A .

However we now have a problem since 0 · c = 0 for any value of c
since we are working over a field, but we can quickly remedy this
by swapping the second and third rows of U

2

to get U 0
2

and note that
we just interchange the corresponding rows all columns left of and
including the column we added values to in L

2

to get L0
2

. Yet this
gives us a small problem as L0

2

U 0
2

6= M; in fact it gives us the
similar matrix M 0 with the second and third rows swapped. In our
original problem MX = V , we also need to make the corresponding
swap on our vector V to get a V 0 since all of this amounts to
changing the order of our two equations, and note that this clearly
does not change the solution. Back to our example, we have

L0
2

=

0

@

1 0 0
1 1 0
�3 0 1

1

A U 0
2

=

0

@

1 7 2
0 �1 �1
0 0 10

1

A ,

and note that U 0
2

is upper triangular. Finally you can easily see
that

L0
2

U 0
2

=

0

@

1 7 2
1 6 3
�3 �21 4

1

A = M 0

which solves the problem of L0
2

U 0
2

X = M 0X = V 0. (We note that as
augmented matrices (M 0|V 0) ⇠ (M |V ).)
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G.39 LU Decomposition: Block LDU Explanation

This video explains how to do a block LDU decomposition. Firstly
remember some key facts about block matrices: It is important that
the blocks fit together properly. For example, if we have matrices

matrix shape

X r ⇥ r
Y r ⇥ t
Z t⇥ r
W t⇥ t

we could fit these together as a (r+ t)⇥ (r+ t) square block matrix

M =

✓

X Y
Z W

◆

.

Matrix multiplication works for blocks just as for matrix entries:

M2 =

✓

X Y
Z W

◆✓

X Y
Z W

◆

=

✓

X2 + Y Z XY + YW
ZX +WZ ZY +W 2

◆

.

Now lets specialize to the case where the square matrix X has an
inverse. Then we can multiply out the following triple product
of a lower triangular, a block diagonal and an upper triangular
matrix:

✓

I 0
ZX�1 I

◆✓

X 0
0 W � ZX�1Y

◆✓

I X�1Y
0 I

◆

=

✓

X 0
Z W � ZX�1Y

◆✓

I X�1Y
0 I

◆

=

✓

X Y
ZX�1Y + Z W � ZX�1Y

◆

=

✓

X Y
Z W

◆

= M .

This shows that the LDU decomposition given in Section 11 is
correct.
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G.40 Elementary Matrices and Determinants: Permu-
tations

Lets try to get the hang of permutations. A permutation is a
function which scrambles things. Suppose we had

This looks like a function � that has values

�(1) = 3, �(2) = 2, �(3) = 4, �(4) = 1

Then we could write this as


1 2 3 4
�(1) �(2) �(3) �(4)

�

=



1 2 3 4
3 2 4 1

�

We could write this permutation in two steps by saying that first
we swap 3 and 4, and then we swap 1 and 3. The order here is
important.

This is an even permutation, since the number of swaps we used
is two (an even number).
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G.41 Elementary Matrices and Determinants: Some
Ideas Explained

This video will explain some of the ideas behind elementary matri-
ces. First think back to linear systems, for example n equations
in n unknowns:

8

>

>

>

>

<

>

>

>

>

:

a1
1

x1 + a1
2

x2 + · · ·+ a1
n

xn = v1

a2
1

x1 + a2
2

x2 + · · ·+ a2
n

xn = v2

...

an
1

x1 + an
2

x2 + · · ·+ an
n

xn = vn .

We know it is helpful to store the above information with matrices
and vectors

M :=

0

B

B

B

@

a1
1

a1
2

· · · a1
n

a2
1

a2
2

· · · a2
n

...
...

...
an
1

an
2

· · · an
n

1

C

C

C

A

, X :=

0

B

B

B

@

x1

x2

...
xn

1

C

C

C

A

, V :=

0

B

B

B

@

v1

v2

...
vn

1

C

C

C

A

.

Here we will focus on the case the M is square because we are
interested in its inverse M�1 (if it exists) and its determinant
(whose job it will be to determine the existence of M�1).

We know at least three ways of handling this linear system prob-
lem:

1. As an augmented matrix
�

M V
�

.

Here our plan would be to perform row operations until the
system looks like

�

I M�1V
�

,

(assuming that M�1 exists).

2. As a matrix equation
MX = V ,

which we would solve by finding M�1 (again, if it exists),
so that

X = M�1V .
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3. As a linear transformation

L : Rn �! Rn

via
Rn 3 X 7�!MX 2 Rn .

In this case we have to study the equation L(X) = V because
V 2 Rn.

Lets focus on the first two methods. In particular we want to
think about how the augmented matrix method can give information
about finding M�1. In particular, how it can be used for handling
determinants.

The main idea is that the row operations changed the augmented
matrices, but we also know how to change a matrix M by multiplying
it by some other matrix E, so that M ! EM. In particular can
we find ‘‘elementary matrices’’ the perform row operations?

Once we find these elementary matrices is is very important to
ask how they effect the determinant, but you can think about that
for your own self right now.

Lets tabulate our names for the matrices that perform the var-
ious row operations:

Row operation Elementary Matrix

R
i

$ R
j

Ei

j

R
i

! �R
i

Ri(�)

R
i

! R
i

+ �R
j

Si

j

(�)

To finish off the video, here is how all these elementary ma-
trices work for a 2⇥ 2 example. Lets take

M =

✓

a b
c d

◆

.

A good thing to think about is what happens to detM = ad� bc under
the operations below.

• Row swap:

E1

2

=

✓

0 1
1 0

◆

, E1

2

M =

✓

0 1
1 0

◆✓

a b
c d

◆

=

✓

c d
a b

◆

.
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• Scalar multiplying:

R1(�) =

✓

� 0
0 1

◆

, E1

2

M =

✓

� 0
0 1

◆✓

a b
c d

◆

=

✓

�a �b
c d

◆

.

• Row sum:

S1

2

(�) =

✓

1 �
0 1

◆

, S1

2

(�)M =

✓

1 �
0 1

◆✓

a b
c d

◆

=

✓

a+ �c b+ �d
c d

◆

.
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G.42 Elementary Matrices and Determinants: Hints
for Problem 4

Here we will examine the inversion number and the effect of the
transposition ⌧

1,2

and ⌧
2,4

on the permutation ⌫ = [3, 4, 1, 2]. Recall
that the inversion number is basically the number of items out of
order. So the inversion number of ⌫ is 4 since 3 > 1 and 4 > 1 and
3 > 2 and 4 > 2. Now we have ⌧

1,2

⌫ = [4, 3, 1, 2] by interchanging the
first and second entries, and the inversion number is now 5 since
we now also have 4 > 3. Next we have ⌧

2,4

⌫ = [3, 2, 1, 4] whose inversion
number is 3 since 3 > 2 > 1. Finally we have ⌧

1,2

⌧
2,4

⌫ = [2, 3, 1, 4] and
the resulting inversion number is 2 since 2 > 1 and 3 > 1. Notice
how when we are applying ⌧

i,j

the parity of the inversion number
changes.
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G.43 Elementary Matrices and Determinants II: Ele-
mentary Determinants

This video will show you how to calculate determinants of elemen-
tary matrices. First remember that the job of an elementary row
matrix is to perform row operations, so that if E is an elementary
row matrix and M some given matrix,

EM

is the matrix M with a row operation performed on it.
The next thing to remember is that the determinant of the iden-

tity is 1. Moreover, we also know what row operations do to deter-
minants:

• Row swap Ei

j

: flips the sign of the determinant.

• Scalar multiplication Ri(�): multiplying a row by � multi-
plies the determinant by �.

• Row addition Si

j

(�): adding some amount of one row to another
does not change the determinant.

The corresponding elementary matrices are obtained by performing
exactly these operations on the identity:

Ei

j

=

0

B

B

B

B

B

B

B

B

B

B

B

@

1
...

0 1
...

1 0
...

1

1

C

C

C

C

C

C

C

C

C

C

C

A

,

Ri(�) =

0

B

B

B

B

B

B

@

1
...

�
...

1

1

C

C

C

C

C

C

A

,
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Si

j

(�) =

0

B

B

B

B

B

B

B

B

B

B

@

1
...

1 �
...

1
...

1

1

C

C

C

C

C

C

C

C

C

C

A

So to calculate their determinants, we just have to apply the above
list of what happens to the determinant of a matrix under row
operations to the determinant of the identity. This yields

detEi

j

= �1 , detRi(�) = � , detSi

j

(�) = 1 .
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G.44 Elementary Matrices and Determinants II: De-
terminants and Inverses

Lets figure out the relationship between determinants and in-
vertibility. If we have a system of equations Mx = b and we
have the inverse M�1 then if we multiply on both sides we get
x = M�1Mx = M�1b. If the inverse exists we can solve for x and
get a solution that looks like a point.

