
13. Elementary Matrices and Determinants II

In the last Section, we saw the definition of the determinant and derived
an elementary matrix that exchanges two rows of a matrix. Next, we need
to find elementary matrices corresponding to the other two row operations,
multiplying a row by a scalar, and adding a multiple of one row to an-
other. As a consequence, we will derive some important properties of the
determinant.

Consider M =

R
1

...
Rn

, where Ri are row vectors. Let Ri(λ) be the

identity matrix, with the ith diagonal entry replaced by λ, not to be confused
with the row vectors. Then:

M ′ =



R1

...
λRi

...
Rn


= Ri(λ)M

What effect does multiplication by Ri(λ) have on the determinant?

detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . . λm

i
σ(i) . . .m

n
σ(n)

= λ
∑
σ

sgn(σ)m1
σ(1) . . .m

i
σ(i) . . .m

n
σ(n)

= λ detM

Thus, multiplying a row by λ multiplies the determinant by λ.
Since Ri(λ) is just the identity matrix with a single row multiplied by

λ, then by the above rule, the determinant of Ri(λ) is λ. Thus:

detRi(λ) = det



1
. . .

λ
. . .

1


= λ

The final row operation is adding λRj to Ri. This is done with the
matrix Sij(λ), which is an identity matrix but with a λ in the i, j position.
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Sij(λ) =



1
. . .

1 λ
. . .

1
. . .

1


Then multiplying Sij(λ) by M gives the following:



1
. . .

1 λ
. . .

1
. . .

1





...
Ri

...
Rj

...


=



...
Ri + λRj

...
Rj

...



What is the effect of multiplying by Sij(λ) on the determinant? Let
M ′ = Sij(λ)M , and let M ′′ be the matrix M but with Ri replaced by Rj .

detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . . (m

i
σ(i) + λmj

σ(j)) . . .m
n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) . . .m

i
σ(i) . . .m

n
σ(n)

+
∑
σ

sgn(σ)m1
σ(1) . . . λm

j
σ(j) . . .m

j
σ(j) . . .m

n
σ(n)

= detM + λ detM ′′

SinceM ′′ has two identical rows, its determinant is 0. Then detSij(λ)M =
detM .

Notice that if M is the identity matrix, then we have detSij(λ) =
det(Sij(λ)I) = det I = 1.

We now have an elementary matrices associated to each of the row op-
erations.
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Eij = I with rows i, j swapped; detEij = −1
Ri(λ) = I with λ in position i, i; detRij(λ) = λ

Sij(λ) = I with λ in position i, j; detSij(λ) = 1

We have also proved the following theorem along the way:

Theorem. If E is any of the elementary matrices Eij , R
i(λ), Sij(λ), then

det(EM) = detE detM .

We have seen that any matrix M can be put into reduced row echelon
form via a sequence of row operations, and we have seen that any row
operation can be emulated with left matrix multiplication by an elementary
matrix. Suppose that RREF(M) is the reduced row echelon form of M .
Then RREF(M) = E1E2 . . . EkM where each Ei is an elementary matrix.

What is the determinant of a square matrix in reduced row echelon form?

• If M is not invertible, then some row of RREF(M) contains only zeros.
Then we can multiply the zero row by any constant λ without changing
M ; by our previous observation, this scales the determinant of M by
λ. Thus, if M is not invertible, det RREF(M) = λ det RREF(M), and
so det RREF(M) = 0.

• Otherwise, every row of RREF(M) has a pivot on the diagonal; since
M is square, this means that RREF(M) is the identity matrix. Then
if M is invertible, det RREF(M) = 1.

• Additionally, notice that det RREF(M) = det(E1E2 . . . EkM). Then
by the theorem above, det RREF(M) = det(E1) . . . det(Ek) detM .
Since each Ei has non-zero determinant, then det RREF(M) = 0 if
and only if detM = 0.

Then we have shown:

Theorem. For any square matrix M , detM 6= 0 if and only if M is invert-
ible.

Since we know the determinants of the elementary matrices, we can
immediately obtain the following:

Corollary. Any elementary matrix Eij , R
i(λ), Sij(λ) is invertible, except for

Ri(0). In fact, the inverse of an elementary matrix is another elementary
matrix.
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To obtain one last important result, suppose that M and N are square
n×n matrices, with reduced row echelon forms such that, for Ei and Fi ele-
mentary matrices, M = E1E2 . . . Ek RREF(M), N = F1F2 . . . Fk RREF(N) =
N . If RREF(M) is the identity matrix (ie, M is invertible), then:

det(MN) = det(E1E2 . . . Ek RREF(M)F1F2 . . . Fk RREF(N))
= det(E1E2 . . . EkIF1F2 . . . Fk RREF(N))
= det(E1) . . . det(Ek) det(I) det(F1) . . . det(Fk) det(RREF(N)
= det(M) det(N)

Otherwise, M is not invertible, and detM = 0 = det ref(M). Then
there exists a row of zeros in ref(M), so Rn(λ)ref(M) = ref(M). Then:

det(MN) = det(E1E2 . . . Ekref(M)N)
= det(E1E2 . . . Ekref(M)N)
= det(E1) . . . det(Ek) det(ref(M)N)
= det(E1) . . . det(Ek) det(Rn(λ)ref(M)N)
= det(E1) . . . det(Ek)λ det(ref(M)N)
= λ det(MN)

Which implies that det(MN) = 0 = detM detN .
Thus we have shown that for any matrices M and N ,

det(MN) = detM detN

References

Hefferon, Chapter Four, Section I.1 and I.3
Wikipedia:

• Determinant

• Elementary Matrix

Review Questions

1. Let M =

(
a b
c d

)
and N =

(
x y
z w

)
. Compute the following:
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• detM .

• detN .

• det(MN).

• detM detN .

• det(M−1) assuming ab− cd 6= 0.

• det(MT )

• det(M +N)− detM − detN

2. Suppose M =

(
a b
c d

)
is invertible. Write M as a product of elemen-

tary row matrices times RREF(M).

3. Find the inverses of each of the elementary matrices, Eij , R
i(λ), Sij(λ).

Make sure to show that the elementary matrix times its inverse is
actually the identity.
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