So what could go wrong when we want solve a system of equations
and get a solution that looks like a point? Something would go
wrong if we didn’t have enough equations for example if we were
just given

x+ y = 1

or maybe, to make this a square matrix M we could write this as

x+ y = 1

0 = 0

The matrix for this would be M =



1 1
0 0

�

and det(M) = 0. When we

compute the determinant, this row of all zeros gets multiplied in
every term. If instead we were given redundant equations

x+ y = 1

2x+ 2y = 2

The matrix for this would be M =



1 1
2 2

�

and det(M) = 0. But we

know that with an elementary row operation, we could replace the
second row with a row of all zeros. Somehow the determinant is
able to detect that there is only one equation here. Even if we
had a set of contradictory set of equations such as

x+ y = 1

2x+ 2y = 0,

where it is not possible for both of these equations to be true,
the matrix M is still the same, and still has a determinant zero.
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Lets look at a three by three example, where the third equation
is the sum of the first two equations.

x+ y + z = 1

y + z = 1

x+ 2y + 2z = 2

and the matrix for this is

M =

2

4

1 1 1
0 1 1
1 2 2

3

5

If we were trying to find the inverse to this matrix using ele-
mentary matrices

0

@

1 1 1 1 0 0
0 1 1 0 1 0
1 2 2 0 0 1

1

A =

0

@

1 1 1 1 0 0
0 1 1 0 1 0
0 0 0 �1 �1 1

1

A

And we would be stuck here. The last row of all zeros cannot be
converted into the bottom row of a 3 ⇥ 3 identity matrix. this
matrix has no inverse, and the row of all zeros ensures that the
determinant will be zero. It can be difficult to see when one of
the rows of a matrix is a linear combination of the others, and what
makes the determinant a useful tool is that with this reasonably
simple computation we can find out if the matrix is invertible,
and if the system will have a solution of a single point or column
vector.
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G.45 Elementary Matrices and Determinants II: Prod-
uct of Determinants

Here we will prove more directly that the determinant of a prod-
uct of matrices is the product of their determinants. First we
reference that for a matrix M with rows r

i

, if M 0 is the matrix
with rows r0

j

= r
j

+ �r
i

for j 6= i and r0
i

= r
i

, then det(M) = det(M 0)
Essentially we have M 0 as M multiplied by the elementary row sum
matrices Si

j

(�). Hence we can create an upper-triangular matrix
U such that det(M) = det(U) by first using the first row to set
m1

i

7! 0 for all i > 1, then iteratively (increasing k by 1 each
time) for fixed k using the k-th row to set mk

i

7! 0 for all i > k.
Now note that for two upper-triangular matrices U = (uj

i

) and
U 0 = (u0j

i

), by matrix multiplication we have X = UU 0 = (xj

i

) is
upper-triangular and xi

i

= ui

i

u0i
i

. Also since every permutation would
contain a lower diagonal entry (which is 0) have det(U) =

Q

i

ui

i

.
Let A and A0 have corresponding upper-triangular matrices U and
U 0 respectively (i.e. det(A) = det(U)), we note that AA0 has a
corresponding upper-triangular matrix UU 0, and hence we have

det(AA0) = det(UU 0) =
Y

i

ui

i

u0i
i

=

 

Y

i

ui

i

! 

Y

i

u0i
i

!

= det(U) det(U 0) = det(A) det(A0).
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G.46 Properties of the Determinant: Practice taking
Determinants

Lets practice taking determinants of 2⇥ 2 and 3⇥ 3 matrices.
For 2⇥ 2 matrices we have a formula

det



a b
c d

�

= ad� bc

This formula can be easier to remember when you think about this
picture.

Now we can look at three by three matrices and see a few ways
to compute the determinant. We have a similar pattern for 3 ⇥ 3
matrices.

Consider the example

det

2

4

1 2 3
3 1 2
0 0 1

3

5 = ((1·1·1)+(2·2·0)+(3·3·0))�((3·1·0)+(1·2·0)+(3·2·1)) = �5

We can draw a picture with similar diagonals to find the terms that
will be positive and the terms that will be negative.
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Another way to compute the determinant of a matrix is to use
this recursive formula. Here I take the coefficients of the first
row and multiply them by the determinant of the minors and the
cofactor. Then we can use the formula for a two by two determinant
to compute the determinant of the minors

det

2

4

1 2 3
3 1 2
0 0 1

3

5 = 1

�

�

�

�

1 2
0 1

�

�

�

�

�2
�

�

�

�

3 2
0 1

�

�

�

�

+3

�

�

�

�

3 1
0 0

�

�

�

�

= 1(1�0)�2(3�0)+3(0�0) = �5

Decide which way you prefer and get good at taking determinants,
you’ll need to compute them in a lot of problems.
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G.47 Properties of the Determinant: The Adjoint
Matrix

In this video we show how the adjoint matrix works in detail for
the 3x3 case. Recall, that for a 2⇥ 2 matrix

M =

✓

a b
c d

◆

,

the matrix

N =

✓

d �b
�c a

◆

had the marvelous property

MN = (detM) I

(you can easily check this for yourself). We call

N := adjM ,

the adjoint matrix of M. When the determinant detM 6= 0, we can
use it to immediately compute the inverse

M�1 =
1

detM
adjM .

Lets now think about a 3⇥ 3 matrix

M =

0

@

a b c
d e f
g h i

1

A .

The first thing to remember is that we can compute the determinant
by expanding in a row and computing determinants of minors, so

detM = a det

✓

a b
c d

◆

� b det

✓

d g
f i

◆

+ c det

✓

e f
h i

◆

.

We can think of this as the product of a row and column vector

detM =
⇣

a b c
⌘

0

B

B

B

B

B

B

@

det

✓

a b
c d

◆

� det

✓

d g
f i

◆

det

✓

e f
h i

◆

1

C

C

C

C

C

C

A

.
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Now, we try a little experiment. Lets multiply the same column
vector by the other two rows of M

⇣

d e f
⌘

0

B

B

B

B

B

B

@

det

✓

a b
c d

◆

� det

✓

d g
f i

◆

det

✓

e f
h i

◆

1

C

C

C

C

C

C

A

= 0 =
⇣

g h i
⌘

0

B

B

B

B

B

B

@

det

✓

a b
c d

◆

� det

✓

d g
f i

◆

det

✓

e f
h i

◆

1

C

C

C

C

C

C

A

The answer, ZERO, for both these computations, has been written in
already because it is obvious. This is because these two computa-
tions are really computing

det

0

@

d e f
d e f
g h i

1

A and det

0

@

g h i
d e f
g h i

1

A .

These vanish because the determinant of an matrix with a pair of
equal rows is zero. Thus we have found a nice result

M

0

B

B

B

B

B

B

@

det

✓

a b
c d

◆

� det

✓

d g
f i

◆

det

✓

e f
h i

◆

1

C

C

C

C

C

C

A

= detM

0

@

1
0
0

1

A .

Notice the answer is the number detM times the first column of
the identity matrix. In fact, the column vector above is exactly
the first column of the adjoint matrix adjM. The rule how to get
the rest of the adjoint matrix is not hard. You first compute the
cofactor matrix obtained by replacing the entries of M with the
signed determinants of the corresponding minors got by deleting
the row and column of the particular entry. For the 3⇥ 3 case this
is

cofactorM =

0

B

B

B

B

B

B

@

det

✓

e f
h i

◆

� det

✓

d f
g i

◆

det

✓

d e
g h

◆

� det

✓

b c
h i

◆

det

✓

a c
g i

◆

� det

✓

a b
g h

◆

det

✓

b c
e f

◆

� det

✓

a c
d f

◆

det

✓

a b
c d

◆

1

C

C

C

C

C

C

A

.
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Then the adjoint is just the transpose

adjM =
�

cofactorM
�

T

.

Computing all this is a little tedious, but always works, even for
any n ⇥ n matrix. Moreover, when detM 6= 0, we thus obtain the
inverse M�1 = 1

detM

adjM.
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G.48 Properties of the Determinant: Hint for Prob-
lem 3

For an arbitrary 3⇥ 3 matrix A = (ai
j

), we have

det(A) = a1
1

a2
2

a3
3

+ a1
2

a2
3

a3
1

+ a1
3

a2
1

a3
2

� a1
1

a2
3

a3
2

� a1
2

a2
1

a3
3

� a1
3

a2
2

a3
1

and so the complexity is 5a + 12m. Now note that in general, the
complexity c

n

of the expansion minors formula of an arbitrary n⇥n
matrix should be

c
n

= (n� 1)a+ nc
n�1

m

since det(A) =
P

n

i=1

(�1)ia1
i

cofactor(a1
i

) and cofactor(a1
i

) is an (n� 1)⇥
(n� 1) matrix. This is one way to prove part (c).
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G.49 Subspaces and Spanning Sets: Worked Example

Suppose that we were given a set of linear equations lj(x1, x2, . . . , xn)
and we want to find out if lj(X) = vj for all j for some vector
V = (vj). We know that we can express this as the matrix equation

X

i

lj
i

xi = vj

where lj
i

is the coefficient of the variable xi in the equation lj.
However, this is also stating that V is in the span of the vectors
{L

i

}
i

where L
i

= (lj
i

)
j

. For example, consider the set of equations

2x+ 3y � z = 5

�x+ 3y + z = 1

x+ y � 2z = 3

which corresponds to the matrix equation

0

@

2 3 �1
�1 3 1
1 1 �2

1

A

0

@

x
y
z

1

A =

0

@

5
1
3

1

A .

We can thus express this problem as determining if the vector

V =

0

@

5
1
3

1

A

lies in the span of

8

<

:

0

@

2
�1
1

1

A ,

0

@

3
3
1

1

A ,

0

@

�1
1
�2

1

A

9

=

;

.
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G.50 Subspaces and Spanning Sets: Hint for Prob-
lem 2

We want to check whether

x� x3 2 span{x2, 2x+ x2, x+ x3}
If you are wondering what it means to be in the span of these
polynomials here is an example

2(x2) + 5(2x+ x2) 2 span{x2, 2x+ x2, x+ x3}
Linear combinations where the polynomials are multiplied by scalars
in R is fine. We are not allowed to multiply the polynomials to-
gether, since in a vector space there is not necessarily a notion
of multiplication for two vectors.

Lets put this problem in the language of matrices. Since we can
write x2 = 0 + 0x + 1x2 + 0x3 we can write it as a column vector,
where the coefficient of each of the terms is an entry.

x2 =

0

B

B

@

0
0
1
0

1

C

C

A

, 2x+ x2 =

0

B

B

@

0
2
1
0

1

C

C

A

and x+ x3 =

0

B

B

@

0
1
0
1

1

C

C

A

Since we want to find out if x�x3 =

0

B

B

@

0
1
0
�1

1

C

C

A

is in the span of these

polynomials above we can ask, do there exist r
1

, r
2

and r
3

such that

2

6

6

4

0 0 0
0 2 1
1 1 0
0 0 1

3

7

7

5

2

4

r
1

r
2

r
3

3

5 =

2

6

6

4

0
1
0
�1

3

7

7

5

There are two ways to do this, one is by finding a r
1

, r
2

and r
3

that
work, another is to notice that there are no constant terms in any
of the equations and to simplify the system so that it becomes

2

4

0 2 1
1 1 0
0 0 1

3

5

2

4

r
1

r
2

r
3

3

5 =

2

4

1
0
�1

3

5
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From here you can determine if the now square matrix has an
inverse. If the matrix has an inverse you can say that there are
r
1

, r
2

and r
3

that satisfy this equation, without actually finding
them.
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G.51 Subspaces and Spanning Sets: Hint

This is a hint for the problem on intersections and unions of
subspaces.

For the first part, try drawing an example in R3:

Here we have taken the subspace W to be a plane through the origin
and U to be a line through the origin. The hint now is to think
about what happens when you add a vector u 2 U to a vector w 2 W.
Does this live in the union U [W?

For the second part, we take a more theoretical approach. Lets
suppose that v 2 U \W and v0 2 U \W. This implies

v 2 U and v0 2 U .

So, since U is a subspace and all subspaces are vector spaces, we
know that the linear combination

↵v + �v0 2 U .

Now repeat the same logic for W and you will be nearly done.
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G.52 Linear Independence: Worked Example

This video gives some more details behind the example for the fol-
lowing four vectors in R3 Consider the following vectors in R3:

v
1

=

0

@

4
�1
3

1

A , v
2

=

0

@

�3
7
4

1

A , v
3

=

0

@

5
12
17

1

A , v
4

=

0

@

�1
1
0

1

A .

The example asks whether they are linearly independent, and the
answer is immediate: NO, four vectors can never be linearly in-
dependent in R3. This vector space is simply not big enough for
that, but you need to understand the notion of the dimension of a
vector space to see why. So we think the vectors v

1

, v
2

, v
3

and v
4

are linearly dependent, which means we need to show that there is
a solution to

↵
1

v
1

+ ↵
2

v
2

+ ↵
3

v
3

+ ↵
4

v
4

= 0

for the numbers ↵
1

, ↵
2

, ↵
3

and ↵
4

not all vanishing.
To find this solution we need to set up a linear system. Writing

out the above linear combination gives

4↵
1

�3↵
2

+5↵
3

�↵
4

= 0 ,
�↵

1

+7↵
2

+12↵
3

+↵
4

= 0 ,
3↵

1

+4↵
2

+17↵
3

= 0 .

This can be easily handled using an augmented matrix whose columns
are just the vectors we started with

0

@

4 �3 5 �1 0 ,
�1 7 12 1 0 ,
3 4 17 0 0 .

1

A .

Since there are only zeros on the right hand column, we can drop
it. Now we perform row operations to achieve RREF

0

@

4 �3 5 �1
�1 7 12 1
3 4 17 0

1

A ⇠

0

B

@

1 0 71

25

� 4

25

0 1 53

25

3

25

0 0 0 0

1

C

A

.
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This says that ↵
3

and ↵
4

are not pivot variable so are arbitrary,
we set them to µ and ⌫, respectively. Thus

↵
1

=
⇣

� 71

25
µ+

4

25
⌫
⌘

, ↵
2

=
⇣

� 53

25
µ� 3

25
⌫
⌘

, ↵
3

= µ , ↵
4

= ⌫ .

Thus we have found a relationship among our four vectors

⇣

� 71

25
µ+

4

25
⌫
⌘

v
1

+
⇣

� 53

25
µ� 3

25
⌫
⌘

v
2

+ µ v
3

+ µ
4

v
4

= 0 .

In fact this is not just one relation, but infinitely many, for
any choice of µ, ⌫. The relationship quoted in the notes is just
one of those choices.

Finally, since the vectors v
1

, v
2

, v
3

and v
4

are linearly depen-
dent, we can try to eliminate some of them. The pattern here is
to keep the vectors that correspond to columns with pivots. For
example, setting µ = �1 (say) and ⌫ = 0 in the above allows us to
solve for v

3

while µ = 0 and ⌫ = �1 (say) gives v
4

, explicitly we
get

v
3

=
71

25
v
1

+
53

25
v
2

, v
4

= � 4

25
v
3

+
3

25
v
4

.

This eliminates v
3

and v
4

and leaves a pair of linearly independent
vectors v

1

and v
2

.
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G.53 Linear Independence: Proof of Theorem 16.1

Here we will work through a quick version of the proof. Let {v
i

}
denote a set of linearly dependent vectors, so

P

i

civ
i

= 0 where
there exists some ck 6= 0. Now without loss of generality we order
our vectors such that c1 6= 0, and we can do so since addition is
commutative (i.e. a+ b = b+ a). Therefore we have

c1v
1

= �
n

X

i=2

civ
i

v
1

= �
n

X

i=2

ci

c1
v
i

and we note that this argument is completely reversible since every
ci 6= 0 is invertible and 0/ci = 0.
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G.54 Linear Independence: Hint for Problem 1

Lets first remember how Z
2

works. The only two elements are 1 and
0. Which means when you add 1+ 1 you get 0. It also means when you
have a vector ~v 2 Bn and you want to multiply it by a scalar, your
only choices are 1 and 0. This is kind of neat because it means
that the possibilities are finite, so we can look at an entire
vector space.

Now lets think about B3 there is choice you have to make for
each coordinate, you can either put a 1 or a 0, there are three
places where you have to make a decision between two things. This
means that you have 23 = 8 possibilities for vectors in B3.

When you want to think about finding a set S that will span
B3 and is linearly independent, you want to think about how many
vectors you need. You will need you have enough so that you can
make every vector in B3 using linear combinations of elements in
S but you don’t want too many so that some of them are linear com-
binations of each other. I suggest trying something really simple
perhaps something that looks like the columns of the identity ma-
trix

For part (c) you have to show that you can write every one of
the elements as a linear combination of the elements in S, this
will check to make sure S actually spans B3.

For part (d) if you have two vectors that you think will span the
space, you can prove that they do by repeating what you did in part
(c), check that every vector can be written using only copies of of
these two vectors. If you don’t think it will work you should show
why, perhaps using an argument that counts the number of possible
vectors in the span of two vectors.
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G.55 Basis and Dimension: Proof of Theorem

Lets walk through the proof of this theorem. We want to show that
for S = {v

1

, . . . , v
n

} a basis for a vector space V , then every vector
w 2 V can be written uniquely as a linear combination of vectors
in the basis S:

w = c1v
1

+ · · ·+ cnv
n

.

We should remember that since S is a basis for V , we know two
things

• V = spanS

• v
1

, . . . , v
n

are linearly independent, which means that whenever
we have a1v

1

+ . . . + anv
n

= 0 this implies that ai = 0 for all
i = 1, . . . , n.

This first fact makes it easy to say that there exist constants ci

such that w = c1v
1

+ · · ·+ cnv
n

. What we don’t yet know is that these
c1, . . . cn are unique.

In order to show that these are unique, we will suppose that
they are not, and show that this causes a contradiction. So suppose
there exists a second set of constants di such that

w = d1v
1

+ · · ·+ dnv
n

.

For this to be a contradiction we need to have ci 6= di for some i.
Then look what happens when we take the difference of these two
versions of w:

0
V

= w � w

= (c1v
1

+ · · ·+ cnv
n

)� (d1v
1

+ · · ·+ dnv
n

)

= (c1 � d1)v
1

+ · · ·+ (cn � dn)v
n

.

Since the v
i

’s are linearly independent this implies that ci � di =
0 for all i, this means that we cannot have ci 6= di, which is a
contradiction.
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G.56 Basis and Dimension: Worked Example

In this video we will work through an example of how to extend a
set of linearly independent vectors to a basis. For fun, we will
take the vector space

V = {(x, y, z, w)|x, y, z, w 2 Z5} .

This is like four dimensional space R4 except that the numbers can
only be {0, 1, 2, 3, 4}. This is like bits, but now the rule is

0 = 5 .

Thus, for example, 1

4

= 4 because 4 = 16 = 1 + 3 ⇥ 5 = 1. Don’t get
too caught up on this aspect, its a choice of base field designed
to make computations go quicker!

Now, here’s the problem we will solve:

Find a basis for V that includes the vectors

0

B

B

@

1
2
3
4

1

C

C

A

and

0

B

B

@

0
3
2
1

1

C

C

A

.

The way to proceed is to add a known (and preferably simple)
basis to the vectors given, thus we consider

v
1

=

0

B

B

@

1
2
3
4

1

C

C

A

, v
2

=

0

B

B

@

0
3
2
1

1

C

C

A

, e
1

=

0

B

B

@

1
0
0
0

1

C

C

A

, e
2

=

0

B

B

@

0
1
0
0

1

C

C

A

, e
3

=

0

B

B

@

0
0
1
0

1

C

C

A

, e
4

=

0

B

B

@

0
0
0
1

1

C

C

A

.

The last four vectors are clearly a basis (make sure you understand
this....) and are called the canonical basis. We want to keep v

1

and
v
2

but find a way to turf out two of the vectors in the canonical
basis leaving us a basis of four vectors. To do that, we have
to study linear independence, or in other words a linear system
problem defined by

0 = ↵
1

e
1

+ ↵
2

e
2

+ ↵
3

v
1

+ ↵
4

v
2

+ ↵
5

e
3

+ ↵
6

e
4

.
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We want to find solutions for the ↵0s which allow us to determine
two of the e0s. For that we use an augmented matrix

0

B

B

@

1 0 1 0 0 0 0
2 3 0 1 0 0 0
3 2 0 0 1 0 0
4 1 0 0 0 1 0

1

C

C

A

.

Next comes a bunch of row operations. Note that we have dropped
the last column of zeros since it has no information--you can fill
in the row operations used above the ⇠’s as an exercise:

0

B

B

@

1 0 1 0 0 0
2 3 0 1 0 0
3 2 0 0 1 0
4 1 0 0 0 1

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 3 3 1 0 0
0 2 2 0 1 0
0 1 1 0 0 1

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 1 1 2 0 0
0 2 2 0 1 0
0 1 1 0 0 1

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 1 1 2 0 0
0 0 0 1 1 0
0 0 0 3 0 1

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 1 1 0 3 0
0 0 0 1 1 0
0 0 0 0 2 1

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 1 1 0 3 0
0 0 0 1 1 0
0 0 0 0 1 3

1

C

C

A

⇠

0

B

B

@

1 0 1 0 0 0
0 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 3

1

C

C

A

The pivots are underlined. The columns corresponding to non-pivot
variables are the ones that can be eliminated--their coefficients
(the ↵’s) will be arbitrary, so set them all to zero save for the
one next to the vector you are solving for which can be taken to
be unity. Thus that vector can certainly be expressed in terms of
previous ones. Hence, altogether, our basis is

8

>

>

<

>

>

:

0

B

B

@

1
2
3
4

1

C

C

A

,

0

B

B

@

0
3
2
1

1

C

C

A

,

0

B

B

@

0
1
0
0

1

C

C

A

,

0

B

B

@

0
0
1
0

1

C

C

A

9

>

>

=

>

>

;

.
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Finally, as a check, note that e
1

= v
1

+ v
2

which explains why we
had to throw it away.
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G.57 Basis and Dimension: Hint for Problem 2

Since there are two possible values for each entry, we have |Bn| =
2n. We note that dimBn = n as well. Explicitly we have B1 =
{(0), (1)} so there is only 1 basis for B1. Similarly we have

B2 =

⇢✓

0
0

◆

,

✓

1
0

◆

,

✓

0
1

◆

,

✓

1
1

◆�

and so choosing any two non-zero vectors will form a basis. Now
in general we note that we can build up a basis {e

i

} by arbitrarily
(independently) choosing the first i� 1 entries, then setting the
i-th entry to 1 and all higher entries to 0.
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G.58 Eigenvalues and Eigenvectors: Worked Example

Lets consider a linear transformation

L : V �! W

where a basis for V is the pair of vectors {!, "} and a basis
for W is given by some other pair of vectors {%,-}. (Don’t be
afraid that we are using arrows instead of latin letters to denote
vectors!) To test your understanding, see if you know what dimV
and dimW are. Now suppose that L does the following to the basis
vectors in V

! L7! a% + c-=: L(!) , " L7! b% + d-=: L(") .

Now arrange L acting on the basis vectors in a row vector (this
will be a row vector whose entries are vectors).

�

L(!) L(")
�

=
�

a% + c- b% + d-
�

.

Now we rewrite the right hand side as a matrix acting from the
right on the basis vectors in W:

�

L(!) L(")
�

=
�

% -
�

✓

a b
c d

◆

.

The matrix on the right is the matrix of L with respect to this
pair of bases.

We can also write what happens when L acts on a general vector
v 2 V . Such a v can be written

v = x! + y " .

First we compute L acting on this using linearity of L

L(v) = L(x! + y ")

and then arrange this as a row vector (whose entries are vectors)
times a column vector of numbers

L(v) =
�

L(!) L(")
�

✓

x
y

◆

.
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Now we use our result above for the row vector(L(!) L(")) and obtain

L(v) =
�

% -
�

✓

a b
c d

◆✓

x
y

◆

.

Finally, as a fun exercise, suppose that you want to make a
change of basis in W via

% = ! + " and - = � ! + " .

Can you compute what happens to the matrix of L?
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G.59 Eigenvalues and Eigenvectors: 2⇥ 2 Example

Here is an example of how to find the eigenvalues and eigenvectors
of a 2⇥ 2 matrix.

M =

✓

4 2
1 3

◆

.

Remember that an eigenvector v with eigenvalue � for M will be
a vector such that Mv = �v i.e. M(v) � �I(v) = ~0. When we are
talking about a nonzero v then this means that det(M � �I) = 0.
We will start by finding the eigenvalues that make this statement
true. First we compute

det(M � �I) = det

✓✓

4 2
1 3

◆

�
✓

� 0
0 �

◆◆

= det

✓

4� � 2
1 3� �

◆

so det(M � �I) = (4 � �)(3 � �) � 2 · 1. We set this equal to zero to
find values of � that make this true:

(4� �)(3� �)� 2 · 1 = 10� 7�+ �2 = (2� �)(5� �) = 0 .

This means that � = 2 and � = 5 are solutions. Now if we want to
find the eigenvectors that correspond to these values we look at
vectors v such that

✓

4� � 2
1 3� �

◆

v = ~0 .

For � = 5
✓

4� 5 2
1 3� 5

◆✓

x
y

◆

=

✓

�1 2
1 �2

◆✓

x
y

◆

= ~0 .

This gives us the equalities �x + 2y = 0 and x � 2y = 0 which both

give the line y = 1

2

x. Any point on this line, so for example

✓

2
1

◆

,

is an eigenvector with eigenvalue � = 5.
Now lets find the eigenvector for � = 2

✓

4� 2 2
1 3� 2

◆✓

x
y

◆

=

✓

2 2
1 1

◆✓

x
y

◆

= ~0,
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which gives the equalities 2x + 2y = 0 and x + y = 0. (Notice
that these equations are not independent of one another, so our

eigenvalue must be correct.) This means any vector v =

✓

x
y

◆

where

y = �x , such as

✓

1
�1

◆

, or any scalar multiple of this vector , i.e.

any vector on the line y = �x is an eigenvector with eigenvalue 2.
This solution could be written neatly as

�
1

= 5, v
1

=

✓

2
1

◆

and �
2

= 2, v
2

=

✓

1
�1

◆

.
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G.60 Eigenvalues and Eigenvectors: Jordan Cells

Consider the matrix

J
2

=

✓

� 1
0 �

◆

,

and we note that we can just read off the eigenvector e
1

with
eigenvalue �. However the characteristic polynomial of J

2

is
P
J2(µ) = (µ��)2 so the only possible eigenvalue is �, but we claim

it does not have a second eigenvector v. To see this, we require
that

�v1 + v2 = �v1

�v2 = �v2

which clearly implies that v2 = 0. This is known as a Jordan 2-
cell, and in general, a Jordan n-cell with eigenvalue � is (similar
to) the n⇥ n matrix

J
n

=

0

B

B

B

B

B

@

� 1 0 · · · 0

0 � 1
... 0

...
...

...
...

...
0 · · · 0 � 1
0 · · · 0 0 �

1

C

C

C

C

C

A

which has a single eigenvector e
1

.
Now consider the following matrix

M =

0

@

3 1 0
0 3 1
0 0 2

1

A

and we see that P
M

(�) = (�� 3)2(�� 2). Therefore for � = 3 we need
to find the solutions to (M � 3I

3

)v = 0 or in equation form:

v2 = 0

v3 = 0

�v3 = 0,
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and we immediately see that we must have V = e
1

. Next for � = 2,
we need to solve (M � 2I

3

)v = 0 or

v1 + v2 = 0

v2 + v3 = 0

0 = 0,

and thus we choose v1 = 1, which implies v2 = �1 and v3 = 1. Hence
this is the only other eigenvector for M.

This is a specific case of Problem 20.5.
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G.61 Eigenvalues and Eigenvectors II: Eigenvalues

Eigenvalues and eigenvectors are extremely important. In this
video we review the theory of eigenvalues. Consider a linear
transformation

L : V �! V

where dimV = n < 1. Since V is finite dimensional, we can
represent L by a square matrix M by choosing a basis for V .

So the eigenvalue equation

Lv = �v

becomes

Mv = �v,

where v is a column vector and M is an n⇥n matrix (both expressed
in whatever basis we chose for V ). The scalar � is called an
eigenvalue of M and the job of this video is to show you how to
find all the eigenvalues of M.

The first step is to put all terms on the left hand side of the
equation, this gives

(M � �I)v = 0 .

Notice how we used the identity matrix I in order to get a matrix
times v equaling zero. Now here comes a VERY important fact

Nu = 0 and u 6= 0 () detN = 0.

I.e., a square matrix can have an eigenvector with vanishing eigenvalue if
and only if its determinant vanishes! Hence

det(M � �I) = 0.
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The quantity on the left (up to a possible minus sign) equals the
so-called characteristic polynomial

P
M

(�) := det(�I �M) .

It is a polynomial of degree n in the variable �. To see why, try
a simple 2⇥ 2 example

det

✓✓

a b
c d

◆

�
✓

� 0
0 �

◆◆

= det

✓

a� � b
c d� �

◆

= (a� �)(d� �)� bc ,

which is clearly a polynomial of order 2 in �. For the n⇥ n case,
the order n term comes from the product of diagonal matrix elements
also.

There is an amazing fact about polynomials called the funda-
mental theorem of algebra: they can always be factored over complex
numbers. This means that degree n polynomials have n complex roots
(counted with multiplicity). The word can does not mean that ex-
plicit formulas for this are known (in fact explicit formulas can
only be give for degree four or less). The necessity for complex
numbers is easily seems from a polynomial like

z2 + 1

whose roots would require us to solve z2 = �1 which is impossible
for real number z. However, introducing the imaginary unit i with

i2 = �1 ,

we have
z2 + 1 = (z � i)(z + i) .

Returning to our characteristic polynomial, we call on the funda-
mental theorem of algebra to write

P
M

(�) = (�� �
1

)(�� �
2

) · · · (�� �
n

) .

The roots �
1

, �
2

,...,�
n

are the eigenvalues of M (or its underly-
ing linear transformation L).
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G.62 Eigenvalues and Eigenvectors II: Eigenspaces

Consider the linear map

L =

0

@

�4 6 6
0 2 0
�3 3 5

1

A .

Direct computation will show that we have

L = Q

0

@

�1 0 0
0 2 0
0 0 2

1

AQ�1

where

Q =

0

@

2 1 1
0 0 1
1 1 0

1

A .

Therefore the vectors

v(2)
1

=

0

@

1
0
1

1

A v(2)
2

=

0

@

1
1
0

1

A

span the eigenspace E(2) of the eigenvalue 2, and for an explicit
example, if we take

v = 2v(2)
1

� v(2)
2

=

0

@

1
�1
2

1

A

we have

Lv =

0

@

2
�2
4

1

A = 2v

so v 2 E(2). In general, we note the linearly independent vectors

v(�)
i

with the same eigenvalue � span an eigenspace since for any

v =
P

i

civ(�)
i

, we have

Lv =
X

i

ciLv(�)
i

=
X

i

ci�v(�)
i

= �
X

i

civ(�)
i

= �v.
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G.63 Eigenvalues and Eigenvectors II: Hint

We are looking at the matrix M, and a sequence of vectors starting

with v(0) =

✓

x(0)
y(0)

◆

and defined recursively so that

v(1) =

✓

x(1)
y(1)

◆

= M

✓

x(0)
y(0)

◆

.

We first examine the eigenvectors and eigenvalues of

M =

✓

3 2
2 3

◆

.

We can find the eigenvalues and vectors by solving

det(M � �I) = 0

for �.

det

✓

3� � 2
2 3� �

◆

= 0

By computing the determinant and solving for � we can find the
eigenvalues � = 1 and 5, and the corresponding eigenvectors. You
should do the computations to find these for yourself.

When we think about the question in part (b) which asks to find a
vector v(0) such that v(0) = v(1) = v(2) . . ., we must look for a vector
that satisfies v = Mv. What eigenvalue does this correspond to?
If you found a v(0) with this property would cv(0) for a scalar c
also work? Remember that eigenvectors have to be nonzero, so what
if c = 0?

For part (c) if we tried an eigenvector would we have restric-
tions on what the eigenvalue should be? Think about what it means
to be pointed in the same direction.
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G.64 Diagonalization: Derivative Is Not Diagonaliz-
able

First recall that the derivative operator is linear and that we
can write it as the matrix

d

dx
=

0

B

B

B

@

0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...
...

1

C

C

C

A

.

We note that this transforms into an infinite Jordan cell with
eigenvalue 0 or

0

B

B

B

@

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
...

1

C

C

C

A

which is in the basis {n�1xn}
n

(where for n = 0, we just have 1).
Therefore we note that 1 (constant polynomials) is the only eigen-
vector with eigenvalue 0 for polynomials since they have finite
degree, and so the derivative is not diagonalizable. Note that
we are ignoring infinite cases for simplicity, but if you want to
consider infinite terms such as convergent series or all formal
power series where there is no conditions on convergence, there
are many eigenvectors. Can you find some? This is an example of
how things can change in infinite dimensional spaces.

For a more finite example, consider the space PC
3

of complex
polynomials of degree at most 3, and recall that the derivative D
can be written as

D =

0

B

B

@

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

1

C

C

A

.

You can easily check that the only eigenvector is 1 with eigenvalue
0 since D always lowers the degree of a polynomial by 1 each time
it is applied. Note that this is a nilpotent matrix since D4 = 0,
but the only nilpotent matrix that is ‘‘diagonalizable’’ is the 0
matrix.
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G.65 Diagonalization: Change of Basis Example

This video returns to our first example of a barrel filled with
fruit

as a demonstration of changing basis.
Since this was a linear systems problem, we can try to represent

what’s in the barrel using a vector space. The first representa-
tion was the one where (x, y) = (apples, oranges):

Apples

Oranges

(x, y)

Calling the basis vectors ~e
1

:= (1, 0) and ~e
2

:= (0, 1), this represen-
tation would label what’s in the barrel by a vector

~x := x~e
1

+ y~e
2

=
�

~e
1

~e
2

�

✓

x
y

◆

.

Since this is the method ordinary people would use, we will call
this the ‘‘engineer’s’’ method!
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But this is not the approach nutritionists would use. They
would note the amount of sugar and total number of fruit (s, f):

sugar

fruit

(s, f)

WARNING: To make sense of what comes next you need to allow for the
possibity of a negative amount of fruit or sugar. This would be
just like a bank, where if money is owed to somebody else, we can
use a minus sign.

The vector ~x says what is in the barrel and does not depend which
mathematical description is employed. The way nutritionists label
~x is in terms of a pair of basis vectors ~f

1

and ~f
2

:

~x = s~f
1

+ f ~f
2

=
⇣

~f
1

~f
2

⌘

✓

s
f

◆

.

Thus our vector space now has a bunch of interesting vectors:

The vector ~x labels generally the contents of the barrel. The
vector ~e

1

corresponds to one apple and one orange. The vector ~e
2

is
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one orange and no apples. The vector ~f
1

means one unit of sugar and
zero total fruit (to achieve this you could lend out some apples
and keep a few oranges). Finally the vector ~f

2

represents a total
of one piece of fruit and no sugar.

You might remember that the amount of sugar in an apple is called
� while oranges have twice as much sugar as apples. Thus

⇢

s = � (x+ 2y)
f = x+ y .

Essentially, this is already our change of basis formula, but lets
play around and put it in our notations. First we can write this
as a matrix

✓

s
f

◆

=

✓

� 2�
1 1

◆✓

x
y

◆

.

We can easily invert this to get

✓

x
y

◆

=

✓

� 1

�

2
1

�

�1

◆✓

s
f

◆

.

Putting this in the engineer’s formula for ~x gives

~x =
�

~e
1

~e
2

�

✓

� 1

�

2
1

�

�1

◆✓

s
f

◆

=
�

� 1

�

�

~e
1

� ~e
2

�

2~e
1

� 2~e
2

�

✓

s
f

◆

.

Comparing to the nutritionist’s formula for the same object ~x we
learn that

~f
1

= �1

�

�

~e
1

� ~e
2

�

and ~f
2

= 2~e
1

� 2~e
2

.

Rearranging these equation we find the change of base matrix P
from the engineer’s basis to the nutritionist’s basis:

⇣

~f
1

~f
2

⌘

=
�

~e
1

~e
2

�

✓

� 1

�

2
1

�

�1

◆

=:
�

~e
1

~e
2

�

P .

We can also go the other direction, changing from the nutrition-
ist’s basis to the engineer’s basis

�

~e
1

~e
2

�

=
⇣

~f
1

~f
2

⌘

✓

� 2�
1 1

◆

=:
⇣

~f
1

~f
2

⌘

Q .
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Of course, we must have
Q = P�1 ,

(which is in fact how we constructed P in the first place).
Finally, lets consider the very first linear systems problem,

where you were given that there were 27 pieces of fruit in total
and twice as many oranges as apples. In equations this says just

x+ y = 27 and 2x� y = 0 .

But we can also write this as a matrix system

MX = V

where

M :=

✓

1 1
2 �1

◆

, X :=

✓

x
y

◆

V :=

✓

0
27

◆

.

Note that
~x =

�

~e
1

~e
2

�

X .

Also lets call
~v :=

�

~e
1

~e
2

�

V .

Now the matrix M is the matrix of some linear transformation L in
the basis of the engineers. Lets convert it to the basis of the
nutritionists:

L~x = L
⇣

~f
1

~f
2

⌘

✓

s
f

◆

= L
�

~e
1

~e
2

�

P

✓

s
f

◆

=

✓

~e
1

~e
2

◆

MP

✓

s
f

◆

.

Note here that the linear transformation on acts on vectors -- these
are the objects we have written with a ~ sign on top of them. It
does not act on columns of numbers!

We can easily compute MP and find

MP =

✓

1 1
2 �1

◆✓

� 1

�

2
1

�

�1

◆

=

✓

0 1
� 3

�

5

◆

.

Note that P�1MP is the matrix of L in the nutritionists basis,
but we don’t need this quantity right now.
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Thus the last task is to solve the system, lets solve for sugar
and fruit. We need to solve

MP

✓

s
f

◆

=

✓

0 1
� 3

�

5

◆✓

s
f

◆

=

✓

27
0

◆

.

This is solved immediately by forward substitution (the nutrition-
ists basis is nice since it directly gives f):

f = 27 and s = 45� .

367



G.66 Diagonalization: Diagionalizing Example

Lets diagonalize the matrix M from a previous example

Eigenvalues and Vectors: Example

M =

✓

4 2
1 3

◆

We found the eigenvalues and eigenvectors of M, our solution was

�
1

= 5, v
1

=

✓

2
1

◆

and �
2

= 2, v
2

=

✓

1
�1

◆

.

So we can diagonalize this matrix using the formula D = P�1MP
where P = (v

1

,v
2

). This means

P =

✓

2 1
1 �1

◆

and P�1 = �1

3

✓

1 1
1 �2

◆

The inverse comes from the formula for inverses of 2⇥ 2 matrices:

✓

a b
c d

◆�1

=
1

ad� bc

✓

d �b
�c a

◆

, so long as ad� bc 6= 0.

So we get:

D = �1

3

✓

1 1
1 �2

◆✓

4 2
1 3

◆✓

2 1
1 �1

◆

=

✓

5 0
0 2

◆

But this doesn’t really give any intuition into why this hap-
pens. Let look at what happens when we apply this matrix D =

P�1MP to a vector v =

✓

x
y

◆

. Notice that applying P translates

v =

✓

x
y

◆

into xv
1

+ yv
2

.
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P�1MP

✓

x
y

◆

= P�1M

✓

2x+ y
x� y

◆

= P�1M [

✓

2x
x

◆

+

✓

y
�y

◆

]

= P�1[(x)M

✓

2
1

◆

+ (y)M

✓

1
�1

◆

]

= P�1[(x)Mv
1

+ (y) ·Mv
2

]

Remember that we know what M does to v
1

and v
2

, so we get

P�1[(x)Mv
1

+ (y)Mv
2

] = P�1[(x�
1

)v
1

+ (y�
2

)v
2

]

= (5x)P�1v
1

+ (2y)P�1v
2

= (5x)

✓

1
0

◆

+ (2y)

✓

0
1

◆

=

✓

5x
2y

◆

Notice that multiplying by P�1 converts v
1

and v
2

back in to

✓

1
0

◆

and

✓

0
1

◆

respectively. This shows us why D = P�1MP should be the

diagonal matrix:

D =

✓

�
1

0
0 �

2

◆

=

✓

5 0
0 2

◆
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G.67 Orthonormal Bases: Sine and Cosine Form All
Orthonormal Bases for R2

We wish to find all orthonormal bases for the space R2, and they
are {e✓

1

, e✓
2

} up to reordering where

e✓
1

=

✓

cos ✓
sin ✓

◆

, e✓
2

=

✓

� sin ✓
cos ✓

◆

,

for some ✓ 2 [0, 2⇡). Now first we need to show that for a fixed ✓
that the pair is orthogonal:

e✓
1

e✓
2

= � sin ✓ cos ✓ + cos ✓ sin ✓ = 0.

Also we have
ke✓

1

k2 = ke✓
2

k2 = sin2 ✓ + cos2 ✓ = 1,

and hence {e✓
1

, e✓
2

} is an orthonormal basis. To show that every or-
thonormal basis of R2 is {e✓

1

, e✓
2

} for some ✓, consider an orthonormal
basis {b

1

, b
2

} and note that b
1

forms an angle � with the vector e
1

(which is e0
1

). Thus b
1

= e�
1

and if b
2

= e�
2

, we are done, otherwise
b
2

= �e�
2

and it is the reflected version. However we can do the
same thing except starting with b

2

and get b
2

= e 
1

and b
1

= e 
2

since
we have just interchanged two basis vectors which corresponds to
a reflection which picks up a minus sign as in the determinant.

cos θ
sin θ

θ

cos θ
-sin θ
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G.68 Orthonormal Bases: Hint for Question 2, Lec-
ture 21

This video gives a hint for problem 2 in lecture 21. You are asked
to consider an orthogonal basis {v

1

, v
2

, . . . v
n

}. Because this is a
basis any v 2 V can be uniquely expressed as

v = c1v
1

+ c2v
2

+ · · ·+ vnc
n

,

and the number n = dimV . Since this is an orthogonal basis

v
i

v
j

= 0 , i 6= j .

So different vectors in the basis are orthogonal:

However, the basis is not orthonormal so we know nothing about the
lengths of the basis vectors (save that they cannot vanish).

To complete the hint, lets use the dot product to compute a
formula for c1 in terms of the basis vectors and v. Consider

v
1

v = c1v
1

v
1

+ c2v
1

v2 + · · ·+ cnv
1

v
n

= c1v
1

v
1

.

Solving for c1 (remembering that v
1

v
1

6= 0) gives

c1 =
v
1

v

v
1

v
1

.

This should get you started on this problem.
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G.69 Orthonormal Bases: Hint

This video gives a hint for problem 3 in lecture 21.

(a) Is the vector v? = v � u·v
u·uu in the plane P?

Remember that the dot product gives you a scalar not a vector,
so if you think about this formula u·v

u·u is a scalar, so this is
a linear combination of v and u. Do you think it is in the
span?

(b) What is the angle between v? and u?

This part will make more sense if you think back to the dot
product formulas you probably first saw in multivariable cal-
culus. Remember that

u · v = kukkvk cos(✓),

and in particular if they are perpendicular ✓ = ⇡

2

and cos(⇡
2

) = 0
you will get u · v = 0.

Now try to compute the dot product of u and v? to find kukkv?k cos(✓)

u · v? = u ·
⇣

v � u · v
u · uu

⌘

= u · v � u ·
⇣u · v
u · u

⌘

u

= u · v �
⇣u · v
u · u

⌘

u · u

Now you finish simplifying and see if you can figure out what
✓ has to be.

(c) Given your solution to the above, how can you find a third
vector perpendicular to both u and v??

Remember what other things you learned in multivariable cal-
culus? This might be a good time to remind your self what the
cross product does.
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(d) Construct an orthonormal basis for R3 from u and v.

If you did part (c) you can probably find 3 orthogonal vectors
to make a orthogonal basis. All you need to do to turn this
into an orthonormal basis is make these into unit vectors.

(e) Test your abstract formulae starting with

u =
�

1 2 0
�

and v =
�

0 1 1
�

.

Try it out, and if you get stuck try drawing a sketch of the
vectors you have.
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G.70 Gram-Schmidt and Orthogonal Complements: 4⇥
4 Gram Schmidt Example

Lets do an example of how to "Gram-Schmidt" some vectors in R4.
Given the following vectors

v
1

=

0

B

B

@

o
1
0
0

1

C

C

A

, v
2

=

0

B

B

@

0
1
1
0

1

C

C

A

, v
3

=

0

B

B

@

3
0
1
0

1

C

C

A

, and v
4

=

0

B

B

@

1
1
0
2

1

C

C

A

,

we start with v
1

v?
1

= v
1

=

0

B

B

@

0
1
0
0

1

C

C

A

.

Now the work begins

v?
2

= v
2

� (v?
1

· v
2

)

kv?
1

k2 v?
1

=

0

B

B

@

0
1
1
0

1

C

C

A

� 1

1

0

B

B

@

0
1
0
0

1

C

C

A

=

0

B

B

@

0
0
1
0

1

C

C

A

This gets a little longer with every step.

v?
3

= v
3

� (v?
1

· v
3

)

kv?
1

k2 v?
1

� (v?
2

· v
3

)

kv?
2

k2 v?
2

=

0

B

B

@

3
0
1
0

1

C

C

A

� 0

1

0

B

B

@

0
1
0
0

1

C

C

A

� 1

1

0

B

B

@

0
0
1
0

1

C

C

A

=

0

B

B

@

3
0
0
0

1

C

C

A
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This last step requires subtracting off the term of the form u·v
u·uu

for each of the previously defined basis vectors.

v?
4

= v
4

� (v?
1

· v
4

)

kv?
1

k2 v?
1

� (v?
2

· v
4

)

kv?
2

k2 v?
2

� (v?
3

· v
4

)

kv?
3

k2 v?
3

=

0

B

B

@

1
1
0
2

1

C

C

A

� 1

1

0

B

B

@

0
1
0
0

1

C

C

A

� 0

1

0

B

B

@

0
0
1
0

1

C

C

A

� 3

9

0

B

B

@

3
0
0
0

1

C

C

A

=

0

B

B

@

0
0
0
2

1

C

C

A

Now v?
1

, v?
2

, v?
3

, and v?
4

are an orthogonal basis. Notice that even
with very, very nice looking vectors we end up having to do quite a
bit of arithmetic. This a good reason to use programs like matlab
to check your work.
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G.71 Gram-Schmidt and Orthogonal Complements: Overview

This video depicts the ideas of a subspace sum, a direct sum and an
orthogonal complement in R3. Firstly, lets start with the subspace
sum. Remember that even if U and V are subspaces, their union
U [ V is usually not a subspace. However, the span of their union
certainly is and is called the subspace sum

U + V = span(U [ V ) .

You need to be aware that this is a sum of vector spaces (not
vectors). A picture of this is a pair of planes in R3:

Here U + V = R3.
Next lets consider a direct sum. This is just the subspace sum

for the case when U \ V = {0}. For that we can keep the plane U
but must replace V by a line:

Taking a direct sum we again get the whole space, U � V = R3.
Now we come to an orthogonal complement. There is not really a

notion of subtraction for subspaces but the orthogonal complement
comes close. Given U it provides a space U? such that the direct
sum returns the whole space:

U � U? = R3 .
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The orthogonal complement U? is the subspace made from all vectors
perpendicular to any vector in U. Here, we need to just tilt the
line V above until it hits U at a right angle:

Notice, we can apply the same operation to U? and just get U back
again, i.e.

�

U?�? = U .
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G.72 Gram-Schmidt and Orthogonal Complements: QR
Decomposition Example

We can alternatively think of the QR decomposition as performing
the Gram-Schmidt procedure on the column space, the vector space
of the column vectors of the matrix, of the matrix M. The re-
sulting orthonormal basis will be stored in Q and the negative
of the coefficients will be recorded in R. Note that R is upper
triangular by how Gram-Schmidt works. Here we will explicitly do
an example with the matrix

M =

0

@m
1

m
2

m
3

1

A =

0

@

1 1 �1
0 1 2
�1 1 1

1

A .

First we normalize m
1

to get m0
1

= m1
km1k where km

1

k = r1
1

=
p
2 which

gives the decomposition

Q
1

=

0

@

1p
2

1 �1
0 1 2
� 1p

2

1 1

1

A , R
1

=

0

@

p
2 0 0
0 1 0
0 0 1

1

A .

Next we find

t
2

= m
2

� (m0
1

m
2

)m0
1

= m
2

� r1
2

m0
1

= m
2

� 0m0
1

noting that
m0

1

m0
1

= km0
1

k2 = 1

and kt
2

k = r2
2

=
p
3, and so we get m0

2

= t2
kt2k with the decomposition

Q
2

=

0

B

@

1p
2

1p
3

�1
0 1p

3

2

� 1p
2

1p
3

1

1

C

A

, R
2

=

0

@

p
2 0 0
0
p
3 0

0 0 1

1

A .

Finally we calculate

t
3

= m
3

� (m0
1

m
3

)m0
1

� (m0
2

m
3

)m0
2

= m
3

� r1
3

m0
1

� r2
3

m0
2

= m
3

+
p
2m0

1

� 2p
3
m0

2

,
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again noting m0
2

m0
2

= km0
2

k = 1, and let m0
3

= t3
kt3k where kt

3

k = r3
3

=

2
q

2

3

. Thus we get our final M = QR decomposition as

Q =

0

B

@

1p
2

1p
3

� 1p
2

0 1p
3

q

2

3

� 1p
2

1

3

� 1p
6

1

C

A

, R =

0

B

@

p
2 0 �

p
2

0
p
3 2p

3

0 0 2
q

2

3

1

C

A

.
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G.73 Gram-Schmidt and Orthogonal Complements: Hint
for Problem 1

This video shows you a way to solve problem 1 that’s different to
the method described in the Lecture. The first thing is to think
of

M =

0

@

1 0 2
�1 2 0
�1 2 2

1

A

as a set of 3 vectors

v
1

=

0

@

0
�1
�1

1

A , v
2

=

0

@

0
2
�2

1

A , v
3

=

0

@

2
0
2

1

A .

Then you need to remember that we are searching for a decomposition

M = QR

where Q is an orthogonal matrix. Thus the upper triangular matrix
R = QTM and QTQ = I. Moreover, orthogonal matrices perform
rotations. To see this compare the inner product u v = uTv of
vectors u and v with that of Qu and Qv:

(Qu) (Qv) = (Qu)T (Qv) = uTQTQv = uTv = u v .

Since the dot product doesn’t change, we learn that Q does not
change angles or lengths of vectors.

Now, here’s an interesting procedure: rotate v
1

, v
2

and v
3

such
that v

1

is along the x-axis, v
2

is in the xy-plane. Then if you put
these in a matrix you get something of the form

0

@

a b c
0 d e
0 0 f

1

A

which is exactly what we want for R!
Moreover, the vector

0

@

a
0
0

1

A
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is the rotated v
1

so must have length ||v
1

|| =
p
3. Thus a =

p
3.

The rotated v
2

is
0

@

b
d
0

1

A

and must have length ||v
2

|| = 2
p
2. Also the dot product between

0

@

a
0
0

1

A and

0

@

b
d
0

1

A

is ab and must equal v
1

v
2

= 0. (That v
1

and v
2

were orthogonal is
just a coincidence here... .) Thus b = 0. So now we know most of
the matrix R

R =

0

@

p
3 0 c
0 2

p
2 e

0 0 f

1

A .

You can work out the last column using the same ideas. Thus it only
remains to compute Q from

Q = MR�1 .
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G.74 Diagonalizing Symmetric Matrices: 3⇥ 3 Exam-
ple

Lets diagonalize the matrix

M =

0

@

1 2 0
2 1 0
0 0 5

1

A

If we want to diagonalize this matrix, we should be happy to see
that it is symmetric, since this means we will have real eigenval-
ues, which means factoring won’t be too hard. As an added bonus if
we have three distinct eigenvalues the eigenvectors we find will
automatically be orthogonal, which means that the inverse of the
matrix P will be easy to compute. We can start by finding the
eigenvalues of this

det

0

@

1� � 2 0
2 1� � 0
0 0 5� �

1

A = (1� �)

�

�

�

�

1� � 0
0 5� �

�

�

�

�

� (2)

�

�

�

�

2 0
0 5� �

�

�

�

�

+ 0

�

�

�

�

2 1� �
0 0

�

�

�

�

= (1� �)(1� �)(5� �) + (�2)(2)(5� �) + 0

= (1� 2�+ �2)(5� �) + (�2)(2)(5� �)

= ((1� 4)� 2�+ �2)(5� �)

= (�3� 2�+ �2)(5� �)

= (1 + �)(3� �)(5� �)

So we get � = �1, 3, 5 as eigenvectors. First find v
1

for �
1

= �1

(M + I)

0

@

x
y
z

1

A =

0

@

2 2 0
2 2 0
0 0 6

1

A

0

@

x
y
z

1

A =

0

@

0
0
0

1

A ,

implies that 2x + 2y = 0 and 6z = 0,which means any multiple of

v
1

=

0

@

1
�1
0

1

A is an eigenvector with eigenvalue �
1

= �1. Now for v
2
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with �
2

= 3

(M � 3I)

0

@

x
y
z

1

A =

0

@

�2 2 0
2 �2 0
0 0 4

1

A

0

@

x
y
z

1

A =

0

@

0
0
0

1

A ,

and we can find that that v
2

=

0

@

1
1
0

1

A would satisfy �2x + 2y = 0,

2x� 2y = 0 and 4z = 0.
Now for v

3

with �
3

= 5

(M � 5I)

0

@

x
y
z

1

A =

0

@

�4 2 0
2 �4 0
0 0 0

1

A

0

@

x
y
z

1

A =

0

@

0
0
0

1

A ,

Now we want v
3

to satisfy �4x+ 2y = 0 and 2x� 4y = 0, which imply
x = y = 0, but since there are no restrictions on the z coordinate

we have v
3

=

0

@

0
0
1

1

A.

Notice that the eigenvectors form an orthogonal basis. We can
create an orthonormal basis by rescaling to make them unit vec-
tors. This will help us because if P = [v

1

, v
2

, v
3

] is created from
orthonormal vectors then P�1 = P T, which means computing P�1

should be easy. So lets say

v
1

=

0

@

1p
2

� 1p
2

0

1

A , v
2

=

0

@

1p
2

1p
2

0

1

A , and v
3

=

0

@

0
0
1

1

A

so we get

P =

0

@

1p
2

1p
2

0

� 1p
2

1p
2

0

0 0 1

1

A and P�1 =

0

@

1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 1

1

A

So when we compute D = P�1MP we’ll get
0

@

1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 1

1

A

0

@

1 2 0
2 5 0
0 0 5

1

A

0

@

1p
2

1p
2

0

� 1p
2

1p
2

0

0 0 1

1

A =

0

@

�1 0 0
0 3 0
0 0 5

1

A
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G.75 Diagonalizing Symmetric Matrices: Hints for Prob-
lem 1

For part (a), we can consider any complex number z as being a
vector in R2 where complex conjugation corresponds to the matrix
✓

1 0
0 �1

◆

. Can you describe zz̄ in terms of kzk? For part (b), think

about what values a 2 R can take if a = �a? Part (c), just compute
it and look back at part (a).

For part (d), note that x†x is just a number, so we can divide by
it. Parts (e) and (f) follow right from definitions. For part (g),
first notice that every row vector is the (unique) transpose of a
column vector, and also think about why (AAT )T = AAT for any
matrix A. Additionally you should see that xT = x† and mention
this. Finally for part (h), show that

x†Mx

x†x
=

✓

x†Mx

x†x

◆

T

and reduce each side separately to get � = �.
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G.76 Kernel, Range, Nullity, Rank: Invertibility Con-
ditions

Here I am going to discuss some of the conditions on the invert-
ibility of a matrix stated in Theorem 24.6. Condition 1 states
that X = M�1V uniquely, which is clearly equivalent to 4. Sim-
ilarly, every square matrix M uniquely corresponds to a linear
transformation L : Rn ! Rn, so condition 3 is equivalent to con-
dition 1.

Condition 6 implies 4 by the adjoint construct the inverse, but
the converse is not so obvious. For the converse (4 implying 6), we
refer back the proofs in Chapter 18 and 19. Note that if detM = 0,
there exists an eigenvalue of M equal to 0, which implies M is not
invertible. Thus condition 8 is equivalent to conditions 4, 5, 9,
and 10.

The map M is injective if it does not have a null space by
definition, however eigenvectors with eigenvalue 0 form a basis
for the null space. Hence conditions 8 and 14 are equivalent,
and 14, 15, and 16 are equivalent by the Dimension Formula (also
known as the Rank-Nullity Theorem).

Now conditions 11, 12, and 13 are all equivalent by the defini-
tion of a basis. Therefore condition 13 is equivalent to 2.
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G.77 Kernel, Range, Nullity, Rank: Hint for 1

Lets work through this problem.
Let L : V ! W be a linear transformation. Show that kerL = {0

V

}
if and only if L is one-to-one:

1. First, suppose that kerL = {0
V

}. Show that L is one-to-one.

Remember what one-one means, it means whenever L(x) = L(y) we
can be certain that x = y. While this might seem like a weird
thing to require this statement really means that each vector
in the range gets mapped to a unique vector in the range.

We know we have the one-one property, but we also don’t want to
forget some of the more basic properties of linear transfor-
mations namely that they are linear, which means L(ax+ by) =
aL(x) + bL(y) for scalars a and b.

What if we rephrase the one-one property to say whenever L(x)�
L(y) = 0 implies that x � y = 0? Can we connect that to the
statement that kerL = {0

V

}? Remember that if L(v) = 0 then
v 2 kerL = {0

V

}.

2. Now, suppose that L is one-to-one. Show that kerL = {0
V

}.
That is, show that 0

V

is in kerL, and then show that there
are no other vectors in kerL.

What would happen if we had a nonzero kernel? If we had some
vector v with L(v) = 0 and v 6= 0, we could try to show that
this would contradict the given that L is one-one. If we found
x and y with L(x) = L(y), then we know x = y. But if L(v) = 0
then L(x) + L(v) = L(y). Does this cause a problem?
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G.78 Least Squares: Hint for Problem 1

Lets work through this problem. Let L : U ! V be a linear trans-
formation. Suppose v 2 L(U) and you have found a vector u

ps

that
obeys L(u

ps

) = v.
Explain why you need to compute kerL to describe the solution

space of the linear system L(u) = v.
Remember the property of linearity that comes along with any

linear transformation: L(ax + by) = aL(x) + bL(y) for scalars a
and b. This allows us to break apart and recombine terms inside
the transformation.

Now suppose we have a solution x where L(x) = v. If we have an
vector y 2 kerL then we know L(y) = 0. If we add the equations
together L(x) + L(y) = L(x + y) = v + 0 we get another solution for
free. Now we have two solutions, is that all?
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G.79 Least Squares: Hint for Problem 2

For the first part, what is the transpose of a 1 ⇥ 1 matrix? For
the other two parts, note that v v = vTv. Can you express this in
terms of kvk? Also you need the trivial kernel only for the last
part and just think about the null space of M. It might help to
substitute w = Mx.
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H Student Contributions

Here is a collection of useful material created by students. The copyright to
this work belongs to them as does responsibility for the correctness of any
information therein.

• 4D TIC TAC TOE by Davis Shih.

• A hint for review problem 1, lecture 2 by Ashley Coates.

• A hint for review problem 1, lecture 12 by Philip Digiglio.

• Some cartoons depicting matrix multiplication by Asun Oka.

• An eigenvector example for lecture 18 by Ashley Coates.
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http://math.ucdavis.edu/~linear/student_creations/TicTacToe.pdf
http://math.ucdavis.edu/~linear/student_creations/Lecture2Problem1.pdf
http://math.ucdavis.edu/~linear/student_creations/Lecture12Problem1.pdf
http://math.ucdavis.edu/~linear/student_creations/MatrixCartoons.pdf
http://math.ucdavis.edu/~linear/student_creations/Content+Creation+2+Lecture+18+example.pdf


I Other Resources

Here are some suggestions for other places to get help with Linear Algebra:

• Strang’s MIT Linear Algebra Course. Videos of lectures and more:

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

• The Khan Academy has thousands of free videos on a multitude of
topics including linear algebra:

http://www.khanacademy.org/

• The Linear Algebra toolkit:

http://www.math.odu.edu/⇠bogacki/lat/

• Carter, Tapia and Papakonstantinou’s online linear algebra resource

http://ceee.rice.edu/Books/LA/index.html

• S.O.S. Mathematics Matrix Algebra primer:

http://www.sosmath.com/matrix/matrix.html

• The numerical methods guy on youtube. Lots of worked examples:

http://www.youtube.com/user/numericalmethodsguy

• Interactive Mathematics. Lots of useful math lessons on many topics:

http://www.intmath.com/

• Stat Trek. A quick matrix tutorial for statistics students:

http://stattrek.com/matrix-algebra/matrix.aspx

• Wolfram’s Mathworld. An online mathematics encyclopædia:

390
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http://www.math.odu.edu/~bogacki/lat/
http://ceee.rice.edu/Books/LA/index.html
http://www.sosmath.com/matrix/matrix.html
http://www.youtube.com/user/numericalmethodsguy
http://www.intmath.com/
http://stattrek.com/matrix-algebra/matrix.aspx


http://mathworld.wolfram.com/

• Paul Dawkin’s online math notes

http://tutorial.math.lamar.edu/

• Math Doctor Bob:

http://www.youtube.com/user/MathDoctorBob?feature=watch

• Some pictures of how to rotate objects with matrices:

http://people.cornellcollege.edu/dsherman/visualize-matrix.html

• xkcd. Geek jokes:

http://xkcd.com/184/

• See the bridge actually fall down:

http://anothermathgeek.hubpages.com/hub/What-the-Heck-are-Eigenvalues-and-Eigenvectors
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J List of Symbols

2 “Is an element of”.

⇠ “Is equivalent to”, see equivalence relations.
Also, “is row equivalent to” for matrices.

R The real numbers.

I
n

The n⇥ n identity matrix.

P F
n

The vector space of polynomials of degree at most n with
coe�cients in the field F.
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Index

Action, 308
Algebra, 261
Angle between vectors, 47
Anti-symmetric matrix, 79
Augmented matrix 2⇥ 2, 19

Back substitution, 89
Basis, 139

concept of, 124
example of, 136

Bit matrices, 84
Block matrix, 72
Bounded operator, 258

Calculus Superhero, 208
Canonical basis, see also Standard ba-

sis, 348
Captain Conundrum, 11, 51, 207
Cauchy–Schwarz inequality, 48
Change of basis, 166
Change of basis matrix, 167
Characteristic polynomial, 114, 156,

159
Closure, 125

additive, 53
multiplicative, 53

Cofactor, 120
Column vector, 63
Components of a vector, 148
Conic sections, 237
Conjugation, 169
Cramer’s rule, 122

Determinant, 98
2⇥ 2 matrix, 96
3⇥ 3 matrix, 96

Diagonal matrix, 66
Diagonalizable, 165
Diagonalization, 165

concept of, 154
Dimension, 139

concept of, 61
notion of, 124

Dimension formula, 200
Direct sum, 186
Dot product, 47
Dual space, 258
Dual vector space, 146, 249
Dyad, 174

Eigenspace, 162
Eigenvalue, 154, 159

multiplicity of, 160
Eigenvector, 154, 159
Einstein, Albert, 41
Elementary matrix, 100

swapping rows, 101
Elementary row operations, 27
Elite NASA engineers, 234
Equivalence relation, 171
Euclidean length, 46
Even permutation, 97
Expansion by minors, 116

Fibonacci numbers, 253
Field, 259
Forward substitution, 89
Fundamental theorem of algebra, 159

Galois, 56, 261
Gauss–Jordan elimination, 27
Gaussian elimination, 27
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General solution, 39
Golden ratio, 239
Goofing up, 82
Gram–Schmidt orthogonalization pro-

cedure, 183
Graph theory, 64
Group, 258

Homogeneous solution
an example, 38

Homogeneous system, 39
Hyperplane, 34, 46

Identity matrix, 67
2⇥ 2, 19

Inner product, 173
Invariant direction, 154
Inverse matrix

concept of, 77
Invertible, 79

Jordan cell, 172, 356

Kernel, 198
Kircho↵’s laws, 231
Kronecker delta, 173, 258

Law of Cosines, 46
Least squares, 206

solutions, 206
Length of a vector, 47
Linear

function, 37
Linear combination, 162
Linear dependence theorem, 133
Linear function, 58
Linear independence

concept of, 124
Linear System

concept of, 14
Linear Transformation

concept of, 15
Linear transformation, 58
Linearity, 58
Linearity property, 37
Linearly dependent, 131
Linearly independent, 131
Lower triangular matrix, 88
Lower unit triangular matrix, 90
LU decomposition, 88

Magnitude, see also Length of a vec-
tor

Matrix, 63
diagonal of, 66
entries of, 63

Matrix of a linear transformation, 147
Minimal spanning set, 136
Minor, 116
Multiplicative function, 116

Newton’s Principiæ, 236
Non-leading variables, 35
Nonsingular, 79
Norm, see also Length of a vector
Nullity, 200

Odd permutation, 97
Orthogonal, 173
Orthogonal basis, 175
Orthogonal complement, 187
Orthogonal decomposition, 181
Orthogonal matrix, 177
Orthonormal basis, 175
Outer product, 173

Parallelepiped, 122
Particular solution, 39
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an example, 38
Permutation, 97

Inversion number, 103
Length, 105
Simple transposition, 104

Permutation matrices, 171
“Perp”, 187
Pivot, 22
Projection, 158

QR decomposition, 184
Queen Quandary, 239

Random, 189
Rank, 200
Recursion relation, 239
Reduced row echelon form, 21
Ring, 260
Row equivalence, 21
Row vector, 63

Scalar multiplication
n-vectors, 44

Sign function, 98
Similar matrices, 169
Skew-symmetric matrix, see Anti-symmetric

matrix
Solution set, 34

set notation, 35
Span, 126
Square matrices, 73
Square matrix, 66
Standard basis, 142, 151
Subspace, 124

notion of, 124, 162
Subspace theorem, 125
Sum of vectors spaces, 185
Symmetric matrix, 67, 191

Trace, 75
Transpose, 67
Triangle inequality, 49

Upper triangular matrix, 88

Vandermonde determinant, 233
Vector

in R2, 13
Vector addition

n-vectors, 44
Vector space, 53

finitedimensional, 139

Zero vector
n-vectors, 44
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